//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// This file describes how to lower LLVM code to machine code. This has two /// main components: /// /// 1. Which ValueTypes are natively supported by the target. /// 2. Which operations are supported for supported ValueTypes. /// 3. Cost thresholds for alternative implementations of certain operations. /// /// In addition it has a few other components, like information about FP /// immediates. /// //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_TARGETLOWERING_H #define LLVM_CODEGEN_TARGETLOWERING_H #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Analysis/DivergenceAnalysis.h" #include "llvm/CodeGen/DAGCombine.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/RuntimeLibcalls.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetCallingConv.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Type.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Target/TargetMachine.h" #include <algorithm> #include <cassert> #include <climits> #include <cstdint> #include <iterator> #include <map> #include <string> #include <utility> #include <vector> namespace llvm { class BranchProbability; class CCState; class CCValAssign; class Constant; class FastISel; class FunctionLoweringInfo; class GlobalValue; class IntrinsicInst; struct KnownBits; class LLVMContext; class MachineBasicBlock; class MachineFunction; class MachineInstr; class MachineJumpTableInfo; class MachineLoop; class MachineRegisterInfo; class MCContext; class MCExpr; class Module; class TargetRegisterClass; class TargetLibraryInfo; class TargetRegisterInfo; class Value; namespace Sched { enum Preference { None, // No preference Source, // Follow source order. RegPressure, // Scheduling for lowest register pressure. Hybrid, // Scheduling for both latency and register pressure. ILP, // Scheduling for ILP in low register pressure mode. VLIW // Scheduling for VLIW targets. }; } // end namespace Sched /// This base class for TargetLowering contains the SelectionDAG-independent /// parts that can be used from the rest of CodeGen. class TargetLoweringBase { public: /// This enum indicates whether operations are valid for a target, and if not, /// what action should be used to make them valid. enum LegalizeAction : uint8_t { Legal, // The target natively supports this operation. Promote, // This operation should be executed in a larger type. Expand, // Try to expand this to other ops, otherwise use a libcall. LibCall, // Don't try to expand this to other ops, always use a libcall. Custom // Use the LowerOperation hook to implement custom lowering. }; /// This enum indicates whether a types are legal for a target, and if not, /// what action should be used to make them valid. enum LegalizeTypeAction : uint8_t { TypeLegal, // The target natively supports this type. TypePromoteInteger, // Replace this integer with a larger one. TypeExpandInteger, // Split this integer into two of half the size. TypeSoftenFloat, // Convert this float to a same size integer type, // if an operation is not supported in target HW. TypeExpandFloat, // Split this float into two of half the size. TypeScalarizeVector, // Replace this one-element vector with its element. TypeSplitVector, // Split this vector into two of half the size. TypeWidenVector, // This vector should be widened into a larger vector. TypePromoteFloat // Replace this float with a larger one. }; /// LegalizeKind holds the legalization kind that needs to happen to EVT /// in order to type-legalize it. using LegalizeKind = std::pair<LegalizeTypeAction, EVT>; /// Enum that describes how the target represents true/false values. enum BooleanContent { UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage. ZeroOrOneBooleanContent, // All bits zero except for bit 0. ZeroOrNegativeOneBooleanContent // All bits equal to bit 0. }; /// Enum that describes what type of support for selects the target has. enum SelectSupportKind { ScalarValSelect, // The target supports scalar selects (ex: cmov). ScalarCondVectorVal, // The target supports selects with a scalar condition // and vector values (ex: cmov). VectorMaskSelect // The target supports vector selects with a vector // mask (ex: x86 blends). }; /// Enum that specifies what an atomic load/AtomicRMWInst is expanded /// to, if at all. Exists because different targets have different levels of /// support for these atomic instructions, and also have different options /// w.r.t. what they should expand to. enum class AtomicExpansionKind { None, // Don't expand the instruction. LLSC, // Expand the instruction into loadlinked/storeconditional; used // by ARM/AArch64. LLOnly, // Expand the (load) instruction into just a load-linked, which has // greater atomic guarantees than a normal load. CmpXChg, // Expand the instruction into cmpxchg; used by at least X86. }; /// Enum that specifies when a multiplication should be expanded. enum class MulExpansionKind { Always, // Always expand the instruction. OnlyLegalOrCustom, // Only expand when the resulting instructions are legal // or custom. }; class ArgListEntry { public: Value *Val = nullptr; SDValue Node = SDValue(); Type *Ty = nullptr; bool IsSExt : 1; bool IsZExt : 1; bool IsInReg : 1; bool IsSRet : 1; bool IsNest : 1; bool IsByVal : 1; bool IsInAlloca : 1; bool IsReturned : 1; bool IsSwiftSelf : 1; bool IsSwiftError : 1; uint16_t Alignment = 0; ArgListEntry() : IsSExt(false), IsZExt(false), IsInReg(false), IsSRet(false), IsNest(false), IsByVal(false), IsInAlloca(false), IsReturned(false), IsSwiftSelf(false), IsSwiftError(false) {} void setAttributes(ImmutableCallSite *CS, unsigned ArgIdx); }; using ArgListTy = std::vector<ArgListEntry>; virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const {}; static ISD::NodeType getExtendForContent(BooleanContent Content) { switch (Content) { case UndefinedBooleanContent: // Extend by adding rubbish bits. return ISD::ANY_EXTEND; case ZeroOrOneBooleanContent: // Extend by adding zero bits. return ISD::ZERO_EXTEND; case ZeroOrNegativeOneBooleanContent: // Extend by copying the sign bit. return ISD::SIGN_EXTEND; } llvm_unreachable("Invalid content kind"); } /// NOTE: The TargetMachine owns TLOF. explicit TargetLoweringBase(const TargetMachine &TM); TargetLoweringBase(const TargetLoweringBase &) = delete; TargetLoweringBase &operator=(const TargetLoweringBase &) = delete; virtual ~TargetLoweringBase() = default; protected: /// Initialize all of the actions to default values. void initActions(); public: const TargetMachine &getTargetMachine() const { return TM; } virtual bool useSoftFloat() const { return false; } /// Return the pointer type for the given address space, defaults to /// the pointer type from the data layout. /// FIXME: The default needs to be removed once all the code is updated. MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const { return MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); } /// Return the type for frame index, which is determined by /// the alloca address space specified through the data layout. MVT getFrameIndexTy(const DataLayout &DL) const { return getPointerTy(DL, DL.getAllocaAddrSpace()); } /// Return the type for operands of fence. /// TODO: Let fence operands be of i32 type and remove this. virtual MVT getFenceOperandTy(const DataLayout &DL) const { return getPointerTy(DL); } /// EVT is not used in-tree, but is used by out-of-tree target. /// A documentation for this function would be nice... virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const; EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL, bool LegalTypes = true) const; /// Returns the type to be used for the index operand of: /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR virtual MVT getVectorIdxTy(const DataLayout &DL) const { return getPointerTy(DL); } virtual bool isSelectSupported(SelectSupportKind /*kind*/) const { return true; } /// Return true if multiple condition registers are available. bool hasMultipleConditionRegisters() const { return HasMultipleConditionRegisters; } /// Return true if the target has BitExtract instructions. bool hasExtractBitsInsn() const { return HasExtractBitsInsn; } /// Return the preferred vector type legalization action. virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT) const { // The default action for one element vectors is to scalarize if (VT.getVectorNumElements() == 1) return TypeScalarizeVector; // The default action for other vectors is to promote return TypePromoteInteger; } // There are two general methods for expanding a BUILD_VECTOR node: // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle // them together. // 2. Build the vector on the stack and then load it. // If this function returns true, then method (1) will be used, subject to // the constraint that all of the necessary shuffles are legal (as determined // by isShuffleMaskLegal). If this function returns false, then method (2) is // always used. The vector type, and the number of defined values, are // provided. virtual bool shouldExpandBuildVectorWithShuffles(EVT /* VT */, unsigned DefinedValues) const { return DefinedValues < 3; } /// Return true if integer divide is usually cheaper than a sequence of /// several shifts, adds, and multiplies for this target. /// The definition of "cheaper" may depend on whether we're optimizing /// for speed or for size. virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; } /// Return true if the target can handle a standalone remainder operation. virtual bool hasStandaloneRem(EVT VT) const { return true; } /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X). virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const { // Default behavior is to replace SQRT(X) with X*RSQRT(X). return false; } /// Reciprocal estimate status values used by the functions below. enum ReciprocalEstimate : int { Unspecified = -1, Disabled = 0, Enabled = 1 }; /// Return a ReciprocalEstimate enum value for a square root of the given type /// based on the function's attributes. If the operation is not overridden by /// the function's attributes, "Unspecified" is returned and target defaults /// are expected to be used for instruction selection. int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const; /// Return a ReciprocalEstimate enum value for a division of the given type /// based on the function's attributes. If the operation is not overridden by /// the function's attributes, "Unspecified" is returned and target defaults /// are expected to be used for instruction selection. int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const; /// Return the refinement step count for a square root of the given type based /// on the function's attributes. If the operation is not overridden by /// the function's attributes, "Unspecified" is returned and target defaults /// are expected to be used for instruction selection. int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const; /// Return the refinement step count for a division of the given type based /// on the function's attributes. If the operation is not overridden by /// the function's attributes, "Unspecified" is returned and target defaults /// are expected to be used for instruction selection. int getDivRefinementSteps(EVT VT, MachineFunction &MF) const; /// Returns true if target has indicated at least one type should be bypassed. bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); } /// Returns map of slow types for division or remainder with corresponding /// fast types const DenseMap<unsigned int, unsigned int> &getBypassSlowDivWidths() const { return BypassSlowDivWidths; } /// Return true if Flow Control is an expensive operation that should be /// avoided. bool isJumpExpensive() const { return JumpIsExpensive; } /// Return true if selects are only cheaper than branches if the branch is /// unlikely to be predicted right. bool isPredictableSelectExpensive() const { return PredictableSelectIsExpensive; } /// If a branch or a select condition is skewed in one direction by more than /// this factor, it is very likely to be predicted correctly. virtual BranchProbability getPredictableBranchThreshold() const; /// Return true if the following transform is beneficial: /// fold (conv (load x)) -> (load (conv*)x) /// On architectures that don't natively support some vector loads /// efficiently, casting the load to a smaller vector of larger types and /// loading is more efficient, however, this can be undone by optimizations in /// dag combiner. virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT) const { // Don't do if we could do an indexed load on the original type, but not on // the new one. if (!LoadVT.isSimple() || !BitcastVT.isSimple()) return true; MVT LoadMVT = LoadVT.getSimpleVT(); // Don't bother doing this if it's just going to be promoted again later, as // doing so might interfere with other combines. if (getOperationAction(ISD::LOAD, LoadMVT) == Promote && getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT()) return false; return true; } /// Return true if the following transform is beneficial: /// (store (y (conv x)), y*)) -> (store x, (x*)) virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT) const { // Default to the same logic as loads. return isLoadBitCastBeneficial(StoreVT, BitcastVT); } /// Return true if it is expected to be cheaper to do a store of a non-zero /// vector constant with the given size and type for the address space than to /// store the individual scalar element constants. virtual bool storeOfVectorConstantIsCheap(EVT MemVT, unsigned NumElem, unsigned AddrSpace) const { return false; } /// Allow store merging after legalization in addition to before legalization. /// This may catch stores that do not exist earlier (eg, stores created from /// intrinsics). virtual bool mergeStoresAfterLegalization() const { return true; } /// Returns if it's reasonable to merge stores to MemVT size. virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const SelectionDAG &DAG) const { return true; } /// Return true if it is cheap to speculate a call to intrinsic cttz. virtual bool isCheapToSpeculateCttz() const { return false; } /// Return true if it is cheap to speculate a call to intrinsic ctlz. virtual bool isCheapToSpeculateCtlz() const { return false; } /// Return true if ctlz instruction is fast. virtual bool isCtlzFast() const { return false; } /// Return true if it is safe to transform an integer-domain bitwise operation /// into the equivalent floating-point operation. This should be set to true /// if the target has IEEE-754-compliant fabs/fneg operations for the input /// type. virtual bool hasBitPreservingFPLogic(EVT VT) const { return false; } /// Return true if it is cheaper to split the store of a merged int val /// from a pair of smaller values into multiple stores. virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const { return false; } /// Return if the target supports combining a /// chain like: /// \code /// %andResult = and %val1, #mask /// %icmpResult = icmp %andResult, 0 /// \endcode /// into a single machine instruction of a form like: /// \code /// cc = test %register, #mask /// \endcode virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { return false; } /// Use bitwise logic to make pairs of compares more efficient. For example: /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0 /// This should be true when it takes more than one instruction to lower /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win. virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const { return false; } /// Return the preferred operand type if the target has a quick way to compare /// integer values of the given size. Assume that any legal integer type can /// be compared efficiently. Targets may override this to allow illegal wide /// types to return a vector type if there is support to compare that type. virtual MVT hasFastEqualityCompare(unsigned NumBits) const { MVT VT = MVT::getIntegerVT(NumBits); return isTypeLegal(VT) ? VT : MVT::INVALID_SIMPLE_VALUE_TYPE; } /// Return true if the target should transform: /// (X & Y) == Y ---> (~X & Y) == 0 /// (X & Y) != Y ---> (~X & Y) != 0 /// /// This may be profitable if the target has a bitwise and-not operation that /// sets comparison flags. A target may want to limit the transformation based /// on the type of Y or if Y is a constant. /// /// Note that the transform will not occur if Y is known to be a power-of-2 /// because a mask and compare of a single bit can be handled by inverting the /// predicate, for example: /// (X & 8) == 8 ---> (X & 8) != 0 virtual bool hasAndNotCompare(SDValue Y) const { return false; } /// Return true if the target has a bitwise and-not operation: /// X = ~A & B /// This can be used to simplify select or other instructions. virtual bool hasAndNot(SDValue X) const { // If the target has the more complex version of this operation, assume that // it has this operation too. return hasAndNotCompare(X); } /// There are two ways to clear extreme bits (either low or high): /// Mask: x & (-1 << y) (the instcombine canonical form) /// Shifts: x >> y << y /// Return true if the variant with 2 shifts is preferred. /// Return false if there is no preference. virtual bool preferShiftsToClearExtremeBits(SDValue X) const { // By default, let's assume that no one prefers shifts. return false; } /// Should we tranform the IR-optimal check for whether given truncation /// down into KeptBits would be truncating or not: /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) /// Into it's more traditional form: /// ((%x << C) a>> C) dstcond %x /// Return true if we should transform. /// Return false if there is no preference. virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const { // By default, let's assume that no one prefers shifts. return false; } /// Return true if the target wants to use the optimization that /// turns ext(promotableInst1(...