//===------- RPCUTils.h - Utilities for building RPC APIs -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Utilities to support construction of simple RPC APIs. // // The RPC utilities aim for ease of use (minimal conceptual overhead) for C++ // programmers, high performance, low memory overhead, and efficient use of the // communications channel. // //===----------------------------------------------------------------------===// #ifndef LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H #define LLVM_EXECUTIONENGINE_ORC_RPCUTILS_H #include <map> #include <thread> #include <vector> #include "llvm/ADT/STLExtras.h" #include "llvm/ExecutionEngine/Orc/OrcError.h" #include "llvm/ExecutionEngine/Orc/RPCSerialization.h" #include <future> namespace llvm { namespace orc { namespace rpc { /// Base class of all fatal RPC errors (those that necessarily result in the /// termination of the RPC session). class RPCFatalError : public ErrorInfo<RPCFatalError> { public: static char ID; }; /// RPCConnectionClosed is returned from RPC operations if the RPC connection /// has already been closed due to either an error or graceful disconnection. class ConnectionClosed : public ErrorInfo<ConnectionClosed> { public: static char ID; std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; }; /// BadFunctionCall is returned from handleOne when the remote makes a call with /// an unrecognized function id. /// /// This error is fatal because Orc RPC needs to know how to parse a function /// call to know where the next call starts, and if it doesn't recognize the /// function id it cannot parse the call. template <typename FnIdT, typename SeqNoT> class BadFunctionCall : public ErrorInfo<BadFunctionCall<FnIdT, SeqNoT>, RPCFatalError> { public: static char ID; BadFunctionCall(FnIdT FnId, SeqNoT SeqNo) : FnId(std::move(FnId)), SeqNo(std::move(SeqNo)) {} std::error_code convertToErrorCode() const override { return orcError(OrcErrorCode::UnexpectedRPCCall); } void log(raw_ostream &OS) const override { OS << "Call to invalid RPC function id '" << FnId << "' with " "sequence number " << SeqNo; } private: FnIdT FnId; SeqNoT SeqNo; }; template <typename FnIdT, typename SeqNoT> char BadFunctionCall<FnIdT, SeqNoT>::ID = 0; /// InvalidSequenceNumberForResponse is returned from handleOne when a response /// call arrives with a sequence number that doesn't correspond to any in-flight /// function call. /// /// This error is fatal because Orc RPC needs to know how to parse the rest of /// the response call to know where the next call starts, and if it doesn't have /// a result parser for this sequence number it can't do that. template <typename SeqNoT> class InvalidSequenceNumberForResponse : public ErrorInfo<InvalidSequenceNumberForResponse<SeqNoT>, RPCFatalError> { public: static char ID; InvalidSequenceNumberForResponse(SeqNoT SeqNo) : SeqNo(std::move(SeqNo)) {} std::error_code convertToErrorCode() const override { return orcError(OrcErrorCode::UnexpectedRPCCall); }; void log(raw_ostream &OS) const override { OS << "Response has unknown sequence number " << SeqNo; } private: SeqNoT SeqNo; }; template <typename SeqNoT> char InvalidSequenceNumberForResponse<SeqNoT>::ID = 0; /// This non-fatal error will be passed to asynchronous result handlers in place /// of a result if the connection goes down before a result returns, or if the /// function to be called cannot be negotiated with the remote. class ResponseAbandoned : public ErrorInfo<ResponseAbandoned> { public: static char ID; std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; }; /// This error is returned if the remote does not have a handler installed for /// the given RPC function. class CouldNotNegotiate : public ErrorInfo<CouldNotNegotiate> { public: static char ID; CouldNotNegotiate(std::string Signature); std::error_code convertToErrorCode() const override; void log(raw_ostream &OS) const override; const std::string &getSignature() const { return Signature; } private: std::string Signature; }; template <typename DerivedFunc, typename FnT> class Function; // RPC Function class. // DerivedFunc should be a user defined class with a static 'getName()' method // returning a const char* representing the function's name. template <typename DerivedFunc, typename RetT, typename... ArgTs> class Function<DerivedFunc, RetT(ArgTs...)