//===- CompileOnDemandLayer.h - Compile each function on demand -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // JIT layer for breaking up modules and inserting callbacks to allow // individual functions to be compiled on demand. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H #define LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H #include "llvm/ADT/APInt.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/Orc/IndirectionUtils.h" #include "llvm/ExecutionEngine/Orc/LambdaResolver.h" #include "llvm/ExecutionEngine/Orc/Layer.h" #include "llvm/ExecutionEngine/Orc/Legacy.h" #include "llvm/ExecutionEngine/Orc/OrcError.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/Casting.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include <algorithm> #include <cassert> #include <functional> #include <iterator> #include <list> #include <memory> #include <set> #include <string> #include <utility> #include <vector> namespace llvm { class Value; namespace orc { class ExtractingIRMaterializationUnit; class CompileOnDemandLayer2 : public IRLayer { friend class ExtractingIRMaterializationUnit; public: /// Builder for IndirectStubsManagers. using IndirectStubsManagerBuilder = std::function<std::unique_ptr<IndirectStubsManager>()>; using GetAvailableContextFunction = std::function<LLVMContext &()>; CompileOnDemandLayer2(ExecutionSession &ES, IRLayer &BaseLayer, JITCompileCallbackManager &CCMgr, IndirectStubsManagerBuilder BuildIndirectStubsManager, GetAvailableContextFunction GetAvailableContext); Error add(VSO &V, VModuleKey K, std::unique_ptr<Module> M) override; void emit(MaterializationResponsibility R, VModuleKey K, std::unique_ptr<Module> M) override; private: using StubManagersMap = std::map<const VSO *, std::unique_ptr<IndirectStubsManager>>; IndirectStubsManager &getStubsManager(const VSO &V); void emitExtractedFunctionsModule(MaterializationResponsibility R, std::unique_ptr<Module> M); mutable std::mutex CODLayerMutex; IRLayer &BaseLayer; JITCompileCallbackManager &CCMgr; IndirectStubsManagerBuilder BuildIndirectStubsManager; StubManagersMap StubsMgrs; GetAvailableContextFunction GetAvailableContext; }; /// Compile-on-demand layer. /// /// When a module is added to this layer a stub is created for each of its /// function definitions. The stubs and other global values are immediately /// added to the layer below. When a stub is called it triggers the extraction /// of the function body from the original module. The extracted body is then /// compiled and executed. template <typename BaseLayerT, typename CompileCallbackMgrT = JITCompileCallbackManager, typename IndirectStubsMgrT = IndirectStubsManager> class CompileOnDemandLayer { private: template <typename MaterializerFtor> class LambdaMaterializer final : public ValueMaterializer { public: LambdaMaterializer(MaterializerFtor M) : M(std::move(M)) {} Value *materialize(Value *V) final { return M(V); } private: MaterializerFtor M; }; template <typename MaterializerFtor> LambdaMaterializer<MaterializerFtor> createLambdaMaterializer(MaterializerFtor M) { return LambdaMaterializer<MaterializerFtor>(std::move(M)); } // Provide type-erasure for the Modules and MemoryManagers. template <typename ResourceT> class ResourceOwner { public: ResourceOwner() = default; ResourceOwner(const ResourceOwner &) = delete; ResourceOwner &operator=(const ResourceOwner &) = delete; virtual ~ResourceOwner() = default; virtual ResourceT& getResource() const = 0; }; template <typename