(promotableInstN(load)))) into /// promotedInst1(...(promotedInstN(ext(load)))). bool enableExtLdPromotion() const { return EnableExtLdPromotion; } /// Return true if the target can combine store(extractelement VectorTy, /// Idx). /// \p Cost[out] gives the cost of that transformation when this is true. virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const { return false; } /// Return true if target supports floating point exceptions. bool hasFloatingPointExceptions() const { return HasFloatingPointExceptions; } /// Return true if target always beneficiates from combining into FMA for a /// given value type. This must typically return false on targets where FMA /// takes more cycles to execute than FADD. virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; } /// Return the ValueType of the result of SETCC operations. virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const; /// Return the ValueType for comparison libcalls. Comparions libcalls include /// floating point comparion calls, and Ordered/Unordered check calls on /// floating point numbers. virtual MVT::SimpleValueType getCmpLibcallReturnType() const; /// For targets without i1 registers, this gives the nature of the high-bits /// of boolean values held in types wider than i1. /// /// "Boolean values" are special true/false values produced by nodes like /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND. /// Not to be confused with general values promoted from i1. Some cpus /// distinguish between vectors of boolean and scalars; the isVec parameter /// selects between the two kinds. For example on X86 a scalar boolean should /// be zero extended from i1, while the elements of a vector of booleans /// should be sign extended from i1. /// /// Some cpus also treat floating point types the same way as they treat /// vectors instead of the way they treat scalars. BooleanContent getBooleanContents(bool isVec, bool isFloat) const { if (isVec) return BooleanVectorContents; return isFloat ? BooleanFloatContents : BooleanContents; } BooleanContent getBooleanContents(EVT Type) const { return getBooleanContents(Type.isVector(), Type.isFloatingPoint()); } /// Return target scheduling preference. Sched::Preference getSchedulingPreference() const { return SchedPreferenceInfo; } /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics /// for different nodes. This function returns the preference (or none) for /// the given node. virtual Sched::Preference getSchedulingPreference(SDNode *) const { return Sched::None; } /// Return the register class that should be used for the specified value /// type. virtual const TargetRegisterClass *getRegClassFor(MVT VT) const { const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; assert(RC && "This value type is not natively supported!"); return RC; } /// Return the 'representative' register class for the specified value /// type. /// /// The 'representative' register class is the largest legal super-reg /// register class for the register class of the value type. For example, on /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep /// register class is GR64 on x86_64. virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const { const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy]; return RC; } /// Return the cost of the 'representative' register class for the specified /// value type. virtual uint8_t getRepRegClassCostFor(MVT VT) const { return RepRegClassCostForVT[VT.SimpleTy]; } /// Return true if the target has native support for the specified value type. /// This means that it has a register that directly holds it without /// promotions or expansions. bool isTypeLegal(EVT VT) const { assert(!VT.isSimple() || (unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegClassForVT)); return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr; } class ValueTypeActionImpl { /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum /// that indicates how instruction selection should deal with the type. LegalizeTypeAction ValueTypeActions[MVT::LAST_VALUETYPE]; public: ValueTypeActionImpl() { std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions), TypeLegal); } LegalizeTypeAction getTypeAction(MVT VT) const { return ValueTypeActions[VT.SimpleTy]; } void setTypeAction(MVT VT, LegalizeTypeAction Action) { ValueTypeActions[VT.SimpleTy] = Action; } }; const ValueTypeActionImpl &getValueTypeActions() const { return ValueTypeActions; } /// Return how we should legalize values of this type, either it is already /// legal (return 'Legal') or we need to promote it to a larger type (return /// 'Promote'), or we need to expand it into multiple registers of smaller /// integer type (return 'Expand'). 'Custom' is not an option. LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).first; } LegalizeTypeAction getTypeAction(MVT VT) const { return ValueTypeActions.getTypeAction(VT); } /// For types supported by the target, this is an identity function. For /// types that must be promoted to larger types, this returns the larger type /// to promote to. For integer types that are larger than the largest integer /// register, this contains one step in the expansion to get to the smaller /// register. For illegal floating point types, this returns the integer type /// to transform to. EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const { return getTypeConversion(Context, VT).second; } /// For types supported by the target, this is an identity function. For /// types that must be expanded (i.e. integer types that are larger than the /// largest integer register or illegal floating point types), this returns /// the largest legal type it will be expanded to. EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const { assert(!VT.isVector()); while (true) { switch (getTypeAction(Context, VT)) { case TypeLegal: return VT; case TypeExpandInteger: VT = getTypeToTransformTo(Context, VT); break; default: llvm_unreachable("Type is not legal nor is it to be expanded!"); } } } /// Vector types are broken down into some number of legal first class types. /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64 /// turns into 4 EVT::i32 values with both PPC and X86. /// /// This method returns the number of registers needed, and the VT for each /// register. It also returns the VT and quantity of the intermediate values /// before they are promoted/expanded. unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const; /// Certain targets such as MIPS require that some types such as vectors are /// always broken down into scalars in some contexts. This occurs even if the /// vector type is legal. virtual unsigned getVectorTypeBreakdownForCallingConv( LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const { return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates, RegisterVT); } struct IntrinsicInfo { unsigned opc = 0; // target opcode EVT memVT; // memory VT // value representing memory location PointerUnion<const Value *, const PseudoSourceValue *> ptrVal; int offset = 0; // offset off of ptrVal unsigned size = 0; // the size of the memory location // (taken from memVT if zero) unsigned align = 1; // alignment MachineMemOperand::Flags flags = MachineMemOperand::MONone; IntrinsicInfo() = default; }; /// Given an intrinsic, checks if on the target the intrinsic will need to map /// to a MemIntrinsicNode (touches memory). If this is the case, it returns /// true and store the intrinsic information into the IntrinsicInfo that was /// passed to the function. virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned /*Intrinsic*/) const { return false; } /// Returns true if the target can instruction select the specified FP /// immediate natively. If false, the legalizer will materialize the FP /// immediate as a load from a constant pool. virtual bool isFPImmLegal(const APFloat &/*Imm*/, EVT /*VT*/) const { return false; } /// Targets can use this to indicate that they only support *some* /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be /// legal. virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const { return true; } /// Returns true if the operation can trap for the value type. /// /// VT must be a legal type. By default, we optimistically assume most /// operations don't trap except for integer divide and remainder. virtual bool canOpTrap(unsigned Op, EVT VT) const; /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a /// constant pool entry. virtual bool isVectorClearMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const { return false; } /// Return how this operation should be treated: either it is legal, needs to /// be promoted to a larger size, needs to be expanded to some other code /// sequence, or the target has a custom expander for it. LegalizeAction getOperationAction(unsigned Op, EVT VT) const { if (VT.isExtended()) return Expand; // If a target-specific SDNode requires legalization, require the target // to provide custom legalization for it. if (Op >= array_lengthof(OpActions[0])) return Custom; return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op]; } LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const { unsigned EqOpc; switch (Op) { default: llvm_unreachable("Unexpected FP pseudo-opcode"); case ISD::STRICT_FADD: EqOpc = ISD::FADD; break; case ISD::STRICT_FSUB: EqOpc = ISD::FSUB; break; case ISD::STRICT_FMUL: EqOpc = ISD::FMUL; break; case ISD::STRICT_FDIV: EqOpc = ISD::FDIV; break; case ISD::STRICT_FSQRT: EqOpc = ISD::FSQRT; break; case ISD::STRICT_FPOW: EqOpc = ISD::FPOW; break; case ISD::STRICT_FPOWI: EqOpc = ISD::FPOWI; break; case ISD::STRICT_FMA: EqOpc = ISD::FMA; break; case ISD::STRICT_FSIN: EqOpc = ISD::FSIN; break; case ISD::STRICT_FCOS: EqOpc = ISD::FCOS; break; case ISD::STRICT_FEXP: EqOpc = ISD::FEXP; break; case ISD::STRICT_FEXP2: EqOpc = ISD::FEXP2; break; case ISD::STRICT_FLOG: EqOpc = ISD::FLOG; break; case ISD::STRICT_FLOG10: EqOpc = ISD::FLOG10; break; case ISD::STRICT_FLOG2: EqOpc = ISD::FLOG2; break; case ISD::STRICT_FRINT: EqOpc = ISD::FRINT; break; case ISD::STRICT_FNEARBYINT: EqOpc = ISD::FNEARBYINT; break; } auto Action = getOperationAction(EqOpc, VT); // We don't currently handle Custom or Promote for strict FP pseudo-ops. // For now, we just expand for those cases. if (Action != Legal) Action = Expand; return Action; } /// Return true if the specified operation is legal on this target or can be /// made legal with custom lowering. This is used to help guide high-level /// lowering decisions. bool isOperationLegalOrCustom(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom); } /// Return true if the specified operation is legal on this target or can be /// made legal using promotion. This is used to help guide high-level lowering /// decisions. bool isOperationLegalOrPromote(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Promote); } /// Return true if the specified operation is legal on this target or can be /// made legal with custom lowering or using promotion. This is used to help /// guide high-level lowering decisions. bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && (getOperationAction(Op, VT) == Legal || getOperationAction(Op, VT) == Custom || getOperationAction(Op, VT) == Promote); } /// Return true if the operation uses custom lowering, regardless of whether /// the type is legal or not. bool isOperationCustom(unsigned Op, EVT VT) const { return getOperationAction(Op, VT) == Custom; } /// Return true if lowering to a jump table is allowed. virtual bool areJTsAllowed(const Function *Fn) const { if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true") return false; return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || isOperationLegalOrCustom(ISD::BRIND, MVT::Other); } /// Check whether the range [Low,High] fits in a machine word. bool rangeFitsInWord(const APInt &Low, const APInt &High, const DataLayout &DL) const { // FIXME: Using the pointer type doesn't seem ideal. uint64_t BW = DL.getIndexSizeInBits(0u); uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; return Range <= BW; } /// Return true if lowering to a jump table is suitable for a set of case /// clusters which may contain \p NumCases cases, \p Range range of values. /// FIXME: This function check the maximum table size and density, but the /// minimum size is not checked. It would be nice if the minimum size is /// also combined within this function. Currently, the minimum size check is /// performed in findJumpTable() in SelectionDAGBuiler and /// getEstimatedNumberOfCaseClusters() in BasicTTIImpl. virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range) const { const bool OptForSize = SI->getParent()->getParent()->optForSize(); const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize); const unsigned MaxJumpTableSize = OptForSize || getMaximumJumpTableSize() == 0 ? UINT_MAX : getMaximumJumpTableSize(); // Check whether a range of clusters is dense enough for a jump table. if (Range <= MaxJumpTableSize && (NumCases * 100 >= Range * MinDensity)) { return true; } return false; } /// Return true if lowering to a bit test is suitable for a set of case /// clusters which contains \p NumDests unique destinations, \p Low and /// \p High as its lowest and highest case values, and expects \p NumCmps /// case value comparisons. Check if the number of destinations, comparison /// metric, and range are all suitable. bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const { // FIXME: I don't think NumCmps is the correct metric: a single case and a // range of cases both require only one branch to lower. Just looking at the // number of clusters and destinations should be enough to decide whether to // build bit tests. // To lower a range with bit tests, the range must fit the bitwidth of a // machine word. if (!rangeFitsInWord(Low, High, DL)) return false; // Decide whether it's profitable to lower this range with bit tests. Each // destination requires a bit test and branch, and there is an overall range // check branch. For a small number of clusters, separate comparisons might // be cheaper, and for many destinations, splitting the range might be // better. return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) || (NumDests == 3 && NumCmps >= 6); } /// Return true if the specified operation is illegal on this target or /// unlikely to be made legal with custom lowering. This is used to help guide /// high-level lowering decisions. bool isOperationExpand(unsigned Op, EVT VT) const { return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand); } /// Return true if the specified operation is legal on this target. bool isOperationLegal(unsigned Op, EVT VT) const { return (VT == MVT::Other || isTypeLegal(VT)) && getOperationAction(Op, VT) == Legal; } /// Return how this load with extension should be treated: either it is legal, /// needs to be promoted to a larger size, needs to be expanded to some other /// code sequence, or the target has a custom expander for it. LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const { if (ValVT.isExtended() || MemVT.isExtended()) return Expand; unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!"); unsigned Shift = 4 * ExtType; return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf); } /// Return true if the specified load with extension is legal on this target. bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const { return getLoadExtAction(ExtType, ValVT, MemVT) == Legal; } /// Return true if the specified load with extension is legal or custom /// on this target. bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const { return getLoadExtAction(ExtType, ValVT, MemVT) == Legal || getLoadExtAction(ExtType, ValVT, MemVT) == Custom; } /// Return how this store with truncation should be treated: either it is /// legal, needs to be promoted to a larger size, needs to be expanded to some /// other code sequence, or the target has a custom expander for it. LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const { if (ValVT.isExtended() || MemVT.isExtended()) return Expand; unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy; unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy; assert(ValI < MVT::LAST_VALUETYPE && MemI < MVT::LAST_VALUETYPE && "Table isn't big enough!"); return TruncStoreActions[ValI][MemI]; } /// Return true if the specified store with truncation is legal on this /// target. bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const { return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal; } /// Return true if the specified store with truncation has solution on this /// target. bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const { return isTypeLegal(ValVT) && (getTruncStoreAction(ValVT, MemVT) == Legal || getTruncStoreAction(ValVT, MemVT) == Custom); } /// Return how the indexed load should be treated: either it is legal, needs /// to be promoted to a larger size, needs to be expanded to some other code /// sequence, or the target has a custom expander for it. LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.SimpleTy; return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] & 0xf0) >> 4); } /// Return true if the specified indexed load is legal on this target. bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal || getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom); } /// Return how the indexed store should be treated: either it is legal, needs /// to be promoted to a larger size, needs to be expanded to some other code /// sequence, or the target has a custom expander for it. LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const { assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() && "Table isn't big enough!"); unsigned Ty = (unsigned)VT.SimpleTy; return (LegalizeAction)(IndexedModeActions[Ty][IdxMode] & 0x0f); } /// Return true if the specified indexed load is legal on this target. bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const { return VT.isSimple() && (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal || getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom); } /// Return how the condition code should be treated: either it is legal, needs /// to be expanded to some other code sequence, or the target has a custom /// expander for it. LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const { assert((unsigned)CC < array_lengthof(CondCodeActions) && ((unsigned)VT.SimpleTy >> 3) < array_lengthof(CondCodeActions[0]) && "Table isn't big enough!"); // See setCondCodeAction for how this is encoded. uint32_t Shift = 4 * (VT.SimpleTy & 0x7); uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3]; LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF); assert(Action != Promote && "Can't promote condition code!"); return Action; } /// Return true if the specified condition code is legal on this target. bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const { return getCondCodeAction(CC, VT) == Legal; } /// Return true if the specified condition code is legal or custom on this /// target. bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const { return getCondCodeAction(CC, VT) == Legal || getCondCodeAction(CC, VT) == Custom; } /// If the action for this operation is to promote, this method returns the /// ValueType to promote to. MVT getTypeToPromoteTo(unsigned Op, MVT VT) const { assert(getOperationAction(Op, VT) == Promote && "This operation isn't promoted!"); // See if this has an explicit type specified. std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>::const_iterator PTTI = PromoteToType.find(std::make_pair(Op, VT.SimpleTy)); if (PTTI != PromoteToType.end()) return PTTI->second; assert((VT.isInteger() || VT.isFloatingPoint()) && "Cannot autopromote this type, add it with AddPromotedToType."); MVT NVT = VT; do { NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1); assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid && "Didn't find type to promote to!"); } while (!isTypeLegal(NVT) || getOperationAction(Op, NVT) == Promote); return NVT; } /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM /// operations except for the pointer size. If AllowUnknown is true, this /// will return MVT::Other for types with no EVT counterpart (e.g. structs), /// otherwise it will assert. EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown = false) const { // Lower scalar pointers to native pointer types. if (PointerType *PTy = dyn_cast<PointerType>(Ty)) return getPointerTy(DL, PTy->getAddressSpace()); if (Ty->isVectorTy()) { VectorType *VTy = cast<VectorType>(Ty); Type *Elm = VTy->getElementType(); // Lower vectors of pointers to native pointer types. if (PointerType *PT = dyn_cast<PointerType>(Elm)) { EVT PointerTy(getPointerTy(DL, PT->getAddressSpace())); Elm = PointerTy.getTypeForEVT(Ty->getContext()); } return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(Elm, false), VTy->getNumElements()); } return EVT::getEVT(Ty, AllowUnknown); } /// Return the MVT corresponding to this LLVM type. See getValueType. MVT getSimpleValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown = false) const { return getValueType(DL, Ty, AllowUnknown).getSimpleVT(); } /// Return the desired alignment for ByVal or InAlloca aggregate function /// arguments in the caller parameter area. This is the actual alignment, not /// its logarithm. virtual unsigned getByValTypeAlignment(Type *Ty, const DataLayout &DL) const; /// Return the type of registers that this ValueType will eventually require. MVT getRegisterType(MVT VT) const { assert((unsigned)VT.SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.SimpleTy]; } /// Return the type of registers that this ValueType will eventually require. MVT getRegisterType(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(RegisterTypeForVT)); return RegisterTypeForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1; MVT RegisterVT; unsigned NumIntermediates; (void)getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, RegisterVT); return RegisterVT; } if (VT.isInteger()) { return getRegisterType(Context, getTypeToTransformTo(Context, VT)); } llvm_unreachable("Unsupported extended type!"); } /// Return the number of registers that this ValueType will eventually /// require. /// /// This is one for any types promoted to live in larger registers, but may be /// more than one for types (like i64) that are split into pieces. For types /// like i140, which are first promoted then expanded, it is the number of /// registers needed to hold all the bits of the original type. For an i140 /// on a 32 bit machine this means 5 registers. unsigned getNumRegisters(LLVMContext &Context, EVT VT) const { if (VT.isSimple()) { assert((unsigned)VT.getSimpleVT().SimpleTy < array_lengthof(NumRegistersForVT)); return NumRegistersForVT[VT.getSimpleVT().SimpleTy]; } if (VT.isVector()) { EVT VT1; MVT VT2; unsigned NumIntermediates; return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2); } if (VT.isInteger()) { unsigned BitWidth = VT.getSizeInBits(); unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits(); return (BitWidth + RegWidth - 1) / RegWidth; } llvm_unreachable("Unsupported extended type!"); } /// Certain combinations of ABIs, Targets and features require that types /// are legal for some operations and not for other operations. /// For MIPS all vector types must be passed through the integer register set. virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { return getRegisterType(Context, VT); } /// Certain targets require unusual breakdowns of certain types. For MIPS, /// this occurs when a vector type is used, as vector are passed through the /// integer register set. virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const { return getNumRegisters(Context, VT); } /// Certain targets have context senstive alignment requirements, where one /// type has the alignment requirement of another type. virtual unsigned getABIAlignmentForCallingConv(Type *ArgTy, DataLayout DL) const { return DL.getABITypeAlignment(ArgTy); } /// If true, then instruction selection should seek to shrink the FP constant /// of the specified type to a smaller type in order to save space and / or /// reduce runtime. virtual bool ShouldShrinkFPConstant(EVT) const { return true; } // Return true if it is profitable to reduce the given load node to a smaller // type. // // e.g. (i16 (trunc (i32 (load x))) -> i16 load x should be performed virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const { return true; } /// When splitting a value of the specified type into parts, does the Lo /// or Hi part come first? This usually follows the endianness, except /// for ppcf128, where the Hi part always comes first. bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const { return DL.isBigEndian() || VT == MVT::ppcf128; } /// If true, the target has custom DAG combine transformations that it can /// perform for the specified node. bool hasTargetDAGCombine(ISD::NodeType NT) const { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7)); } unsigned getGatherAllAliasesMaxDepth() const { return GatherAllAliasesMaxDepth; } /// Returns the size of the platform's va_list object. virtual unsigned getVaListSizeInBits(const DataLayout &DL) const { return getPointerTy(DL).getSizeInBits(); } /// Get maximum # of store operations permitted for llvm.memset /// /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memset. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxStoresPerMemset(bool OptSize) const { return OptSize ? MaxStoresPerMemsetOptSize : MaxStoresPerMemset; } /// Get maximum # of store operations permitted for llvm.memcpy /// /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memcpy. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxStoresPerMemcpy(bool OptSize) const { return OptSize ? MaxStoresPerMemcpyOptSize : MaxStoresPerMemcpy; } /// \brief Get maximum # of store operations to be glued together /// /// This function returns the maximum number of store operations permitted /// to glue together during lowering of llvm.memcpy. The value is set by // the target at the performance threshold for such a replacement. virtual unsigned getMaxGluedStoresPerMemcpy() const { return MaxGluedStoresPerMemcpy; } /// Get maximum # of load operations permitted for memcmp /// /// This function returns the maximum number of load operations permitted /// to replace a call to memcmp. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxExpandSizeMemcmp(bool OptSize) const { return OptSize ? MaxLoadsPerMemcmpOptSize : MaxLoadsPerMemcmp; } /// For memcmp expansion when the memcmp result is only compared equal or /// not-equal to 0, allow up to this number of load pairs per block. As an /// example, this may allow 'memcmp(a, b, 3) == 0' in a single block: /// a0 = load2bytes &a[0] /// b0 = load2bytes &b[0] /// a2 = load1byte &a[2] /// b2 = load1byte &b[2] /// r = cmp eq (a0 ^ b0 | a2 ^ b2), 0 virtual unsigned getMemcmpEqZeroLoadsPerBlock() const { return 1; } /// Get maximum # of store operations permitted for llvm.memmove /// /// This function returns the maximum number of store operations permitted /// to replace a call to llvm.memmove. The value is set by the target at the /// performance threshold for such a replacement. If OptSize is true, /// return the limit for functions that have OptSize attribute. unsigned getMaxStoresPerMemmove(bool OptSize) const { return OptSize ? MaxStoresPerMemmoveOptSize : MaxStoresPerMemmove; } /// Determine if the target supports unaligned memory accesses. /// /// This function returns true if the target allows unaligned memory accesses /// of the specified type in the given address space. If true, it also returns /// whether the unaligned memory access is "fast" in the last argument by /// reference. This is used, for example, in situations where an array /// copy/move/set is converted to a sequence of store operations. Its use /// helps to ensure that such replacements don't generate code that causes an /// alignment error (trap) on the target machine. virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace = 0, unsigned Align = 1, bool * /*Fast*/ = nullptr) const { return false; } /// Return true if the target supports a memory access of this type for the /// given address space and alignment. If the access is allowed, the optional /// final parameter returns if the access is also fast (as defined by the /// target). bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace = 0, unsigned Alignment = 1, bool *Fast = nullptr) const; /// Returns the target specific optimal type for load and store operations as /// a result of memset, memcpy, and memmove lowering. /// /// If DstAlign is zero that means it's safe to destination alignment can /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't /// a need to check it against alignment requirement, probably because the /// source does not need to be loaded. If 'IsMemset' is true, that means it's /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it /// does not need to be loaded. It returns EVT::Other if the type should be /// determined using generic target-independent logic. virtual EVT getOptimalMemOpType(uint64_t /*Size*/, unsigned /*DstAlign*/, unsigned /*SrcAlign*/, bool /*IsMemset*/, bool /*ZeroMemset*/, bool /*MemcpyStrSrc*/, MachineFunction &/*MF*/) const { return MVT::Other; } /// Returns true if it's safe to use load / store of the specified type to /// expand memcpy / memset inline. /// /// This is mostly true for all types except for some special cases. For /// example, on X86 targets without SSE2 f64 load / store are done with fldl / /// fstpl which also does type conversion. Note the specified type doesn't /// have to be legal as the hook is used before type legalization. virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; } /// Determine if we should use _setjmp or setjmp to implement llvm.setjmp. bool usesUnderscoreSetJmp() const { return UseUnderscoreSetJmp; } /// Determine if we should use _longjmp or longjmp to implement llvm.longjmp. bool usesUnderscoreLongJmp() const { return UseUnderscoreLongJmp; } /// Return lower limit for number of blocks in a jump table. virtual unsigned getMinimumJumpTableEntries() const; /// Return lower limit of the density in a jump table. unsigned getMinimumJumpTableDensity(bool OptForSize) const; /// Return upper limit for number of entries in a jump table. /// Zero if no limit. unsigned getMaximumJumpTableSize() const; virtual bool isJumpTableRelative() const { return TM.isPositionIndependent(); } /// If a physical register, this specifies the register that /// llvm.savestack/llvm.restorestack should save and restore. unsigned getStackPointerRegisterToSaveRestore() const { return StackPointerRegisterToSaveRestore; } /// If a physical register, this returns the register that receives the /// exception address on entry to an EH pad. virtual unsigned getExceptionPointerRegister(const Constant *PersonalityFn) const { // 0 is guaranteed to be the NoRegister value on all targets return 0; } /// If a physical register, this returns the register that receives the /// exception typeid on entry to a landing pad. virtual unsigned getExceptionSelectorRegister(const Constant *PersonalityFn) const { // 0 is guaranteed to be the NoRegister value on all targets return 0; } virtual bool needsFixedCatchObjects() const { report_fatal_error("Funclet EH is not implemented for this target"); } /// Returns the target's jmp_buf size in bytes (if never set, the default is /// 200) unsigned getJumpBufSize() const { return JumpBufSize; } /// Returns the target's jmp_buf alignment in bytes (if never set, the default /// is 0) unsigned getJumpBufAlignment() const { return JumpBufAlignment; } /// Return the minimum stack alignment of an argument. unsigned getMinStackArgumentAlignment() const { return MinStackArgumentAlignment; } /// Return the minimum function alignment. unsigned getMinFunctionAlignment() const { return MinFunctionAlignment; } /// Return the preferred function alignment. unsigned getPrefFunctionAlignment() const { return PrefFunctionAlignment; } /// Return the preferred loop alignment. virtual unsigned getPrefLoopAlignment(MachineLoop *ML = nullptr) const { return PrefLoopAlignment; } /// If the target has a standard location for the stack protector guard, /// returns the address of that location. Otherwise, returns nullptr. /// DEPRECATED: please override useLoadStackGuardNode and customize /// LOAD_STACK_GUARD, or customize \@llvm.stackguard(). virtual Value *getIRStackGuard(IRBuilder<> &IRB) const; /// Inserts necessary declarations for SSP (stack protection) purpose. /// Should be used only when getIRStackGuard returns nullptr. virtual void insertSSPDeclarations(Module &M) const; /// Return the variable that's previously inserted by insertSSPDeclarations, /// if any, otherwise return nullptr. Should be used only when /// getIRStackGuard returns nullptr. virtual Value *getSDagStackGuard(const Module &M) const; /// If this function returns true, stack protection checks should XOR the /// frame pointer (or whichever pointer is used to address locals) into the /// stack guard value before checking it. getIRStackGuard must return nullptr /// if this returns true. virtual bool useStackGuardXorFP() const { return false; } /// If the target has a standard stack protection check function that /// performs validation and error handling, returns the function. Otherwise, /// returns nullptr. Must be previously inserted by insertSSPDeclarations. /// Should be used only when getIRStackGuard returns nullptr. virtual Value *getSSPStackGuardCheck(const Module &M) const; protected: Value *getDefaultSafeStackPointerLocation(IRBuilder<> &IRB, bool UseTLS) const; public: /// Returns the target-specific address of the unsafe stack pointer. virtual Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const; /// Returns the name of the symbol used to emit stack probes or the empty /// string if not applicable. virtual StringRef getStackProbeSymbolName(MachineFunction &MF) const { return ""; } /// Returns true if a cast between SrcAS and DestAS is a noop. virtual bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return false; } /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we /// are happy to sink it into basic blocks. virtual bool isCheapAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const { return isNoopAddrSpaceCast(SrcAS, DestAS); } /// Return true if the pointer arguments to CI should be aligned by aligning /// the object whose address is being passed. If so then MinSize is set to the /// minimum size the object must be to be aligned and PrefAlign is set to the /// preferred alignment. virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/, unsigned & /*PrefAlign*/) const { return false; } //===--------------------------------------------------------------------===// /// \name Helpers for TargetTransformInfo implementations /// @{ /// Get the ISD node that corresponds to the Instruction class opcode. int InstructionOpcodeToISD(unsigned Opcode) const; /// Estimate the cost of type-legalization and the legalized type. std::pair<int, MVT> getTypeLegalizationCost(const DataLayout &DL, Type *Ty) const; /// @} //===--------------------------------------------------------------------===// /// \name Helpers for atomic expansion. /// @{ /// Returns the maximum atomic operation size (in bits) supported by /// the backend. Atomic operations greater than this size (as well /// as ones that are not naturally aligned), will be expanded by /// AtomicExpandPass into an __atomic_* library call. unsigned getMaxAtomicSizeInBitsSupported() const { return MaxAtomicSizeInBitsSupported; } /// Returns the size of the smallest cmpxchg or ll/sc instruction /// the backend supports. Any smaller operations are widened in /// AtomicExpandPass. /// /// Note that *unlike* operations above the maximum size, atomic ops /// are still natively supported below the minimum; they just /// require a more complex expansion. unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; } /// Whether the target supports unaligned atomic operations. bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; } /// Whether AtomicExpandPass should automatically insert fences and reduce /// ordering for this atomic. This should be true for most architectures with /// weak memory ordering. Defaults to false. virtual bool shouldInsertFencesForAtomic(const Instruction *I) const { return false; } /// Perform a load-linked operation on Addr, returning a "Value *" with the /// corresponding pointee type. This may entail some non-trivial operations to /// truncate or reconstruct types that will be illegal in the backend. See /// ARMISelLowering for an example implementation. virtual Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr, AtomicOrdering Ord) const { llvm_unreachable("Load linked unimplemented on this target"); } /// Perform a store-conditional operation to Addr. Return the status of the /// store. This should be 0 if the store succeeded, non-zero otherwise. virtual Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const { llvm_unreachable("Store conditional unimplemented on this target"); } /// Inserts in the IR a target-specific intrinsic specifying a fence. /// It is called by AtomicExpandPass before expanding an /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad /// if shouldInsertFencesForAtomic returns true. /// /// Inst is the original atomic instruction, prior to other expansions that /// may be performed. /// /// This function should either return a nullptr, or a pointer to an IR-level /// Instruction*. Even complex fence sequences can be represented by a /// single Instruction* through an intrinsic to be lowered later. /// Backends should override this method to produce target-specific intrinsic /// for their fences. /// FIXME: Please note that the default implementation here in terms of /// IR-level fences exists for historical/compatibility reasons and is /// *unsound* ! Fences cannot, in general, be used to restore sequential /// consistency. For example, consider the following example: /// atomic<int> x = y = 0; /// int r1, r2, r3, r4; /// Thread 0: /// x.store(1); /// Thread 1: /// y.store(1); /// Thread 2: /// r1 = x.load(); /// r2 = y.load(); /// Thread 3: /// r3 = y.load(); /// r4 = x.load(); /// r1 = r3 = 1 and r2 = r4 = 0 is impossible as long as the accesses are all /// seq_cst. But if they are lowered to monotonic accesses, no amount of /// IR-level fences can prevent it. /// @{ virtual Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst, AtomicOrdering Ord) const { if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore()) return Builder.CreateFence(Ord); else return nullptr; } virtual Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst, AtomicOrdering Ord) const { if (isAcquireOrStronger(Ord)) return Builder.CreateFence(Ord); else return nullptr; } /// @} // Emits code that executes when the comparison result in the ll/sc // expansion of a cmpxchg instruction is such that the store-conditional will // not execute. This makes it possible to balance out the load-linked with // a dedicated instruction, if desired. // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would // be unnecessarily held, except if clrex, inserted by this hook, is executed. virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const {} /// Returns true if the given (atomic) store should be expanded by the /// IR-level AtomicExpand pass into an "atomic xchg" which ignores its input. virtual bool shouldExpandAtomicStoreInIR(StoreInst *SI) const { return false; } /// Returns true if arguments should be sign-extended in lib calls. virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const { return IsSigned; } /// Returns how the given (atomic) load should be expanded by the /// IR-level AtomicExpand pass. virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const { return AtomicExpansionKind::None; } /// Returns true if the given atomic cmpxchg should be expanded by the /// IR-level AtomicExpand pass into a load-linked/store-conditional sequence /// (through emitLoadLinked() and emitStoreConditional()). virtual bool shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { return false; } /// Returns how the IR-level AtomicExpand pass should expand the given /// AtomicRMW, if at all. Default is to never expand. virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *) const { return AtomicExpansionKind::None; } /// On some platforms, an AtomicRMW that never actually modifies the value /// (such as fetch_add of 0) can be turned into a fence followed by an /// atomic load. This may sound useless, but it makes it possible for the /// processor to keep the cacheline shared, dramatically improving /// performance. And such idempotent RMWs are useful for implementing some /// kinds of locks, see for example (justification + benchmarks): /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf /// This method tries doing that transformation, returning the atomic load if /// it succeeds, and nullptr otherwise. /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo /// another round of expansion. virtual LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const { return nullptr; } /// Returns how the platform's atomic operations are extended (ZERO_EXTEND, /// SIGN_EXTEND, or ANY_EXTEND). virtual ISD::NodeType getExtendForAtomicOps() const { return ISD::ZERO_EXTEND; } /// @} /// Returns true if we should normalize /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely /// that it saves us from materializing N0 and N1 in an integer register. /// Targets that are able to perform and/or on flags should return false here. virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const { // If a target has multiple condition registers, then it likely has logical // operations on those registers. if (hasMultipleConditionRegisters()) return false; // Only do the transform if the value won't be split into multiple // registers. LegalizeTypeAction Action = getTypeAction(Context, VT); return Action != TypeExpandInteger && Action != TypeExpandFloat && Action != TypeSplitVector; } /// Return true if a select of constants (select Cond, C1, C2) should be /// transformed into simple math ops with the condition value. For example: /// select Cond, C1, C1-1 --> add (zext Cond), C1-1 virtual bool convertSelectOfConstantsToMath(EVT VT) const { return false; } //===--------------------------------------------------------------------===// // TargetLowering Configuration Methods - These methods should be invoked by // the derived class constructor to configure this object for the target. // protected: /// Specify how the target extends the result of integer and floating point /// boolean values from i1 to a wider type. See getBooleanContents. void setBooleanContents(BooleanContent Ty) { BooleanContents = Ty; BooleanFloatContents = Ty; } /// Specify how the target extends the result of integer and floating point /// boolean values from i1 to a wider type. See getBooleanContents. void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy) { BooleanContents = IntTy; BooleanFloatContents = FloatTy; } /// Specify how the target extends the result of a vector boolean value from a /// vector of i1 to a wider type. See getBooleanContents. void setBooleanVectorContents(BooleanContent Ty) { BooleanVectorContents = Ty; } /// Specify the target scheduling preference. void setSchedulingPreference(Sched::Preference Pref) { SchedPreferenceInfo = Pref; } /// Indicate whether this target prefers to use _setjmp to implement /// llvm.setjmp or the version without _. Defaults to false. void setUseUnderscoreSetJmp(bool Val) { UseUnderscoreSetJmp = Val; } /// Indicate whether this target prefers to use _longjmp to implement /// llvm.longjmp or the version without _. Defaults to false. void setUseUnderscoreLongJmp(bool Val) { UseUnderscoreLongJmp = Val; } /// Indicate the minimum number of blocks to generate jump tables. void setMinimumJumpTableEntries(unsigned Val); /// Indicate the maximum number of entries in jump tables. /// Set to zero to generate unlimited jump tables. void setMaximumJumpTableSize(unsigned); /// If set to a physical register, this specifies the register that /// llvm.savestack/llvm.restorestack should save and restore. void setStackPointerRegisterToSaveRestore(unsigned R) { StackPointerRegisterToSaveRestore = R; } /// Tells the code generator that the target has multiple (allocatable) /// condition registers that can be used to store the results of comparisons /// for use by selects and conditional branches. With multiple condition /// registers, the code generator will not aggressively sink comparisons into /// the blocks of their users. void setHasMultipleConditionRegisters(bool hasManyRegs = true) { HasMultipleConditionRegisters = hasManyRegs; } /// Tells the code generator that the target has BitExtract instructions. /// The code generator will aggressively sink "shift"s into the blocks of /// their users if the users will generate "and" instructions which can be /// combined with "shift" to BitExtract instructions. void setHasExtractBitsInsn(bool hasExtractInsn = true) { HasExtractBitsInsn = hasExtractInsn; } /// Tells the code generator not to expand logic operations on comparison /// predicates into separate sequences that increase the amount of flow /// control. void setJumpIsExpensive(bool isExpensive = true); /// Tells the code generator that this target supports floating point /// exceptions and cares about preserving floating point exception behavior. void setHasFloatingPointExceptions(bool FPExceptions = true) { HasFloatingPointExceptions = FPExceptions; } /// Tells the code generator which bitwidths to bypass. void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) { BypassSlowDivWidths[SlowBitWidth] = FastBitWidth; } /// Add the specified register class as an available regclass for the /// specified value type. This indicates the selector can handle values of /// that class natively. void addRegisterClass(MVT VT, const TargetRegisterClass *RC) { assert((unsigned)VT.SimpleTy < array_lengthof(RegClassForVT)); RegClassForVT[VT.SimpleTy] = RC; } /// Return the largest legal super-reg register class of the register class /// for the specified type and its associated "cost". virtual std::pair<const TargetRegisterClass *, uint8_t> findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const; /// Once all of the register classes are added, this allows us to compute /// derived properties we expose. void computeRegisterProperties(const TargetRegisterInfo *TRI); /// Indicate that the specified operation does not work with the specified /// type and indicate what to do about it. Note that VT may refer to either /// the type of a result or that of an operand of Op. void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) { assert(Op < array_lengthof(OpActions[0]) && "Table isn't big enough!"); OpActions[(unsigned)VT.SimpleTy][Op] = Action; } /// Indicate that the specified load with extension does not work with the /// specified type and indicate what to do about it. void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action) { assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!"); assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); unsigned Shift = 4 * ExtType; LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift); LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift; } /// Indicate that the specified truncating store does not work with the /// specified type and indicate what to do about it. void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) { assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!"); TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action; } /// Indicate that the specified indexed load does or does not work with the /// specified type and indicate what to do abort it. /// /// NOTE: All indexed mode loads are initialized to Expand in /// TargetLowering.cpp void setIndexedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Load action are kept in the upper half. IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0xf0; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action) <<4; } /// Indicate that the specified indexed store does or does not work with the /// specified type and indicate what to do about it. /// /// NOTE: All indexed mode stores are initialized to Expand in /// TargetLowering.cpp void setIndexedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action) { assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE && (unsigned)Action < 0xf && "Table isn't big enough!"); // Store action are kept in the lower half. IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] &= ~0x0f; IndexedModeActions[(unsigned)VT.SimpleTy][IdxMode] |= ((uint8_t)Action); } /// Indicate that the specified condition code is or isn't supported on the /// target and indicate what to do about it. void setCondCodeAction(ISD::CondCode CC, MVT VT, LegalizeAction Action) { assert(VT.isValid() && (unsigned)CC < array_lengthof(CondCodeActions) && "Table isn't big enough!"); assert((unsigned)Action < 0x10 && "too many bits for bitfield array"); /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the 32-bit /// value and the upper 29 bits index into the second dimension of the array /// to select what 32-bit value to use. uint32_t Shift = 4 * (VT.SimpleTy & 0x7); CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift); CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift; } /// If Opc/OrigVT is specified as being promoted, the promotion code defaults /// to trying a larger integer/fp until it can find one that works. If that /// default is insufficient, this method can be used by the target to override /// the default. void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy; } /// Convenience method to set an operation to Promote