> { public: /// User defined function type. using Type = RetT(ArgTs...); /// Return type. using ReturnType = RetT; /// Returns the full function prototype as a string. static const char *getPrototype() { std::lock_guard<std::mutex> Lock(NameMutex); if (Name.empty()) raw_string_ostream(Name) << RPCTypeName<RetT>::getName() << " " << DerivedFunc::getName() << "(" << llvm::orc::rpc::RPCTypeNameSequence<ArgTs...>() << ")"; return Name.data(); } private: static std::mutex NameMutex; static std::string Name; }; template <typename DerivedFunc, typename RetT, typename... ArgTs> std::mutex Function<DerivedFunc, RetT(ArgTs...)>::NameMutex; template <typename DerivedFunc, typename RetT, typename... ArgTs> std::string Function<DerivedFunc, RetT(ArgTs...)>::Name; /// Allocates RPC function ids during autonegotiation. /// Specializations of this class must provide four members: /// /// static T getInvalidId(): /// Should return a reserved id that will be used to represent missing /// functions during autonegotiation. /// /// static T getResponseId(): /// Should return a reserved id that will be used to send function responses /// (return values). /// /// static T getNegotiateId(): /// Should return a reserved id for the negotiate function, which will be used /// to negotiate ids for user defined functions. /// /// template <typename Func> T allocate(): /// Allocate a unique id for function Func. template <typename T, typename = void> class RPCFunctionIdAllocator; /// This specialization of RPCFunctionIdAllocator provides a default /// implementation for integral types. template <typename T> class RPCFunctionIdAllocator< T, typename std::enable_if<std::is_integral<T>::value>::type> { public: static T getInvalidId() { return T(0); } static T getResponseId() { return T(1); } static T getNegotiateId() { return T(2); } template <typename Func> T allocate() { return NextId++; } private: T NextId = 3; }; namespace detail { // FIXME: Remove MSVCPError/MSVCPExpected once MSVC's future implementation // supports classes without default constructors. #ifdef _MSC_VER namespace msvc_hacks { // Work around MSVC's future implementation's use of default constructors: // A default constructed value in the promise will be overwritten when the // real error is set - so the default constructed Error has to be checked // already. class MSVCPError : public Error { public: MSVCPError() { (void)!!*this; } MSVCPError(MSVCPError &&Other) : Error(std::move(Other)) {} MSVCPError &operator=(MSVCPError Other) { Error::operator=(std::move(Other)); return *this; } MSVCPError(Error Err) : Error(std::move(Err)) {} }; // Work around MSVC's future implementation, similar to MSVCPError. template <typename T> class MSVCPExpected : public Expected<T> { public: MSVCPExpected() : Expected<T>(make_error<StringError>("", inconvertibleErrorCode())) { consumeError(this->takeError()); } MSVCPExpected(MSVCPExpected &&Other) : Expected<T>(std::move(Other)) {} MSVCPExpected &operator=(MSVCPExpected &&Other) { Expected<T>::operator=(std::move(Other)); return *this; } MSVCPExpected(Error Err) : Expected<T>(std::move(Err)) {} template <typename OtherT> MSVCPExpected( OtherT &&Val, typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * = nullptr) : Expected<T>(std::move(Val)) {} template <class OtherT> MSVCPExpected( Expected<OtherT> &&Other, typename std::enable_if<std::is_convertible<OtherT, T>::value>::type * = nullptr) : Expected<T>(std::move(Other)) {} template <class OtherT> explicit MSVCPExpected( Expected<OtherT> &&Other, typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * = nullptr) : Expected<T>(std::move(Other)) {} }; } // end namespace msvc_hacks #endif // _MSC_VER /// Provides a typedef for a tuple containing the decayed argument types. template <typename T> class FunctionArgsTuple; template <typename RetT, typename... ArgTs> class FunctionArgsTuple<RetT(ArgTs...)> { public: using Type = std::tuple<typename std::decay< typename std::remove_reference<ArgTs>::type>::type...