ResourceT, typename ResourcePtrT> class ResourceOwnerImpl : public ResourceOwner<ResourceT> { public: ResourceOwnerImpl(ResourcePtrT ResourcePtr) : ResourcePtr(std::move(ResourcePtr)) {} ResourceT& getResource() const override { return *ResourcePtr; } private: ResourcePtrT ResourcePtr; }; template <typename ResourceT, typename ResourcePtrT> std::unique_ptr<ResourceOwner<ResourceT>> wrapOwnership(ResourcePtrT ResourcePtr) { using RO = ResourceOwnerImpl<ResourceT, ResourcePtrT>; return llvm::make_unique<RO>(std::move(ResourcePtr)); } class StaticGlobalRenamer { public: StaticGlobalRenamer() = default; StaticGlobalRenamer(StaticGlobalRenamer &&) = default; StaticGlobalRenamer &operator=(StaticGlobalRenamer &&) = default; void rename(Module &M) { for (auto &F : M) if (F.hasLocalLinkage()) F.setName("$static." + Twine(NextId++)); for (auto &G : M.globals()) if (G.hasLocalLinkage()) G.setName("$static." + Twine(NextId++)); } private: unsigned NextId = 0; }; struct LogicalDylib { struct SourceModuleEntry { std::unique_ptr<Module> SourceMod; std::set<Function*> StubsToClone; }; using SourceModulesList = std::vector<SourceModuleEntry>; using SourceModuleHandle = typename SourceModulesList::size_type; LogicalDylib() = default; LogicalDylib(VModuleKey K, std::shared_ptr<SymbolResolver> BackingResolver, std::unique_ptr<IndirectStubsMgrT> StubsMgr) : K(std::move(K)), BackingResolver(std::move(BackingResolver)), StubsMgr(std::move(StubsMgr)) {} SourceModuleHandle addSourceModule(std::unique_ptr<Module> M) { SourceModuleHandle H = SourceModules.size(); SourceModules.push_back(SourceModuleEntry()); SourceModules.back().SourceMod = std::move(M); return H; } Module& getSourceModule(SourceModuleHandle H) { return *SourceModules[H].SourceMod; } std::set<Function*>& getStubsToClone(SourceModuleHandle H) { return SourceModules[H].StubsToClone; } JITSymbol findSymbol(BaseLayerT &BaseLayer, const std::string &Name, bool ExportedSymbolsOnly) { if (auto Sym = StubsMgr->findStub(Name, ExportedSymbolsOnly)) return Sym; for (auto BLK : BaseLayerVModuleKeys) if (auto Sym = BaseLayer.findSymbolIn(BLK, Name, ExportedSymbolsOnly)) return Sym; else if (auto Err = Sym.takeError()) return std::move(Err); return nullptr; } Error removeModulesFromBaseLayer(BaseLayerT &BaseLayer) { for (auto &BLK : BaseLayerVModuleKeys) if (auto Err = BaseLayer.removeModule(BLK)) return Err; return Error::success(); } VModuleKey K; std::shared_ptr<SymbolResolver> BackingResolver; std::unique_ptr<IndirectStubsMgrT> StubsMgr; StaticGlobalRenamer StaticRenamer; SourceModulesList SourceModules; std::vector<VModuleKey> BaseLayerVModuleKeys; }; public: /// Module partitioning functor. using PartitioningFtor = std::function<std::set<Function*>(Function&)>; /// Builder for IndirectStubsManagers. using IndirectStubsManagerBuilderT = std::function<std::unique_ptr<IndirectStubsMgrT>()>; using SymbolResolverGetter = std::function<std::shared_ptr<SymbolResolver>(VModuleKey K)>; using SymbolResolverSetter = std::function<void(VModuleKey K, std::shared_ptr<SymbolResolver> R)>; /// Construct a compile-on-demand layer instance. CompileOnDemandLayer(ExecutionSession &ES, BaseLayerT &BaseLayer, SymbolResolverGetter GetSymbolResolver, SymbolResolverSetter SetSymbolResolver, PartitioningFtor Partition, CompileCallbackMgrT &CallbackMgr, IndirectStubsManagerBuilderT CreateIndirectStubsManager, bool CloneStubsIntoPartitions = true) : ES(ES), BaseLayer(BaseLayer), GetSymbolResolver(std::move(GetSymbolResolver)), SetSymbolResolver(std::move(SetSymbolResolver)), Partition(std::move(Partition)), CompileCallbackMgr(CallbackMgr), CreateIndirectStubsManager(std::move(CreateIndirectStubsManager)), CloneStubsIntoPartitions(CloneStubsIntoPartitions) {} ~CompileOnDemandLayer() { // FIXME: Report error on log. while (!LogicalDylibs.empty()) consumeError(removeModule(LogicalDylibs.begin()->first)); } /// Add a module to the compile-on-demand layer. Error addModule(VModuleKey K, std::unique_ptr<Module> M) { assert(!LogicalDylibs.count(K) && "VModuleKey K already in use"); auto I = LogicalDylibs.insert( LogicalDylibs.end(), std::make_pair(K, LogicalDylib(K, GetSymbolResolver(K), CreateIndirectStubsManager()))); return addLogicalModule(I->second, std::move(M)); } /// Add extra modules to an existing logical module. Error addExtraModule(VModuleKey K, std::unique_ptr<Module> M) { return addLogicalModule(LogicalDylibs[K], std::move(M)); } /// Remove the module represented by the given key. /// /// This will remove all modules in the layers below that were derived from /// the module represented by K. Error removeModule(VModuleKey K) { auto I = LogicalDylibs.find(K); assert(I != LogicalDylibs.end() && "VModuleKey K not valid here"); auto Err = I->second.removeModulesFromBaseLayer(BaseLayer); LogicalDylibs.erase(I); return Err; } /// Search for the given named symbol. /// @param Name The name of the symbol to search for. /// @param ExportedSymbolsOnly If true, search only for exported symbols. /// @return A handle for the given named symbol, if it exists. JITSymbol findSymbol(StringRef Name, bool ExportedSymbolsOnly) { for (auto &KV : LogicalDylibs) { if (auto Sym = KV.second.StubsMgr->findStub(Name, ExportedSymbolsOnly)) return Sym; if (auto Sym = findSymbolIn(KV.first, Name, ExportedSymbolsOnly)) return Sym; else if (auto Err = Sym.takeError()) return std::move(Err); } return BaseLayer.findSymbol(Name, ExportedSymbolsOnly); } /// Get the address of a symbol provided by this layer, or some layer /// below this one. JITSymbol findSymbolIn(VModuleKey K, const std::string &Name, bool ExportedSymbolsOnly) { assert(LogicalDylibs.count(K) && "VModuleKey K is not valid here"); return LogicalDylibs[K].findSymbol(BaseLayer, Name, ExportedSymbolsOnly); } /// Update the stub for the given function to point at FnBodyAddr. /// This can be used to support re-optimization. /// @return true if the function exists and the stub is updated, false /// otherwise. // // FIXME: We should track and free associated resources (unused compile // callbacks, uncompiled IR, and no-longer-needed/reachable function // implementations). Error updatePointer(std::string FuncName, JITTargetAddress FnBodyAddr) { //Find out which logical dylib contains our symbol auto LDI = LogicalDylibs.begin(); for (auto LDE = LogicalDylibs.end(); LDI != LDE; ++LDI) { if (auto LMResources = LDI->getLogicalModuleResourcesForSymbol(FuncName, false)) { Module &SrcM = LMResources->SourceModule->getResource(); std::string CalledFnName = mangle(FuncName, SrcM.getDataLayout()); if (auto Err = LMResources->StubsMgr->updatePointer(CalledFnName, FnBodyAddr)) return Err; return Error::success(); } } return make_error<JITSymbolNotFound>(FuncName); } private: Error addLogicalModule(LogicalDylib &LD, std::unique_ptr<Module> SrcMPtr) { // Rename all static functions / globals to $static.X : // This will unique the names across all modules in the logical dylib, // simplifying symbol lookup. LD.StaticRenamer.rename(*SrcMPtr); // Bump the linkage