and specify the type /// in a single call. void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) { setOperationAction(Opc, OrigVT, Promote); AddPromotedToType(Opc, OrigVT, DestVT); } /// Targets should invoke this method for each target independent node that /// they want to provide a custom DAG combiner for by implementing the /// PerformDAGCombine virtual method. void setTargetDAGCombine(ISD::NodeType NT) { assert(unsigned(NT >> 3) < array_lengthof(TargetDAGCombineArray)); TargetDAGCombineArray[NT >> 3] |= 1 << (NT&7); } /// Set the target's required jmp_buf buffer size (in bytes); default is 200 void setJumpBufSize(unsigned Size) { JumpBufSize = Size; } /// Set the target's required jmp_buf buffer alignment (in bytes); default is /// 0 void setJumpBufAlignment(unsigned Align) { JumpBufAlignment = Align; } /// Set the target's minimum function alignment (in log2(bytes)) void setMinFunctionAlignment(unsigned Align) { MinFunctionAlignment = Align; } /// Set the target's preferred function alignment. This should be set if /// there is a performance benefit to higher-than-minimum alignment (in /// log2(bytes)) void setPrefFunctionAlignment(unsigned Align) { PrefFunctionAlignment = Align; } /// Set the target's preferred loop alignment. Default alignment is zero, it /// means the target does not care about loop alignment. The alignment is /// specified in log2(bytes). The target may also override /// getPrefLoopAlignment to provide per-loop values. void setPrefLoopAlignment(unsigned Align) { PrefLoopAlignment = Align; } /// Set the minimum stack alignment of an argument (in log2(bytes)). void setMinStackArgumentAlignment(unsigned Align) { MinStackArgumentAlignment = Align; } /// Set the maximum atomic operation size supported by the /// backend. Atomic operations greater than this size (as well as /// ones that are not naturally aligned), will be expanded by /// AtomicExpandPass into an __atomic_* library call. void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) { MaxAtomicSizeInBitsSupported = SizeInBits; } /// Sets the minimum cmpxchg or ll/sc size supported by the backend. void setMinCmpXchgSizeInBits(unsigned SizeInBits) { MinCmpXchgSizeInBits = SizeInBits; } /// Sets whether unaligned atomic operations are supported. void setSupportsUnalignedAtomics(bool UnalignedSupported) { SupportsUnalignedAtomics = UnalignedSupported; } public: //===--------------------------------------------------------------------===// // Addressing mode description hooks (used by LSR etc). // /// CodeGenPrepare sinks address calculations into the same BB as Load/Store /// instructions reading the address. This allows as much computation as /// possible to be done in the address mode for that operand. This hook lets /// targets also pass back when this should be done on intrinsics which /// load/store. virtual bool getAddrModeArguments(IntrinsicInst * /*I*/, SmallVectorImpl<Value*> &/*Ops*/, Type *&/*AccessTy*/) const { return false; } /// This represents an addressing mode of: /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg /// If BaseGV is null, there is no BaseGV. /// If BaseOffs is zero, there is no base offset. /// If HasBaseReg is false, there is no base register. /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with /// no scale. struct AddrMode { GlobalValue *BaseGV = nullptr; int64_t BaseOffs = 0; bool HasBaseReg = false; int64_t Scale = 0; AddrMode() = default; }; /// Return true if the addressing mode represented by AM is legal for this /// target, for a load/store of the specified type. /// /// The type may be VoidTy, in which case only return true if the addressing /// mode is legal for a load/store of any legal type. TODO: Handle /// pre/postinc as well. /// /// If the address space cannot be determined, it will be -1. /// /// TODO: Remove default argument virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I = nullptr) const; /// Return the cost of the scaling factor used in the addressing mode /// represented by AM for this target, for a load/store of the specified type. /// /// If the AM is supported, the return value must be >= 0. /// If the AM is not supported, it returns a negative value. /// TODO: Handle pre/postinc as well. /// TODO: Remove default argument virtual int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS = 0) const { // Default: assume that any scaling factor used in a legal AM is free. if (isLegalAddressingMode(DL, AM, Ty, AS)) return 0; return -1; } /// Return true if the specified immediate is legal icmp immediate, that is /// the target has icmp instructions which can compare a register against the /// immediate without having to materialize the immediate into a register. virtual bool isLegalICmpImmediate(int64_t) const { return true; } /// Return true if the specified immediate is legal add immediate, that is the /// target has add instructions which can add a register with the immediate /// without having to materialize the immediate into a register. virtual bool isLegalAddImmediate(int64_t) const { return true; } /// Return true if it's significantly cheaper to shift a vector by a uniform /// scalar than by an amount which will vary across each lane. On x86, for /// example, there is a "psllw" instruction for the former case, but no simple /// instruction for a general "a << b" operation on vectors. virtual bool isVectorShiftByScalarCheap(Type *Ty) const { return false; } /// Returns true if the opcode is a commutative binary operation. virtual bool isCommutativeBinOp(unsigned Opcode) const { // FIXME: This should get its info from the td file. switch (Opcode) { case ISD::ADD: case ISD::SMIN: case ISD::SMAX: case ISD::UMIN: case ISD::UMAX: case ISD::MUL: case ISD::MULHU: case ISD::MULHS: case ISD::SMUL_LOHI: case ISD::UMUL_LOHI: case ISD::FADD: case ISD::FMUL: case ISD::AND: case ISD::OR: case ISD::XOR: case ISD::SADDO: case ISD::UADDO: case ISD::ADDC: case ISD::ADDE: case ISD::FMINNUM: case ISD::FMAXNUM: case ISD::FMINNAN: case ISD::FMAXNAN: return true; default: return false; } } /// Return true if it's free to truncate a value of type FromTy to type /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 /// by referencing its sub-register AX. /// Targets must return false when FromTy <= ToTy. virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const { return false; } /// Return true if a truncation from FromTy to ToTy is permitted when deciding /// whether a call is in tail position. Typically this means that both results /// would be assigned to the same register or stack slot, but it could mean /// the target performs adequate checks of its own before proceeding with the /// tail call. Targets must return false when FromTy <= ToTy. virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const { return false; } virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; } virtual bool isProfitableToHoist(Instruction *I) const { return true; } /// Return true if the extension represented by \p I is free. /// Unlikely the is[Z|FP]ExtFree family which is based on types, /// this method can use the context provided by \p I to decide /// whether or not \p I is free. /// This method extends the behavior of the is[Z|FP]ExtFree family. /// In other words, if is[Z|FP]Free returns true, then this method /// returns true as well. The converse is not true. /// The target can perform the adequate checks by overriding isExtFreeImpl. /// \pre \p I must be a sign, zero, or fp extension. bool isExtFree(const Instruction *I) const { switch (I->getOpcode()) { case Instruction::FPExt: if (isFPExtFree(EVT::getEVT(I->getType()), EVT::getEVT(I->getOperand(0)->getType()))) return true; break; case Instruction::ZExt: if (isZExtFree(I->getOperand(0)->getType(), I->getType())) return true; break; case Instruction::SExt: break; default: llvm_unreachable("Instruction is not an extension"); } return isExtFreeImpl(I); } /// Return true if \p Load and \p Ext can form an ExtLoad. /// For example, in AArch64 /// %L = load i8, i8* %ptr /// %E = zext i8 %L to i32 /// can be lowered into one load instruction /// ldrb w0, [x0] bool isExtLoad(const LoadInst *Load, const Instruction *Ext, const DataLayout &DL) const { EVT VT = getValueType(DL, Ext->getType()); EVT LoadVT = getValueType(DL, Load->getType()); // If the load has other users and the truncate is not free, the ext // probably isn't free. if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) && !isTruncateFree(Ext->getType(), Load->getType())) return false; // Check whether the target supports casts folded into loads. unsigned LType; if (isa<ZExtInst>(Ext)) LType = ISD::ZEXTLOAD; else { assert(isa<SExtInst>(Ext) && "Unexpected ext type!"); LType = ISD::SEXTLOAD; } return isLoadExtLegal(LType, VT, LoadVT); } /// Return true if any actual instruction that defines a value of type FromTy /// implicitly zero-extends the value to ToTy in the result register. /// /// The function should return true when it is likely that the truncate can /// be freely folded with an instruction defining a value of FromTy. If /// the defining instruction is unknown (because you're looking at a /// function argument, PHI, etc.) then the target may require an /// explicit truncate, which is not necessarily free, but this function /// does not deal with those cases. /// Targets must return false when FromTy >= ToTy. virtual bool isZExtFree(Type *FromTy, Type *ToTy) const { return false; } virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; } /// Return true if the target supplies and combines to a paired load /// two loaded values of type LoadedType next to each other in memory. /// RequiredAlignment gives the minimal alignment constraints that must be met /// to be able to select this paired load. /// /// This information is *not* used to generate actual paired loads, but it is /// used to generate a sequence of loads that is easier to combine into a /// paired load. /// For instance, something like this: /// a = load i64* addr /// b = trunc i64 a to i32 /// c = lshr i64 a, 32 /// d = trunc i64 c to i32 /// will be optimized into: /// b = load i32* addr1 /// d = load i32* addr2 /// Where addr1 = addr2 +/- sizeof(i32). /// /// In other words, unless the target performs a post-isel load combining, /// this information should not be provided because it will generate more /// loads. virtual bool hasPairedLoad(EVT /*LoadedType*/, unsigned & /*RequiredAlignment*/) const { return false; } /// Return true if the target has a vector blend instruction. virtual bool hasVectorBlend() const { return false; } /// Get the maximum supported factor for interleaved memory accesses. /// Default to be the minimum interleave factor: 2. virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; } /// Lower an interleaved load to target specific intrinsics. Return /// true on success. /// /// \p LI is the vector load instruction. /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector. /// \p Indices is the corresponding indices for each shufflevector. /// \p Factor is the interleave factor. virtual bool lowerInterleavedLoad(LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, ArrayRef<unsigned> Indices, unsigned Factor) const { return false; } /// Lower an interleaved store to target specific intrinsics. Return /// true on success. /// /// \p SI is the vector store instruction. /// \p SVI is the shufflevector to RE-interleave the stored vector. /// \p Factor is the interleave factor. virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const { return false; } /// Return true if zero-extending the specific node Val to type VT2 is free /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or /// because it's folded such as X86 zero-extending loads). virtual bool isZExtFree(SDValue Val, EVT VT2) const { return isZExtFree(Val.getValueType(), VT2); } /// Return true if an fpext operation is free (for instance, because /// single-precision floating-point numbers are implicitly extended to /// double-precision). virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const { assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() && "invalid fpext types"); return false; } /// Return true if an fpext operation input to an \p Opcode operation is free /// (for instance, because half-precision floating-point numbers are /// implicitly extended to float-precision) for an FMA instruction. virtual bool isFPExtFoldable(unsigned Opcode, EVT DestVT, EVT SrcVT) const { assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && "invalid fpext types"); return isFPExtFree(DestVT, SrcVT); } /// Return true if folding a vector load into ExtVal (a sign, zero, or any /// extend node) is profitable. virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; } /// Return true if an fneg operation is free to the point where it is never /// worthwhile to replace it with a bitwise operation. virtual bool isFNegFree(EVT VT) const { assert(VT.isFloatingPoint()); return false; } /// Return true if an fabs operation is free to the point where it is never /// worthwhile to replace it with a bitwise operation. virtual bool isFAbsFree(EVT VT) const { assert(VT.isFloatingPoint()); return false; } /// Return true if an FMA operation is faster than a pair of fmul and fadd /// instructions. fmuladd intrinsics will be expanded to FMAs when this method /// returns true, otherwise fmuladd is expanded to fmul + fadd. /// /// NOTE: This may be called before legalization on types for which FMAs are /// not legal, but should return true if those types will eventually legalize /// to types that support FMAs. After legalization, it will only be called on /// types that support FMAs (via Legal or Custom actions) virtual bool isFMAFasterThanFMulAndFAdd(EVT) const { return false; } /// Return true if it's profitable to narrow operations of type VT1 to /// VT2. e.g. on x86, it's profitable to narrow from i32 to i8 but not from /// i32 to i16. virtual bool isNarrowingProfitable(EVT /*VT1*/, EVT /*VT2*/) const { return false; } /// Return true if it is beneficial to convert a load of a constant to /// just the constant itself. /// On some targets it might be more efficient to use a combination of /// arithmetic instructions to materialize the constant instead of loading it /// from a constant pool. virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { return false; } /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type /// from this source type with this index. This is needed because /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of /// the first element, and only the target knows which lowering is cheap. virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const { return false; } // Return true if it is profitable to use a scalar input to a BUILD_VECTOR // even if the vector itself has multiple uses. virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const { return false; } // Return true if CodeGenPrepare should consider splitting large offset of a // GEP to make the GEP fit into the addressing mode and can be sunk into the // same blocks of its users. virtual bool shouldConsiderGEPOffsetSplit() const { return false; } //===--------------------------------------------------------------------===// // Runtime Library hooks // /// Rename the default libcall routine name for the specified libcall. void setLibcallName(RTLIB::Libcall Call, const char *Name) { LibcallRoutineNames[Call] = Name; } /// Get the libcall routine name for the specified libcall. const char *getLibcallName(RTLIB::Libcall Call) const { return LibcallRoutineNames[Call]; } /// Override the default CondCode to be used to test the result of the /// comparison libcall against zero. void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC) { CmpLibcallCCs[Call] = CC; } /// Get the CondCode that's to be used to test the result of the comparison /// libcall against zero. ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const { return CmpLibcallCCs[Call]; } /// Set the CallingConv that should be used for the specified libcall. void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC) { LibcallCallingConvs[Call] = CC; } /// Get the CallingConv that should be used for the specified libcall. CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const { return LibcallCallingConvs[Call]; } /// Execute target specific actions to finalize target lowering. /// This is used to set extra flags in MachineFrameInformation and freezing /// the set of reserved registers. /// The default implementation just freezes the set of reserved registers. virtual void finalizeLowering(MachineFunction &MF) const; private: const TargetMachine &TM; /// Tells the code generator that the target has multiple (allocatable) /// condition registers that can be used to store the results of comparisons /// for use by selects and conditional branches. With multiple condition /// registers, the code generator will not aggressively sink comparisons into /// the blocks of their users. bool HasMultipleConditionRegisters; /// Tells the code generator that the target has BitExtract instructions. /// The code generator will aggressively sink "shift"s into the blocks of /// their users if the users will generate "and" instructions which can be /// combined with "shift" to BitExtract instructions. bool HasExtractBitsInsn; /// Tells the code generator to bypass slow divide or remainder /// instructions. For example, BypassSlowDivWidths[32,8] tells the code /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer /// div/rem when the operands are positive and less than 256. DenseMap <unsigned int, unsigned int> BypassSlowDivWidths; /// Tells the code generator that it shouldn't generate extra flow control /// instructions and should attempt to combine flow control instructions via /// predication. bool JumpIsExpensive; /// Whether the target supports or cares about preserving floating point /// exception behavior. bool HasFloatingPointExceptions; /// This target prefers to use _setjmp to implement llvm.setjmp. /// /// Defaults to false. bool UseUnderscoreSetJmp; /// This target prefers to use _longjmp to implement llvm.longjmp. /// /// Defaults to false. bool UseUnderscoreLongJmp; /// Information about the contents of the high-bits in boolean values held in /// a type wider than i1. See getBooleanContents. BooleanContent BooleanContents; /// Information about the contents of the high-bits in boolean values held in /// a type wider than i1. See getBooleanContents. BooleanContent BooleanFloatContents; /// Information about the contents of the high-bits in boolean vector values /// when the element type is wider than i1. See getBooleanContents. BooleanContent BooleanVectorContents; /// The target scheduling preference: shortest possible total cycles or lowest /// register usage. Sched::Preference SchedPreferenceInfo; /// The size, in bytes, of the target's jmp_buf buffers unsigned JumpBufSize; /// The alignment, in bytes, of the target's jmp_buf buffers unsigned JumpBufAlignment; /// The minimum alignment that any argument on the stack needs to have. unsigned MinStackArgumentAlignment; /// The minimum function alignment (used when optimizing for size, and to /// prevent explicitly provided alignment from leading to incorrect code). unsigned MinFunctionAlignment; /// The preferred function alignment (used when alignment unspecified and /// optimizing for speed). unsigned PrefFunctionAlignment; /// The preferred loop alignment. unsigned PrefLoopAlignment; /// Size in bits of the maximum atomics size the backend supports. /// Accesses larger than this will be expanded by AtomicExpandPass. unsigned MaxAtomicSizeInBitsSupported; /// Size in bits of the minimum cmpxchg or ll/sc operation the /// backend supports. unsigned MinCmpXchgSizeInBits; /// This indicates if the target supports unaligned atomic operations. bool SupportsUnalignedAtomics; /// If set to a physical register, this specifies the register that /// llvm.savestack/llvm.restorestack should save and restore. unsigned StackPointerRegisterToSaveRestore; /// This indicates the default register class to use for each ValueType the /// target supports natively. const TargetRegisterClass *RegClassForVT[MVT::LAST_VALUETYPE]; unsigned char NumRegistersForVT[MVT::LAST_VALUETYPE]; MVT RegisterTypeForVT[MVT::LAST_VALUETYPE]; /// This indicates the "representative" register class to use for each /// ValueType the target supports natively. This information is used by the /// scheduler to track register pressure. By default, the representative /// register class is the largest legal super-reg register class of the /// register class of the specified type. e.g. On x86, i8, i16, and i32's /// representative class would be GR32. const TargetRegisterClass *RepRegClassForVT[MVT::LAST_VALUETYPE]; /// This indicates the "cost" of the "representative" register class for each /// ValueType. The cost is used by the scheduler to approximate register /// pressure. uint8_t RepRegClassCostForVT[MVT::LAST_VALUETYPE]; /// For any value types we are promoting or expanding, this contains the value /// type that we are changing to. For Expanded types, this contains one step /// of the expand (e.g. i64 -> i32), even if there are multiple steps required /// (e.g. i64 -> i16). For types natively supported by the system, this holds /// the same type (e.g. i32 -> i32). MVT TransformToType[MVT::LAST_VALUETYPE]; /// For each operation and each value type, keep a LegalizeAction that /// indicates how instruction selection should deal with the operation. Most /// operations are Legal (aka, supported natively by the target), but /// operations that are not should be described. Note that operations on /// non-legal value types are not described here. LegalizeAction OpActions[MVT::LAST_VALUETYPE][ISD::BUILTIN_OP_END]; /// For each load extension type and each value type, keep a LegalizeAction /// that indicates how instruction selection should deal with a load of a /// specific value type and extension type. Uses 4-bits to store the action /// for each of the 4 load ext types. uint16_t LoadExtActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; /// For each value type pair keep a LegalizeAction that indicates whether a /// truncating store of a specific value type and truncating type is legal. LegalizeAction TruncStoreActions[MVT::LAST_VALUETYPE][MVT::LAST_VALUETYPE]; /// For each indexed mode and each value type, keep a pair of LegalizeAction /// that indicates how instruction selection should deal with the load / /// store. /// /// The first dimension is the value_type for the reference. The second /// dimension represents the various modes for load store. uint8_t IndexedModeActions[MVT::LAST_VALUETYPE][ISD::LAST_INDEXED_MODE]; /// For each condition code (ISD::CondCode) keep a LegalizeAction that /// indicates how instruction selection should deal with the condition code. /// /// Because each CC action takes up 4 bits, we need to have the array size be /// large enough to fit all of the value types. This can be done by rounding /// up the MVT::LAST_VALUETYPE value to the next multiple of 8. uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::LAST_VALUETYPE + 7) / 8]; protected: ValueTypeActionImpl ValueTypeActions; private: LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const; /// Targets can specify ISD nodes that they would like PerformDAGCombine /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this /// array. unsigned char TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT]; /// For operations that must be promoted to a specific type, this holds the /// destination type. This map should be sparse, so don't hold it as an /// array. /// /// Targets add entries to this map with AddPromotedToType(..), clients access /// this with getTypeToPromoteTo(..). std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType> PromoteToType; /// Stores the name each libcall. const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1]; /// The ISD::CondCode that should be used to test the result of each of the /// comparison libcall against zero. ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL]; /// Stores the CallingConv that should be used for each libcall. CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL]; /// Set default libcall names and calling conventions. void InitLibcalls(const Triple &TT); protected: /// Return true if the extension represented by \p I is free. /// \pre \p I is a sign, zero, or fp extension and /// is[Z|FP]ExtFree of the related types is not true. virtual bool isExtFreeImpl(const Instruction *I) const { return false; } /// Depth that GatherAllAliases should should continue looking for chain /// dependencies when trying to find a more preferable chain. As an /// approximation, this should be more than the number of consecutive stores /// expected to be merged. unsigned GatherAllAliasesMaxDepth; /// Specify maximum number of store instructions per memset call. /// /// When lowering \@llvm.memset this field specifies the maximum number of /// store operations that may be substituted for the call to memset. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memset will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine /// with 16-bit alignment would result in four 2-byte stores and one 1-byte /// store. This only applies to setting a constant array of a constant size. unsigned MaxStoresPerMemset; /// Maximum number of stores operations that may be substituted for the call /// to memset, used for functions with OptSize attribute. unsigned MaxStoresPerMemsetOptSize; /// Specify maximum bytes of store instructions per memcpy call. /// /// When lowering \@llvm.memcpy this field specifies the maximum number of /// store operations that may be substituted for a call to memcpy. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memcpy will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store /// and one 1-byte store. This only applies to copying a constant array of /// constant size. unsigned MaxStoresPerMemcpy; /// \brief Specify max number of store instructions to glue in inlined memcpy. /// /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number /// of store instructions to keep together. This helps in pairing and // vectorization later on. unsigned MaxGluedStoresPerMemcpy = 0; /// Maximum number of store operations that may be substituted for a call to /// memcpy, used for functions with OptSize attribute. unsigned MaxStoresPerMemcpyOptSize; unsigned MaxLoadsPerMemcmp; unsigned MaxLoadsPerMemcmpOptSize; /// Specify maximum bytes of store instructions per memmove call. /// /// When lowering \@llvm.memmove this field specifies the maximum number of /// store instructions that may be substituted for a call to memmove. Targets /// must set this value based on the cost threshold for that target. Targets /// should assume that the memmove will be done using as many of the largest /// store operations first, followed by smaller ones, if necessary, per /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine /// with 8-bit alignment would result in nine 1-byte stores. This only /// applies to copying a constant array of constant size. unsigned MaxStoresPerMemmove; /// Maximum number of store instructions that may be substituted for a call to /// memmove, used for functions with OptSize attribute. unsigned MaxStoresPerMemmoveOptSize; /// Tells the code generator that select is more expensive than a branch if /// the branch is usually predicted right. bool PredictableSelectIsExpensive; /// \see enableExtLdPromotion. bool EnableExtLdPromotion; /// Return true if the value types that can be represented by the specified /// register class are all legal. bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const; /// Replace/modify any TargetFrameIndex operands with a targte-dependent /// sequence of memory operands that is recognized by PrologEpilogInserter. MachineBasicBlock *emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const; /// Replace/modify the XRay custom event operands with target-dependent /// details. MachineBasicBlock *emitXRayCustomEvent(MachineInstr &MI, MachineBasicBlock *MBB) const; /// Replace/modify the XRay typed event operands with target-dependent /// details. MachineBasicBlock *emitXRayTypedEvent(MachineInstr &MI, MachineBasicBlock *MBB) const; }; /// This class defines information used to lower LLVM code to legal SelectionDAG /// operators that the target instruction selector can accept natively. /// /// This class also defines callbacks that targets must implement to lower /// target-specific constructs to SelectionDAG operators. class TargetLowering : public TargetLoweringBase { public: struct DAGCombinerInfo; TargetLowering(const TargetLowering &) = delete; TargetLowering &operator=(const TargetLowering &) = delete; /// NOTE: The TargetMachine owns TLOF. explicit TargetLowering(const TargetMachine &TM); bool isPositionIndependent() const; virtual bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, DivergenceAnalysis *DA) const { return false; } virtual bool isSDNodeAlwaysUniform(const SDNode * N) const { return false; } /// Returns true by value, base pointer and offset pointer and addressing mode /// by reference if the node's address can be legally represented as /// pre-indexed load / store address. virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; } /// Returns true by value, base pointer and offset pointer and addressing mode /// by reference if this node can be combined with a load / store to form a /// post-indexed load / store. virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/, SDValue &/*Base*/, SDValue &/*Offset*/, ISD::MemIndexedMode &/*AM*/, SelectionDAG &/*DAG*/) const { return false; } /// Return the entry encoding for a jump table in the current function. The /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. virtual unsigned getJumpTableEncoding() const; virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo * /*MJTI*/, const MachineBasicBlock * /*MBB*/, unsigned /*uid*/, MCContext &/*Ctx*/) const { llvm_unreachable("Need to implement this hook if target has custom JTIs"); } /// Returns relocation base for the given PIC jumptable. virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const; /// This returns the relocation base for the given PIC jumptable, the same as /// getPICJumpTableRelocBase, but as an MCExpr. virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const; /// Return true if folding a constant offset with the given GlobalAddress is /// legal. It is frequently not legal in PIC relocation models. virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const; bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const; void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL) const; /// Returns a pair of (return value, chain). /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC. std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef<SDValue> Ops, bool isSigned, const SDLoc &dl, bool doesNotReturn = false, bool isReturnValueUsed = true) const; /// Check whether parameters to a call that are passed in callee saved /// registers are the same as from the calling function. This needs to be /// checked for tail call eligibility. bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl<CCValAssign> &ArgLocs, const SmallVectorImpl<SDValue> &OutVals) const; //===--------------------------------------------------------------------===// // TargetLowering Optimization Methods // /// A convenience struct that encapsulates a DAG, and two SDValues for /// returning information from TargetLowering to its clients that want to /// combine. struct TargetLoweringOpt { SelectionDAG &DAG; bool LegalTys; bool LegalOps; SDValue Old; SDValue New; explicit TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO) : DAG(InDAG), LegalTys(LT), LegalOps(LO) {} bool LegalTypes() const { return LegalTys; } bool LegalOperations() const { return LegalOps; } bool CombineTo(SDValue O, SDValue N) { Old = O; New = N; return true; } }; /// Check to see if the specified operand of the specified instruction is a /// constant integer. If so, check to see if there are any bits set in the /// constant that are not demanded. If so, shrink the constant and return /// true. bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const; // Target hook to do target-specific const optimization, which is called by // ShrinkDemandedConstant. This function should return true if the target // doesn't want ShrinkDemandedConstant to further optimize the constant. virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const { return false; } /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This /// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be /// generalized for targets with other types of implicit widening casts. bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded, TargetLoweringOpt &TLO) const; /// Helper for SimplifyDemandedBits that can simplify an operation with /// multiple uses. This function simplifies operand \p OpIdx of \p User and /// then updates \p User with the simplified version. No other uses of /// \p OpIdx are updated. If \p User is the only user of \p OpIdx, this /// function behaves exactly like function SimplifyDemandedBits declared /// below except that it also updates the DAG by calling /// DCI.CommitTargetLoweringOpt. bool SimplifyDemandedBits(SDNode *User, unsigned OpIdx, const APInt &Demanded, DAGCombinerInfo &DCI, TargetLoweringOpt &TLO) const; /// Look at Op. At this point, we know that only the DemandedMask bits of the /// result of Op are ever used downstream. If we can use this information to /// simplify Op, create a new simplified DAG node and return true, returning /// the original and new nodes in Old and New. Otherwise, analyze the /// expression and return a mask of KnownOne and KnownZero bits for the /// expression (used to simplify the caller). The KnownZero/One bits may only /// be accurate for those bits in the DemandedMask. /// \p AssumeSingleUse When this parameter is true, this function will /// attempt to simplify \p Op even if there are multiple uses. /// Callers are responsible for correctly updating the DAG based on the /// results of this function, because simply replacing replacing TLO.Old /// with TLO.New will be incorrect when this parameter is true and TLO.Old /// has multiple uses. bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth = 0, bool AssumeSingleUse = false) const; /// Helper wrapper around SimplifyDemandedBits bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedMask, DAGCombinerInfo &DCI) const; /// Look at Vector Op. At this point, we know that only the DemandedElts /// elements of the result of Op are ever used downstream. If we can use /// this information to simplify Op, create a new simplified DAG node and /// return true, storing the original and new nodes in TLO. /// Otherwise, analyze the expression and return a mask of KnownUndef and /// KnownZero elements for the expression (used to simplify the caller). /// The KnownUndef/Zero elements may only be accurate for those bits /// in the DemandedMask. /// \p AssumeSingleUse When this parameter is true, this function will /// attempt to simplify \p Op even if there are multiple uses. /// Callers are responsible for correctly updating the DAG based on the /// results of this function, because simply replacing replacing TLO.Old /// with TLO.New will be incorrect when this parameter is true and TLO.Old /// has multiple uses. bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0, bool AssumeSingleUse = false) const; /// Helper wrapper around SimplifyDemandedVectorElts bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, DAGCombinerInfo &DCI) const; /// Determine which of the bits specified in Mask are known to be either zero /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts /// argument allows us to only collect the known bits that are shared by the /// requested vector elements. virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const; /// Determine which of the bits of FrameIndex \p FIOp are known to be 0. /// Default implementation computes low bits based on alignment /// information. This should preserve known bits passed into it. virtual void computeKnownBitsForFrameIndex(const SDValue FIOp, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const; /// This method can be implemented by targets that want to expose additional /// information about sign bits to the DAG Combiner. The DemandedElts /// argument allows us to only collect the minimum sign bits that are shared /// by the requested vector elements. virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth = 0) const; /// Attempt to simplify any target nodes based on the demanded vector /// elements, returning true on success. Otherwise, analyze the expression and /// return a mask of KnownUndef and KnownZero elements for the expression /// (used to simplify the caller). The KnownUndef/Zero elements may only be /// accurate for those bits in the DemandedMask virtual bool SimplifyDemandedVectorEltsForTargetNode( SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const; /// If \p SNaN is false, \returns true if \p Op is known to never be any /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling /// NaN. virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN = false, unsigned Depth = 0) const; struct DAGCombinerInfo { void *DC; // The DAG Combiner object. CombineLevel Level; bool CalledByLegalizer; public: SelectionDAG &DAG; DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc) : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {} bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; } bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; } bool isAfterLegalizeDAG() const { return Level == AfterLegalizeDAG; } CombineLevel getDAGCombineLevel() { return Level; } bool isCalledByLegalizer() const { return CalledByLegalizer; } void AddToWorklist(SDNode *N); SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true); SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true); void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO); }; /// Return if the N is a constant or constant vector equal to the true value /// from getBooleanContents(). bool isConstTrueVal(const SDNode *N) const; /// Return if the N is a constant or constant vector equal to the false value /// from getBooleanContents(). bool isConstFalseVal(const SDNode *N) const; /// Return if \p N is a True value when extended to \p VT. bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const; /// Try to simplify a setcc built with the specified operands and cc. If it is /// unable to simplify it, return a null SDValue. SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const; // For targets which wrap address, unwrap for analysis. virtual SDValue unwrapAddress(SDValue N) const { return N; } /// Returns true (and the GlobalValue and the offset) if the node is a /// GlobalAddress + offset. virtual bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const; /// This method will be invoked for all target nodes and for any /// target-independent nodes that the target has registered with invoke it /// for. /// /// The semantics are as follows: /// Return Value: /// SDValue.Val == 0 - No change was made /// SDValue.Val == N - N was replaced, is dead, and is already handled. /// otherwise - N should be replaced by the returned Operand. /// /// In addition, methods provided by DAGCombinerInfo may be used to perform /// more complex transformations. /// virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const; /// Return true if it is profitable to move a following shift through this // node, adjusting any immediate operands as necessary to preserve semantics. // This transformation may not be desirable if it disrupts a particularly // auspicious target-specific tree (e.g. bitfield extraction in AArch64). // By default, it returns true. virtual bool isDesirableToCommuteWithShift(const SDNode *N) const { return true; } // Return true if it is profitable to combine a BUILD_VECTOR with a stride-pattern // to a shuffle and a truncate. // Example of such a combine: // v4i32 build_vector((extract_elt V, 1), // (extract_elt V, 3), // (extract_elt V, 5), // (extract_elt V, 7)) // --> // v4i32 truncate (bitcast (shuffle<1,u,3,u,5,u,7,u> V, u) to v4i64) virtual bool isDesirableToCombineBuildVectorToShuffleTruncate( ArrayRef<int> ShuffleMask, EVT SrcVT, EVT TruncVT) const { return false; } /// Return true if the target has native support for the specified value type /// and it is 'desirable' to use the type for the given node type. e.g. On x86 /// i16 is legal, but undesirable since i16 instruction encodings are longer /// and some i16 instructions are slow. virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const { // By default, assume all legal types are desirable. return isTypeLegal(VT); } /// Return true if it is profitable for dag combiner to transform a floating /// point op of specified opcode to a equivalent op of an integer /// type. e.g. f32 load -> i32 load can be profitable on ARM. virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/, EVT /*VT*/) const { return false; } /// This method query the target whether it is beneficial for dag combiner to /// promote the specified node. If true, it should return the desired /// promotion type by reference. virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const { return false; } /// Return true if the target supports swifterror attribute. It optimizes /// loads and stores to reading and writing a specific register. virtual bool supportSwiftError() const { return false; } /// Return true if the target supports that a subset of CSRs for the given /// machine function is handled explicitly via copies. virtual bool supportSplitCSR(MachineFunction *MF) const { return false; } /// Perform necessary initialization to handle a subset of CSRs explicitly /// via copies. This function is called at the beginning of instruction /// selection. virtual void initializeSplitCSR(MachineBasicBlock *Entry) const { llvm_unreachable("Not Implemented"); } /// Insert explicit copies in entry and exit blocks. We copy a subset of /// CSRs to virtual registers in the entry block, and copy them back to /// physical registers in the exit blocks. This function is called at the end /// of instruction selection. virtual void insertCopiesSplitCSR( MachineBasicBlock *Entry, const SmallVectorImpl<MachineBasicBlock *> &Exits) const { llvm_unreachable("Not Implemented"); } //===--------------------------------------------------------------------===// // Lowering methods - These methods must be implemented by targets so that // the SelectionDAGBuilder code knows how to lower these. // /// This hook must be implemented to lower the incoming (formal) arguments, /// described by the Ins array, into the specified DAG. The implementation /// should fill in the InVals array with legal-type argument values, and /// return the resulting token chain value. virtual SDValue LowerFormalArguments( SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/, SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const { llvm_unreachable("Not Implemented"); } /// This structure contains all information that is necessary for lowering /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder /// needs to lower a call, and targets will see this struct in their LowerCall /// implementation. struct CallLoweringInfo { SDValue Chain; Type *RetTy = nullptr; bool RetSExt : 1; bool RetZExt : 1; bool IsVarArg : 1; bool IsInReg : 1; bool DoesNotReturn : 1; bool IsReturnValueUsed : 1; bool IsConvergent : 1; bool IsPatchPoint : 1; // IsTailCall should be modified by implementations of // TargetLowering::LowerCall that perform tail call conversions. bool IsTailCall = false; // Is Call lowering done post SelectionDAG type legalization. bool IsPostTypeLegalization = false; unsigned NumFixedArgs = -1; CallingConv::ID CallConv = CallingConv::C; SDValue Callee; ArgListTy Args; SelectionDAG &DAG; SDLoc DL; ImmutableCallSite CS; SmallVector<ISD::OutputArg, 32> Outs; SmallVector<SDValue, 32> OutVals; SmallVector<ISD::InputArg, 32> Ins; SmallVector<SDValue, 4> InVals; CallLoweringInfo(SelectionDAG &DAG) : RetSExt(false), RetZExt(false), IsVarArg(false), IsInReg(false), DoesNotReturn(false), IsReturnValueUsed(true), IsConvergent(false), IsPatchPoint(false), DAG(DAG) {} CallLoweringInfo &setDebugLoc(const SDLoc &dl) { DL = dl; return *this; } CallLoweringInfo &setChain(SDValue InChain) { Chain = InChain; return *this; } // setCallee with target/module-specific attributes CallLoweringInfo &setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList) { RetTy = ResultType; Callee = Target; CallConv = CC; NumFixedArgs = ArgsList.size(); Args = std::move(ArgsList); DAG.getTargetLoweringInfo().markLibCallAttributes( &(DAG.getMachineFunction()), CC, Args); return *this; } CallLoweringInfo &setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList) { RetTy = ResultType; Callee = Target; CallConv = CC; NumFixedArgs = ArgsList.size(); Args = std::move(ArgsList); return *this; } CallLoweringInfo &setCallee(Type *ResultType, FunctionType *FTy, SDValue Target, ArgListTy &&ArgsList, ImmutableCallSite Call) { RetTy = ResultType; IsInReg = Call.hasRetAttr(Attribute::InReg); DoesNotReturn = Call.doesNotReturn() || (!Call.isInvoke() && isa<UnreachableInst>(Call.getInstruction()->getNextNode())); IsVarArg = FTy->isVarArg(); IsReturnValueUsed = !Call.getInstruction()->use_empty(); RetSExt = Call.hasRetAttr(Attribute::SExt); RetZExt = Call.hasRetAttr(Attribute::ZExt); Callee = Target; CallConv = Call.getCallingConv(); NumFixedArgs = FTy->getNumParams(); Args = std::move(ArgsList); CS = Call; return *this; } CallLoweringInfo &setInRegister(bool Value = true) { IsInReg = Value; return *this; } CallLoweringInfo &setNoReturn(bool Value = true) { DoesNotReturn = Value; return *this; } CallLoweringInfo &setVarArg(bool Value = true) { IsVarArg = Value; return *this; } CallLoweringInfo &setTailCall(bool Value = true) { IsTailCall = Value; return *this; } CallLoweringInfo &setDiscardResult(bool Value = true) { IsReturnValueUsed = !Value; return *this; } CallLoweringInfo &setConvergent(bool Value = true) { IsConvergent = Value; return *this; } CallLoweringInfo &setSExtResult(bool Value = true) { RetSExt = Value; return *this; } CallLoweringInfo &setZExtResult(bool Value = true) { RetZExt = Value; return *this; } CallLoweringInfo &setIsPatchPoint(bool Value = true) { IsPatchPoint = Value; return *this; } CallLoweringInfo &setIsPostTypeLegalization(bool Value=true) { IsPostTypeLegalization = Value; return *this; } ArgListTy &getArgs() { return Args; } }; /// This function lowers an abstract call to a function into an actual call. /// This returns a pair of operands. The first element is the return value /// for the function (if RetTy is not VoidTy). The second element is the /// outgoing token chain. It calls LowerCall to do the actual lowering. std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const; /// This hook must be implemented to lower calls into the specified /// DAG. The outgoing arguments to the call are described by the Outs array, /// and the values to be returned by the call are described by the Ins /// array. The implementation should fill in the InVals array with legal-type /// return values from the call, and return the resulting token chain value. virtual SDValue LowerCall(CallLoweringInfo &/*CLI*/, SmallVectorImpl<SDValue> &/*InVals*/) const { llvm_unreachable("Not Implemented"); } /// Target-specific cleanup for formal ByVal parameters. virtual void HandleByVal(CCState *, unsigned &, unsigned) const {} /// This hook should be implemented to check whether the return values /// described by the Outs array can fit into the return registers. If false /// is returned, an sret-demotion is performed. virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/, MachineFunction &/*MF*/, bool /*isVarArg*/, const SmallVectorImpl<ISD::OutputArg> &/*Outs*/, LLVMContext &/*Context*/) const { // Return true by default to get preexisting behavior. return true; } /// This hook must be implemented to lower outgoing return values, described /// by the Outs array, into the specified DAG. The implementation should /// return the resulting token chain value. virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/, const SmallVectorImpl<ISD::OutputArg> & /*Outs*/, const SmallVectorImpl<SDValue> & /*OutVals*/, const SDLoc & /*dl*/, SelectionDAG & /*DAG*/) const { llvm_unreachable("Not Implemented"); } /// Return true if result of the specified node is used by a return node /// only. It also compute and return the input chain for the tail call. /// /// This is used to determine whether it is possible to codegen a libcall as /// tail call at legalization time. virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const { return false; } /// Return true if the target may be able emit the call instruction as a tail /// call. This is used by optimization passes to determine if it's profitable /// to duplicate return instructions to enable tailcall optimization. virtual bool mayBeEmittedAsTailCall(const CallInst *) const { return false; } /// Return the builtin name for the __builtin___clear_cache intrinsic /// Default is to invoke the clear cache library call virtual const char * getClearCacheBuiltinName() const { return "__clear_cache"; } /// Return the register ID of the name passed in. Used by named register /// global variables extension. There is no target-independent behaviour /// so the default action is to bail. virtual unsigned getRegisterByName(const char* RegName, EVT VT, SelectionDAG &DAG) const { report_fatal_error("Named registers not implemented for this target"); } /// Return the type that should be used to zero or sign extend a /// zeroext/signext integer return value. FIXME: Some C calling conventions /// require the return type to be promoted, but this is not true all the time, /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling /// conventions. The frontend should handle this and include all of the /// necessary information. virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType /*ExtendKind*/) const { EVT MinVT = getRegisterType(Context, MVT::i32); return VT.bitsLT(MinVT) ? MinVT : VT; } /// For some targets, an LLVM struct type must be broken down into multiple /// simple types, but the calling convention specifies that the entire struct /// must be passed in a block of consecutive registers. virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { return false; } /// Returns a 0 terminated array of registers that can be safely used as /// scratch registers. virtual const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const { return nullptr; } /// This callback is used to prepare for a