>; }; // ResultTraits provides typedefs and utilities specific to the return type // of functions. template <typename RetT> class ResultTraits { public: // The return type wrapped in llvm::Expected. using ErrorReturnType = Expected<RetT>; #ifdef _MSC_VER // The ErrorReturnType wrapped in a std::promise. using ReturnPromiseType = std::promise<msvc_hacks::MSVCPExpected<RetT>>; // The ErrorReturnType wrapped in a std::future. using ReturnFutureType = std::future<msvc_hacks::MSVCPExpected<RetT>>; #else // The ErrorReturnType wrapped in a std::promise. using ReturnPromiseType = std::promise<ErrorReturnType>; // The ErrorReturnType wrapped in a std::future. using ReturnFutureType = std::future<ErrorReturnType>; #endif // Create a 'blank' value of the ErrorReturnType, ready and safe to // overwrite. static ErrorReturnType createBlankErrorReturnValue() { return ErrorReturnType(RetT()); } // Consume an abandoned ErrorReturnType. static void consumeAbandoned(ErrorReturnType RetOrErr) { consumeError(RetOrErr.takeError()); } }; // ResultTraits specialization for void functions. template <> class ResultTraits<void> { public: // For void functions, ErrorReturnType is llvm::Error. using ErrorReturnType = Error; #ifdef _MSC_VER // The ErrorReturnType wrapped in a std::promise. using ReturnPromiseType = std::promise<msvc_hacks::MSVCPError>; // The ErrorReturnType wrapped in a std::future. using ReturnFutureType = std::future<msvc_hacks::MSVCPError>; #else // The ErrorReturnType wrapped in a std::promise. using ReturnPromiseType = std::promise<ErrorReturnType>; // The ErrorReturnType wrapped in a std::future. using ReturnFutureType = std::future<ErrorReturnType>; #endif // Create a 'blank' value of the ErrorReturnType, ready and safe to // overwrite. static ErrorReturnType createBlankErrorReturnValue() { return ErrorReturnType::success(); } // Consume an abandoned ErrorReturnType. static void consumeAbandoned(ErrorReturnType Err) { consumeError(std::move(Err)); } }; // ResultTraits<Error> is equivalent to ResultTraits<void>. This allows // handlers for void RPC functions to return either void (in which case they // implicitly succeed) or Error (in which case their error return is // propagated). See usage in HandlerTraits::runHandlerHelper. template <> class ResultTraits<Error> : public ResultTraits<void> {}; // ResultTraits<Expected<T>> is equivalent to ResultTraits<T>. This allows // handlers for RPC functions returning a T to return either a T (in which // case they implicitly succeed) or Expected<T> (in which case their error // return is propagated). See usage in HandlerTraits::runHandlerHelper. template <typename RetT> class ResultTraits<Expected<RetT>> : public ResultTraits<RetT> {}; // Determines whether an RPC function's defined error return type supports // error return value. template <typename T> class SupportsErrorReturn { public: static const bool value = false; }; template <> class SupportsErrorReturn<Error> { public: static const bool value = true; }; template <typename T> class SupportsErrorReturn<Expected<T>> { public: static const bool value = true; }; // RespondHelper packages return values based on whether or not the declared // RPC function return type supports error returns. template <bool FuncSupportsErrorReturn> class RespondHelper; // RespondHelper specialization for functions that support error returns. template <> class RespondHelper<true> { public: // Send Expected<T>. template <typename WireRetT, typename HandlerRetT, typename ChannelT, typename FunctionIdT, typename SequenceNumberT> static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo, Expected<HandlerRetT> ResultOrErr) { if (!ResultOrErr && ResultOrErr.template errorIsA<RPCFatalError>()) return ResultOrErr.takeError(); // Open the response message. if (auto Err = C.startSendMessage(ResponseId, SeqNo)) return Err; // Serialize the result. if (auto Err = SerializationTraits<ChannelT, WireRetT, Expected<HandlerRetT>>::serialize( C, std::move(ResultOrErr))) return Err; // Close the response message. return C.endSendMessage(); } template <typename ChannelT, typename