and rename any anonymous/private members in SrcM to // ensure that everything will resolve properly after we partition SrcM. makeAllSymbolsExternallyAccessible(*SrcMPtr); // Create a logical module handle for SrcM within the logical dylib. Module &SrcM = *SrcMPtr; auto LMId = LD.addSourceModule(std::move(SrcMPtr)); // Create stub functions. const DataLayout &DL = SrcM.getDataLayout(); { typename IndirectStubsMgrT::StubInitsMap StubInits; for (auto &F : SrcM) { // Skip declarations. if (F.isDeclaration()) continue; // Skip weak functions for which we already have definitions. auto MangledName = mangle(F.getName(), DL); if (F.hasWeakLinkage() || F.hasLinkOnceLinkage()) { if (auto Sym = LD.findSymbol(BaseLayer, MangledName, false)) continue; else if (auto Err = Sym.takeError()) return std::move(Err); } // Record all functions defined by this module. if (CloneStubsIntoPartitions) LD.getStubsToClone(LMId).insert(&F); // Create a callback, associate it with the stub for the function, // and set the compile action to compile the partition containing the // function. auto CompileAction = [this, &LD, LMId, &F]() -> JITTargetAddress { if (auto FnImplAddrOrErr = this->extractAndCompile(LD, LMId, F)) return *FnImplAddrOrErr; else { // FIXME: Report error, return to 'abort' or something similar. consumeError(FnImplAddrOrErr.takeError()); return 0; } }; if (auto CCAddr = CompileCallbackMgr.getCompileCallback(std::move(CompileAction))) StubInits[MangledName] = std::make_pair(*CCAddr, JITSymbolFlags::fromGlobalValue(F)); else return CCAddr.takeError(); } if (auto Err = LD.StubsMgr->createStubs(StubInits)) return Err; } // If this module doesn't contain any globals, aliases, or module flags then // we can bail out early and avoid the overhead of creating and managing an // empty globals module. if (SrcM.global_empty() && SrcM.alias_empty() && !SrcM.getModuleFlagsMetadata()) return Error::success(); // Create the GlobalValues module. auto GVsM = llvm::make_unique<Module>((SrcM.getName() + ".globals").str(), SrcM.getContext()); GVsM->setDataLayout(DL); ValueToValueMapTy VMap; // Clone global variable decls. for (auto &GV : SrcM.globals()) if (!GV.isDeclaration() && !VMap.count(&GV)) cloneGlobalVariableDecl(*GVsM, GV, &VMap); // And the aliases. for (auto &A : SrcM.aliases()) if (!VMap.count(&A)) cloneGlobalAliasDecl(*GVsM, A, VMap); // Clone the module flags. cloneModuleFlagsMetadata(*GVsM, SrcM, VMap); // Now we need to clone the GV and alias initializers. // Initializers may refer to functions declared (but not defined) in this // module. Build a materializer to clone decls on demand. auto Materializer = createLambdaMaterializer( [&LD, &GVsM](Value *V) -> Value* { if (auto *F = dyn_cast<Function>(V)) { // Decls in the original module just get cloned. if (F->isDeclaration()) return cloneFunctionDecl(*GVsM, *F); // Definitions in the original module (which we have emitted stubs // for at this point) get turned into a constant alias to the stub // instead. const DataLayout &DL = GVsM->getDataLayout(); std::string FName = mangle(F->getName(), DL); unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(F->getType()); JITTargetAddress StubAddr = LD.StubsMgr->findStub(FName, false).getAddress(); ConstantInt *StubAddrCI = ConstantInt::get(GVsM->getContext(), APInt(PtrBitWidth, StubAddr)); Constant *Init = ConstantExpr::getCast(Instruction::IntToPtr, StubAddrCI, F->getType()); return GlobalAlias::create(F->getFunctionType(), F->getType()->getAddressSpace(), F->getLinkage(), F->getName(), Init, GVsM.get()); } // else.... return