volatile or atomic load. /// It takes a chain node as input and returns the chain for the load itself. /// /// Having a callback like this is necessary for targets like SystemZ, /// which allows a CPU to reuse the result of a previous load indefinitely, /// even if a cache-coherent store is performed by another CPU. The default /// implementation does nothing. virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const { return Chain; } /// This callback is used to inspect load/store instructions and add /// target-specific MachineMemOperand flags to them. The default /// implementation does nothing. virtual MachineMemOperand::Flags getMMOFlags(const Instruction &I) const { return MachineMemOperand::MONone; } /// This callback is invoked by the type legalizer to legalize nodes with an /// illegal operand type but legal result types. It replaces the /// LowerOperation callback in the type Legalizer. The reason we can not do /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to /// use this callback. /// /// TODO: Consider merging with ReplaceNodeResults. /// /// The target places new result values for the node in Results (their number /// and types must exactly match those of the original return values of /// the node), or leaves Results empty, which indicates that the node is not /// to be custom lowered after all. /// The default implementation calls LowerOperation. virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const; /// This callback is invoked for operations that are unsupported by the /// target, which are registered to use 'custom' lowering, and whose defined /// values are all legal. If the target has no operations that require custom /// lowering, it need not implement this. The default implementation of this /// aborts. virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const; /// This callback is invoked when a node result type is illegal for the /// target, and the operation was registered to use 'custom' lowering for that /// result type. The target places new result values for the node in Results /// (their number and types must exactly match those of the original return /// values of the node), or leaves Results empty, which indicates that the /// node is not to be custom lowered after all. /// /// If the target has no operations that require custom lowering, it need not /// implement this. The default implementation aborts. virtual void ReplaceNodeResults(SDNode * /*N*/, SmallVectorImpl<SDValue> &/*Results*/, SelectionDAG &/*DAG*/) const { llvm_unreachable("ReplaceNodeResults not implemented for this target!"); } /// This method returns the name of a target specific DAG node. virtual const char *getTargetNodeName(unsigned Opcode) const; /// This method returns a target specific FastISel object, or null if the /// target does not support "fast" ISel. virtual FastISel *createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const { return nullptr; } bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const; //===--------------------------------------------------------------------===// // Inline Asm Support hooks // /// This hook allows the target to expand an inline asm call to be explicit /// llvm code if it wants to. This is useful for turning simple inline asms /// into LLVM intrinsics, which gives the compiler more information about the /// behavior of the code. virtual bool ExpandInlineAsm(CallInst *) const { return false; } enum ConstraintType { C_Register, // Constraint represents specific register(s). C_RegisterClass, // Constraint represents any of register(s) in class. C_Memory, // Memory constraint. C_Other, // Something else. C_Unknown // Unsupported constraint. }; enum ConstraintWeight { // Generic weights. CW_Invalid = -1, // No match. CW_Okay = 0, // Acceptable. CW_Good = 1, // Good weight. CW_Better = 2, // Better weight. CW_Best = 3, // Best weight. // Well-known weights. CW_SpecificReg = CW_Okay, // Specific register operands. CW_Register = CW_Good, // Register operands. CW_Memory = CW_Better, // Memory operands. CW_Constant = CW_Best, // Constant operand. CW_Default = CW_Okay // Default or don't know type. }; /// This contains information for each constraint that we are lowering. struct AsmOperandInfo : public InlineAsm::ConstraintInfo { /// This contains the actual string for the code, like "m". TargetLowering /// picks the 'best' code from ConstraintInfo::Codes that most closely /// matches the operand. std::string ConstraintCode; /// Information about the constraint code, e.g. Register, RegisterClass, /// Memory, Other, Unknown. TargetLowering::ConstraintType ConstraintType = TargetLowering::C_Unknown; /// If this is the result output operand or a clobber, this is null, /// otherwise it is the incoming operand to the CallInst. This gets /// modified as the asm is processed. Value *CallOperandVal = nullptr; /// The ValueType for the operand value. MVT ConstraintVT = MVT::Other; /// Copy constructor for copying from a ConstraintInfo. AsmOperandInfo(InlineAsm::ConstraintInfo Info) : InlineAsm::ConstraintInfo(std::move(Info)) {} /// Return true of this is an input operand that is a matching constraint /// like "4". bool isMatchingInputConstraint() const; /// If this is an input matching constraint, this method returns the output /// operand it matches. unsigned getMatchedOperand() const; }; using AsmOperandInfoVector = std::vector<AsmOperandInfo>; /// Split up the constraint string from the inline assembly value into the /// specific constraints and their prefixes, and also tie in the associated /// operand values. If this returns an empty vector, and if the constraint /// string itself isn't empty, there was an error parsing. virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, ImmutableCallSite CS) const; /// Examine constraint type and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getMultipleConstraintMatchWeight( AsmOperandInfo &info, int maIndex) const; /// Examine constraint string and operand type and determine a weight value. /// The operand object must already have been set up with the operand type. virtual ConstraintWeight getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const; /// Determines the constraint code and constraint type to use for the specific /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. /// If the actual operand being passed in is available, it can be passed in as /// Op, otherwise an empty SDValue can be passed. virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG = nullptr) const; /// Given a constraint, return the type of constraint it is for this target. virtual ConstraintType getConstraintType(StringRef Constraint) const; /// Given a physical register constraint (e.g. {edx}), return the register /// number and the register class for the register. /// /// Given a register class constraint, like 'r', if this corresponds directly /// to an LLVM register class, return a register of 0 and the register class /// pointer. /// /// This should only be used for C_Register constraints. On error, this /// returns a register number of 0 and a null register class pointer. virtual std::pair<unsigned, const TargetRegisterClass *> getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const; virtual unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const { if (ConstraintCode == "i") return InlineAsm::Constraint_i; else if (ConstraintCode == "m") return InlineAsm::Constraint_m; return InlineAsm::Constraint_Unknown; } /// Try to replace an X constraint, which matches anything, with another that /// has more specific requirements based on the type of the corresponding /// operand. This returns null if there is no replacement to make. virtual const char *LowerXConstraint(EVT ConstraintVT) const; /// Lower the specified operand into the Ops vector. If it is invalid, don't /// add anything to Ops. virtual void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, SelectionDAG &DAG) const; //===--------------------------------------------------------------------===// // Div utility functions // SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, SmallVectorImpl<SDNode *> &Created) const; SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, SmallVectorImpl<SDNode *> &Created) const; /// Targets may override this function to provide custom SDIV lowering for /// power-of-2 denominators. If the target returns an empty SDValue, LLVM /// assumes SDIV is expensive and replaces it with a series of other integer /// operations. virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl<SDNode *> &Created) const; /// Indicate whether this target prefers to combine FDIVs with the same /// divisor. If the transform should never be done, return zero. If the /// transform should be done, return the minimum number of divisor uses /// that must exist. virtual unsigned combineRepeatedFPDivisors() const { return 0; } /// Hooks for building estimates in place of slower divisions and square /// roots. /// Return either a square root or its reciprocal estimate value for the input /// operand. /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or /// 'Enabled' as set by a potential default override attribute. /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson /// refinement iterations required to generate a sufficient (though not /// necessarily IEEE-754 compliant) estimate is returned in that parameter. /// The boolean UseOneConstNR output is used to select a Newton-Raphson /// algorithm implementation that uses either one or two constants. /// The boolean Reciprocal is used to select whether the estimate is for the /// square root of the input operand or the reciprocal of its square root. /// A target may choose to implement its own refinement within this function. /// If that's true, then return '0' as the number of RefinementSteps to avoid /// any further refinement of the estimate. /// An empty SDValue return means no estimate sequence can be created. virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const { return SDValue(); } /// Return a reciprocal estimate value for the input operand. /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or /// 'Enabled' as set by a potential default override attribute. /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson /// refinement iterations required to generate a sufficient (though not /// necessarily IEEE-754 compliant) estimate is returned in that parameter. /// A target may choose to implement its own refinement within this function. /// If that's true, then return '0' as the number of RefinementSteps to avoid /// any further refinement of the estimate. /// An empty SDValue return means no estimate sequence can be created. virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const { return SDValue(); } //===--------------------------------------------------------------------===// // Legalization utility functions // /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, /// respectively, each computing an n/2-bit part of the result. /// \param Result A vector that will be filled with the parts of the result /// in little-endian order. /// \param LL Low bits of the LHS of the MUL. You can use this parameter /// if you want to control how low bits are extracted from the LHS. /// \param LH High bits of the LHS of the MUL. See LL for meaning. /// \param RL Low bits of the RHS of the MUL. See LL for meaning /// \param RH High bits of the RHS of the MUL. See LL for meaning. /// \returns true if the node has been expanded, false if it has not bool expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, SDValue LHS, SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL = SDValue(), SDValue LH = SDValue(), SDValue RL = SDValue(), SDValue RH = SDValue()) const; /// Expand a MUL into two nodes. One that computes the high bits of /// the result and one that computes the low bits. /// \param HiLoVT The value type to use for the Lo and Hi nodes. /// \param LL Low bits of the LHS of the MUL. You can use this parameter /// if you want to control how low bits are extracted from the LHS. /// \param LH High bits of the LHS of the MUL. See LL for meaning. /// \param RL Low bits of the RHS of the MUL. See LL for meaning /// \param RH High bits of the RHS of the MUL. See LL for meaning. /// \returns true if the node has been expanded. false if it has not bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL = SDValue(), SDValue LH = SDValue(), SDValue RL = SDValue(), SDValue RH = SDValue()) const; /// Expand float(f32) to SINT(i64) conversion /// \param N Node to expand /// \param Result output after conversion /// \returns True, if the expansion was successful, false otherwise bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const; /// Turn load of vector type into a load of the individual elements. /// \param LD load to expand /// \returns MERGE_VALUEs of the scalar loads with their chains. SDValue scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const; // Turn a store of a vector type into stores of the individual elements. /// \param ST Store with a vector value type /// \returns MERGE_VALUs of the individual store chains. SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const; /// Expands an unaligned load to 2 half-size loads for an integer, and /// possibly more for vectors. std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const; /// Expands an unaligned store to 2 half-size stores for integer values, and /// possibly more for vectors. SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const; /// Increments memory address \p Addr according to the type of the value /// \p DataVT that should be stored. If the data is stored in compressed /// form, the memory address should be incremented according to the number of /// the stored elements. This number is equal to the number of '1's bits /// in the \p Mask. /// \p DataVT is a vector type. \p Mask is a vector value. /// \p DataVT and \p Mask have the same number of vector elements. SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const; /// Get a pointer to vector element \p Idx located in memory for a vector of /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of /// bounds the returned pointer is unspecified, but will be within the vector /// bounds. SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const; //===--------------------------------------------------------------------===// // Instruction Emitting Hooks // /// This method should be implemented by targets that mark instructions with /// the 'usesCustomInserter' flag. These instructions are special in various /// ways, which require special support to insert. The specified MachineInstr /// is created but not inserted into any basic blocks, and this method is /// called to expand it into a sequence of instructions, potentially also /// creating new basic blocks and control flow. /// As long as the returned basic block is different (i.e., we created a new /// one), the custom inserter is free to modify the rest of \p MBB. virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const; /// This method should be implemented by targets that mark instructions with /// the 'hasPostISelHook' flag. These instructions must be adjusted after /// instruction selection by target hooks. e.g. To fill in optional defs for /// ARM 's' setting instructions. virtual void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const; /// If this function returns true, SelectionDAGBuilder emits a /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector. virtual bool useLoadStackGuardNode() const { return false; } virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const { llvm_unreachable("not implemented for this target"); } /// Lower TLS global address SDNode for target independent emulated TLS model. virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const; /// Expands target specific indirect branch for the case of JumpTable /// expanasion. virtual SDValue expandIndirectJTBranch(const SDLoc& dl, SDValue Value, SDValue Addr, SelectionDAG &DAG) const { return DAG.getNode(ISD::BRIND, dl, MVT::Other, Value, Addr); } // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits))) // If we're comparing for equality to zero and isCtlzFast is true, expose the // fact that this can be implemented as a ctlz/srl pair, so that the dag // combiner can fold the new nodes. SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const; private: SDValue simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, const SDLoc &DL) const; SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, const SDLoc &DL) const; }; /// Given an LLVM IR type and return type attributes, compute the return value /// EVTs and flags, and optionally also the offsets, if the return value is /// being lowered to memory. void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl<ISD::OutputArg> &Outs, const TargetLowering &TLI, const DataLayout &DL); } // end namespace llvm #endif // LLVM_CODEGEN_TARGETLOWERING_H