FunctionIdT, typename SequenceNumberT> static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo, Error Err) { if (Err && Err.isA<RPCFatalError>()) return Err; if (auto Err2 = C.startSendMessage(ResponseId, SeqNo)) return Err2; if (auto Err2 = serializeSeq(C, std::move(Err))) return Err2; return C.endSendMessage(); } }; // RespondHelper specialization for functions that do not support error returns. template <> class RespondHelper<false> { public: template <typename WireRetT, typename HandlerRetT, typename ChannelT, typename FunctionIdT, typename SequenceNumberT> static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo, Expected<HandlerRetT> ResultOrErr) { if (auto Err = ResultOrErr.takeError()) return Err; // Open the response message. if (auto Err = C.startSendMessage(ResponseId, SeqNo)) return Err; // Serialize the result. if (auto Err = SerializationTraits<ChannelT, WireRetT, HandlerRetT>::serialize( C, *ResultOrErr)) return Err; // Close the response message. return C.endSendMessage(); } template <typename ChannelT, typename FunctionIdT, typename SequenceNumberT> static Error sendResult(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo, Error Err) { if (Err) return Err; if (auto Err2 = C.startSendMessage(ResponseId, SeqNo)) return Err2; return C.endSendMessage(); } }; // Send a response of the given wire return type (WireRetT) over the // channel, with the given sequence number. template <typename WireRetT, typename HandlerRetT, typename ChannelT, typename FunctionIdT, typename SequenceNumberT> Error respond(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo, Expected<HandlerRetT> ResultOrErr) { return RespondHelper<SupportsErrorReturn<WireRetT>::value>:: template sendResult<WireRetT>(C, ResponseId, SeqNo, std::move(ResultOrErr)); } // Send an empty response message on the given channel to indicate that // the handler ran. template <typename WireRetT, typename ChannelT, typename FunctionIdT, typename SequenceNumberT> Error respond(ChannelT &C, const FunctionIdT &ResponseId, SequenceNumberT SeqNo, Error Err) { return RespondHelper<SupportsErrorReturn<WireRetT>::value>:: sendResult(C, ResponseId, SeqNo, std::move(Err)); } // Converts a given type to the equivalent error return type. template <typename T> class WrappedHandlerReturn { public: using Type = Expected<T>; }; template <typename T> class WrappedHandlerReturn<Expected<T>> { public: using Type = Expected<T>; }; template <> class WrappedHandlerReturn<void> { public: using Type = Error; }; template <> class WrappedHandlerReturn<Error> { public: using Type = Error; }; template <> class WrappedHandlerReturn<ErrorSuccess> { public: using Type = Error; }; // Traits class that strips the response function from the list of handler // arguments. template <typename FnT> class AsyncHandlerTraits; template <typename ResultT, typename... ArgTs> class AsyncHandlerTraits<Error(std::function<Error(Expected<ResultT>)>, ArgTs...)> { public: using Type = Error(ArgTs...); using ResultType = Expected<ResultT>; }; template <typename... ArgTs> class AsyncHandlerTraits<Error(std::function<Error(Error)>, ArgTs...)> { public: using Type = Error(ArgTs...); using ResultType = Error; }; template <typename... ArgTs> class AsyncHandlerTraits<ErrorSuccess(std::function<Error(Error)>, ArgTs...)> { public: using Type = Error(ArgTs...); using ResultType = Error; }; template <typename... ArgTs> class AsyncHandlerTraits<void(std::function<Error(Error)>, ArgTs...)> { public: using Type = Error(ArgTs...); using ResultType = Error; }; template <typename ResponseHandlerT, typename... ArgTs> class AsyncHandlerTraits<Error(ResponseHandlerT, ArgTs...)> : public AsyncHandlerTraits<Error(typename std::decay<ResponseHandlerT>::type, ArgTs...)> {}; // This template class provides utilities related to RPC function handlers. // The base case applies to non-function types (the template class is // specialized for function types) and inherits from the appropriate // speciilization for the given non-function type's call operator. template <typename HandlerT> class HandlerTraits : public HandlerTraits<decltype( &std::remove_reference<HandlerT>::type::operator())> { }; // Traits for handlers with a given function type. template <typename RetT, typename... ArgTs> class HandlerTraits<RetT(ArgTs...)