nullptr; }); // Clone the global variable initializers. for (auto &GV : SrcM.globals()) if (!GV.isDeclaration()) moveGlobalVariableInitializer(GV, VMap, &Materializer); // Clone the global alias initializers. for (auto &A : SrcM.aliases()) { auto *NewA = cast<GlobalAlias>(VMap[&A]); assert(NewA && "Alias not cloned?"); Value *Init = MapValue(A.getAliasee(), VMap, RF_None, nullptr, &Materializer); NewA->setAliasee(cast<Constant>(Init)); } // Build a resolver for the globals module and add it to the base layer. auto LegacyLookup = [this, &LD](const std::string &Name) -> JITSymbol { if (auto Sym = LD.StubsMgr->findStub(Name, false)) return Sym; if (auto Sym = LD.findSymbol(BaseLayer, Name, false)) return Sym; else if (auto Err = Sym.takeError()) return std::move(Err); return nullptr; }; auto GVsResolver = createSymbolResolver( [&LD, LegacyLookup](const SymbolNameSet &Symbols) { auto SymbolFlags = lookupFlagsWithLegacyFn(Symbols, LegacyLookup); if (!SymbolFlags) { logAllUnhandledErrors(SymbolFlags.takeError(), errs(), "CODLayer/GVsResolver flags lookup failed: "); return SymbolFlagsMap(); } if (SymbolFlags->size() == Symbols.size()) return *SymbolFlags; SymbolNameSet NotFoundViaLegacyLookup; for (auto &S : Symbols) if (!SymbolFlags->count(S)) NotFoundViaLegacyLookup.insert(S); auto SymbolFlags2 = LD.BackingResolver->lookupFlags(NotFoundViaLegacyLookup); for (auto &KV : SymbolFlags2) (*SymbolFlags)[KV.first] = std::move(KV.second); return *SymbolFlags; }, [this, &LD, LegacyLookup](std::shared_ptr<AsynchronousSymbolQuery> Query, SymbolNameSet Symbols) { auto NotFoundViaLegacyLookup = lookupWithLegacyFn(ES, *Query, Symbols, LegacyLookup); return LD.BackingResolver->lookup(Query, NotFoundViaLegacyLookup); }); SetSymbolResolver(LD.K, std::move(GVsResolver)); if (auto Err = BaseLayer.addModule(LD.K, std::move(GVsM))) return Err; LD.BaseLayerVModuleKeys.push_back(LD.K); return Error::success(); } static std::string mangle(StringRef Name, const DataLayout &DL) { std::string MangledName; { raw_string_ostream MangledNameStream(MangledName); Mangler::getNameWithPrefix(MangledNameStream, Name, DL); } return MangledName; } Expected<JITTargetAddress> extractAndCompile(LogicalDylib &LD, typename LogicalDylib::SourceModuleHandle LMId, Function &F) { Module &SrcM = LD.getSourceModule(LMId); // If F is a declaration we must already have compiled it. if (F.isDeclaration()) return 0; // Grab the name of the function being called here. std::string CalledFnName = mangle(F.getName(), SrcM.getDataLayout()); JITTargetAddress CalledAddr = 0; auto Part = Partition(F); if (auto PartKeyOrErr = emitPartition(LD, LMId, Part)) { auto &PartKey = *PartKeyOrErr; for (auto *SubF : Part) { std::string FnName = mangle(SubF->getName(), SrcM.getDataLayout()); if (auto FnBodySym = BaseLayer.findSymbolIn(PartKey, FnName, false)) { if (auto FnBodyAddrOrErr = FnBodySym.getAddress()) { JITTargetAddress FnBodyAddr = *FnBodyAddrOrErr; // If this is the function we're calling record the address so we can // return it from this function. if (SubF == &F) CalledAddr = FnBodyAddr; // Update the function body pointer for the stub. if (auto EC = LD.StubsMgr->updatePointer(FnName, FnBodyAddr)) return 0; } else return FnBodyAddrOrErr.takeError(); } else if (auto Err = FnBodySym.takeError()) return std::move(Err); else llvm_unreachable("Function not emitted for partition"); } LD.BaseLayerVModuleKeys.push_back(PartKey); } else return