> { public: // Function type of the handler. using Type = RetT(ArgTs...); // Return type of the handler. using ReturnType = RetT; // Call the given handler with the given arguments. template <typename HandlerT, typename... TArgTs> static typename WrappedHandlerReturn<RetT>::Type unpackAndRun(HandlerT &Handler, std::tuple<TArgTs...> &Args) { return unpackAndRunHelper(Handler, Args, llvm::index_sequence_for<TArgTs...>()); } // Call the given handler with the given arguments. template <typename HandlerT, typename ResponderT, typename... TArgTs> static Error unpackAndRunAsync(HandlerT &Handler, ResponderT &Responder, std::tuple<TArgTs...> &Args) { return unpackAndRunAsyncHelper(Handler, Responder, Args, llvm::index_sequence_for<TArgTs...>()); } // Call the given handler with the given arguments. template <typename HandlerT> static typename std::enable_if< std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value, Error>::type run(HandlerT &Handler, ArgTs &&... Args) { Handler(std::move(Args)...); return Error::success(); } template <typename HandlerT, typename... TArgTs> static typename std::enable_if< !std::is_void<typename HandlerTraits<HandlerT>::ReturnType>::value, typename HandlerTraits<HandlerT>::ReturnType>::type run(HandlerT &Handler, TArgTs... Args) { return Handler(std::move(Args)...); } // Serialize arguments to the channel. template <typename ChannelT, typename... CArgTs> static Error serializeArgs(ChannelT &C, const CArgTs... CArgs) { return SequenceSerialization<ChannelT, ArgTs...>::serialize(C, CArgs...); } // Deserialize arguments from the channel. template <typename ChannelT, typename... CArgTs> static Error deserializeArgs(ChannelT &C, std::tuple<CArgTs...> &Args) { return deserializeArgsHelper(C, Args, llvm::index_sequence_for<CArgTs...>()); } private: template <typename ChannelT, typename... CArgTs, size_t... Indexes> static Error deserializeArgsHelper(ChannelT &C, std::tuple<CArgTs...> &Args, llvm::index_sequence<Indexes...> _) { return SequenceSerialization<ChannelT, ArgTs...>::deserialize( C, std::get<Indexes>(Args)...); } template <typename HandlerT, typename ArgTuple, size_t... Indexes> static typename WrappedHandlerReturn< typename HandlerTraits<HandlerT>::ReturnType>::Type unpackAndRunHelper(HandlerT &Handler, ArgTuple &Args, llvm::index_sequence<Indexes...>) { return run(Handler, std::move(std::get<Indexes>(Args))...); } template <typename HandlerT, typename ResponderT, typename ArgTuple, size_t... Indexes> static typename WrappedHandlerReturn< typename HandlerTraits<HandlerT>::ReturnType>::Type unpackAndRunAsyncHelper(HandlerT &Handler, ResponderT &Responder, ArgTuple &Args, llvm::index_sequence<Indexes...>) { return run(Handler, Responder, std::move(std::get<Indexes>(Args))...); } }; // Handler traits for free functions. template <typename RetT, typename... ArgTs> class HandlerTraits<RetT(*)(ArgTs...)> : public HandlerTraits<RetT(ArgTs...)> {}; // Handler traits for class methods (especially call operators for lambdas). template <typename Class, typename RetT, typename... ArgTs> class HandlerTraits<RetT (Class::*)(ArgTs...)> : public HandlerTraits<RetT(ArgTs...)> {}; // Handler traits for const class methods (especially call operators for // lambdas). template <typename Class, typename RetT, typename... ArgTs> class HandlerTraits<RetT (Class::*)(ArgTs...) const> : public HandlerTraits<RetT(ArgTs...)