PartKeyOrErr.takeError(); return CalledAddr; } template <typename PartitionT> Expected<VModuleKey> emitPartition(LogicalDylib &LD, typename LogicalDylib::SourceModuleHandle LMId, const PartitionT &Part) { Module &SrcM = LD.getSourceModule(LMId); // Create the module. std::string NewName = SrcM.getName(); for (auto *F : Part) { NewName += "."; NewName += F->getName(); } auto M = llvm::make_unique<Module>(NewName, SrcM.getContext()); M->setDataLayout(SrcM.getDataLayout()); ValueToValueMapTy VMap; auto Materializer = createLambdaMaterializer([&LD, &LMId, &M](Value *V) -> Value * { if (auto *GV = dyn_cast<GlobalVariable>(V)) return cloneGlobalVariableDecl(*M, *GV); if (auto *F = dyn_cast<Function>(V)) { // Check whether we want to clone an available_externally definition. if (!LD.getStubsToClone(LMId).count(F)) return cloneFunctionDecl(*M, *F); // Ok - we want an inlinable stub. For that to work we need a decl // for the stub pointer. auto *StubPtr = createImplPointer(*F->getType(), *M, F->getName() + "$stub_ptr", nullptr); auto *ClonedF = cloneFunctionDecl(*M, *F); makeStub(*ClonedF, *StubPtr); ClonedF->setLinkage(GlobalValue::AvailableExternallyLinkage); ClonedF->addFnAttr(Attribute::AlwaysInline); return ClonedF; } if (auto *A = dyn_cast<GlobalAlias>(V)) { auto *Ty = A->getValueType(); if (Ty->isFunctionTy()) return Function::Create(cast<FunctionType>(Ty), GlobalValue::ExternalLinkage, A->getName(), M.get()); return new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, A->getName(), nullptr, GlobalValue::NotThreadLocal, A->getType()->getAddressSpace()); } return nullptr; }); // Create decls in the new module. for (auto *F : Part) cloneFunctionDecl(*M, *F, &VMap); // Move the function bodies. for (auto *F : Part) moveFunctionBody(*F, VMap, &Materializer); auto K = ES.allocateVModule(); auto LegacyLookup = [this, &LD](const std::string &Name) -> JITSymbol { return LD.findSymbol(BaseLayer, Name, false); }; // Create memory manager and symbol resolver. auto Resolver = createSymbolResolver( [&LD, LegacyLookup](const SymbolNameSet &Symbols) { auto SymbolFlags = lookupFlagsWithLegacyFn(Symbols, LegacyLookup); if (!SymbolFlags) { logAllUnhandledErrors(SymbolFlags.takeError(), errs(), "CODLayer/SubResolver flags lookup failed: "); return SymbolFlagsMap(); } if (SymbolFlags->size() == Symbols.size()) return *SymbolFlags; SymbolNameSet NotFoundViaLegacyLookup; for (auto &S : Symbols) if (!SymbolFlags->count(S)) NotFoundViaLegacyLookup.insert(S); auto SymbolFlags2 = LD.BackingResolver->lookupFlags(NotFoundViaLegacyLookup); for (auto &KV : SymbolFlags2) (*SymbolFlags)[KV.first] = std::move(KV.second); return *SymbolFlags; }, [this, &LD, LegacyLookup](std::shared_ptr<AsynchronousSymbolQuery> Q, SymbolNameSet Symbols) { auto NotFoundViaLegacyLookup = lookupWithLegacyFn(ES, *Q, Symbols, LegacyLookup); return LD.BackingResolver->lookup(Q, std::move(NotFoundViaLegacyLookup)); }); SetSymbolResolver(K, std::move(Resolver)); if (auto Err = BaseLayer.addModule(std::move(K), std::move(M))) return std::move(Err); return K; } ExecutionSession &ES; BaseLayerT &BaseLayer; SymbolResolverGetter GetSymbolResolver; SymbolResolverSetter SetSymbolResolver; PartitioningFtor Partition; CompileCallbackMgrT &CompileCallbackMgr; IndirectStubsManagerBuilderT CreateIndirectStubsManager; std::map<VModuleKey, LogicalDylib> LogicalDylibs; bool CloneStubsIntoPartitions; }; } // end namespace orc } // end namespace llvm #endif // LLVM_EXECUTIONENGINE_ORC_COMPILEONDEMANDLAYER_H