> {}; // Utility to peel the Expected wrapper off a response handler error type. template <typename HandlerT> class ResponseHandlerArg; template <typename ArgT> class ResponseHandlerArg<Error(Expected<ArgT>)> { public: using ArgType = Expected<ArgT>; using UnwrappedArgType = ArgT; }; template <typename ArgT> class ResponseHandlerArg<ErrorSuccess(Expected<ArgT>)> { public: using ArgType = Expected<ArgT>; using UnwrappedArgType = ArgT; }; template <> class ResponseHandlerArg<Error(Error)> { public: using ArgType = Error; }; template <> class ResponseHandlerArg<ErrorSuccess(Error)> { public: using ArgType = Error; }; // ResponseHandler represents a handler for a not-yet-received function call // result. template <typename ChannelT> class ResponseHandler { public: virtual ~ResponseHandler() {} // Reads the function result off the wire and acts on it. The meaning of // "act" will depend on how this method is implemented in any given // ResponseHandler subclass but could, for example, mean running a // user-specified handler or setting a promise value. virtual Error handleResponse(ChannelT &C) = 0; // Abandons this outstanding result. virtual void abandon() = 0; // Create an error instance representing an abandoned response. static Error createAbandonedResponseError() { return make_error<ResponseAbandoned>(); } }; // ResponseHandler subclass for RPC functions with non-void returns. template <typename ChannelT, typename FuncRetT, typename HandlerT> class ResponseHandlerImpl : public ResponseHandler<ChannelT> { public: ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {} // Handle the result by deserializing it from the channel then passing it // to the user defined handler. Error handleResponse(ChannelT &C) override { using UnwrappedArgType = typename ResponseHandlerArg< typename HandlerTraits<HandlerT>::Type>::UnwrappedArgType; UnwrappedArgType Result; if (auto Err = SerializationTraits<ChannelT, FuncRetT, UnwrappedArgType>::deserialize(C, Result)) return Err; if (auto Err = C.endReceiveMessage()) return Err; return Handler(std::move(Result)); } // Abandon this response by calling the handler with an 'abandoned response' // error. void abandon() override { if (auto Err = Handler(this->createAbandonedResponseError())) { // Handlers should not fail when passed an abandoned response error. report_fatal_error(std::move(Err)); } } private: HandlerT Handler; }; // ResponseHandler subclass for RPC functions with void returns. template <typename ChannelT, typename HandlerT> class ResponseHandlerImpl<ChannelT, void, HandlerT> : public ResponseHandler<ChannelT> { public: ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {} // Handle the result (no actual value, just a notification that the function // has completed on the remote end) by calling the user-defined handler with // Error::success(). Error handleResponse(ChannelT &C) override { if (auto Err = C.endReceiveMessage()) return Err; return Handler(Error::success()); } // Abandon this response by calling the handler with an 'abandoned response' // error. void abandon() override { if (auto Err = Handler(this->createAbandonedResponseError())) { // Handlers should not fail when passed an abandoned response error. report_fatal_error(std::move(Err)); } } private: HandlerT Handler; }; template <typename ChannelT, typename FuncRetT, typename HandlerT> class ResponseHandlerImpl<ChannelT, Expected<FuncRetT>, HandlerT> : public ResponseHandler<ChannelT> { public: ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {} // Handle the result by deserializing it from the channel then passing it // to the user defined handler. Error handleResponse(ChannelT &C) override { using HandlerArgType = typename ResponseHandlerArg< typename HandlerTraits<HandlerT>::Type>::ArgType; HandlerArgType Result((typename HandlerArgType::value_type())); if (auto Err = SerializationTraits<ChannelT, Expected<FuncRetT>, HandlerArgType>::deserialize(C, Result)) return Err; if (auto Err = C.endReceiveMessage()) return Err; return Handler(std::move(Result)); } // Abandon this response by calling the handler with an 'abandoned response' // error. void abandon() override { if (auto Err = Handler(this->createAbandonedResponseError())) { // Handlers should not fail when passed an abandoned response error. report_fatal_error(std::move(Err)); } } private: HandlerT Handler; }; template <typename ChannelT, typename HandlerT> class ResponseHandlerImpl<ChannelT, Error, HandlerT> : public ResponseHandler<ChannelT> { public: ResponseHandlerImpl(HandlerT Handler) : Handler(std::move(Handler)) {} // Handle the result by deserializing it from the channel then passing it // to the user defined handler. Error handleResponse(ChannelT &C) override { Error Result = Error::success(); if (auto Err = SerializationTraits<ChannelT, Error, Error>::deserialize(C, Result)) return Err; if (auto Err = C.endReceiveMessage()) return Err; return Handler(std::move(Result)); } // Abandon this response by calling the handler with an 'abandoned response' // error. void abandon() override { if (auto Err = Handler(this->createAbandonedResponseError())) { // Handlers should not fail when passed an abandoned response error. report_fatal_error(std::move(Err)); } } private: HandlerT Handler; }; // Create a ResponseHandler from a given user handler. template <typename ChannelT, typename FuncRetT, typename HandlerT> std::unique_ptr<ResponseHandler<ChannelT>> createResponseHandler(HandlerT H) { return llvm::make_unique<ResponseHandlerImpl<ChannelT, FuncRetT, HandlerT>>( std::move(H)); } // Helper for wrapping member functions up as functors. This is useful for // installing methods as result handlers. template <typename ClassT, typename RetT, typename... ArgTs> class MemberFnWrapper { public: using MethodT = RetT (ClassT::*)(ArgTs...); MemberFnWrapper(ClassT &Instance, MethodT Method) : Instance(Instance), Method(Method) {} RetT operator()(ArgTs &&... Args) { return (Instance.*Method)(std::move(Args)...); } private: ClassT &Instance; MethodT Method; }; // Helper that provides a Functor for deserializing arguments. template <typename... ArgTs> class ReadArgs { public: Error operator()() { return Error::success(); } }; template <typename ArgT, typename... ArgTs> class ReadArgs<ArgT, ArgTs...> : public ReadArgs<ArgTs...> { public: ReadArgs(ArgT &Arg, ArgTs &... Args) : ReadArgs<ArgTs...>(Args...), Arg(Arg) {} Error operator()(ArgT &ArgVal, ArgTs &... ArgVals) { this->Arg = std::move(ArgVal); return ReadArgs<ArgTs...>::operator()(ArgVals...); } private: ArgT &Arg; }; // Manage sequence numbers. template <typename SequenceNumberT> class SequenceNumberManager { public: // Reset, making all sequence numbers available. void reset() { std::lock_guard<std::mutex> Lock(SeqNoLock); NextSequenceNumber = 0; FreeSequenceNumbers.clear(); } // Get the next available sequence number. Will re-use numbers that have // been released. SequenceNumberT getSequenceNumber() { std::lock_guard<std::mutex> Lock(SeqNoLock); if (FreeSequenceNumbers.empty()) return NextSequenceNumber++; auto SequenceNumber = FreeSequenceNumbers.back(); FreeSequenceNumbers.pop_back(); return SequenceNumber; } // Release a sequence number, making it available for re-use. void releaseSequenceNumber(SequenceNumberT SequenceNumber) { std::lock_guard<std::mutex> Lock(SeqNoLock); FreeSequenceNumbers.push_back(SequenceNumber); } private: std::mutex SeqNoLock; SequenceNumberT NextSequenceNumber = 0; std::vector<SequenceNumberT> FreeSequenceNumbers; }; // Checks that predicate P holds for each corresponding pair of type arguments // from T1 and T2 tuple. template <template <class, class> class P, typename T1Tuple, typename T2Tuple> class RPCArgTypeCheckHelper; template <template <class, class> class P> class RPCArgTypeCheckHelper<P, std::tuple<>, std::tuple<>> { public: static const bool value = true; }; template <template <class, class> class P, typename T, typename... Ts, typename U, typename... Us> class RPCArgTypeCheckHelper<P, std::tuple<T, Ts...>, std::tuple<U, Us...>> { public: static const bool value = P<T, U>::value && RPCArgTypeCheckHelper<P, std::tuple<Ts...>, std::tuple<Us...>>::value; }; template <template <class, class> class P, typename T1Sig, typename T2Sig> class RPCArgTypeCheck { public: using T1Tuple = typename FunctionArgsTuple<T1Sig>::Type; using T2Tuple = typename FunctionArgsTuple<T2Sig>::Type; static_assert(std::tuple_size<T1Tuple>::value >= std::tuple_size<T2Tuple>::value, "Too many arguments to RPC call"); static_assert(std::tuple_size<T1Tuple>::value <= std::tuple_size<T2Tuple>::value, "Too few arguments to RPC call"); static const bool value = RPCArgTypeCheckHelper<P, T1Tuple, T2Tuple>::value; }; template <typename ChannelT, typename WireT, typename ConcreteT> class CanSerialize { private: using S = SerializationTraits<ChannelT, WireT, ConcreteT>; template <typename T> static std::true_type check(typename std::enable_if< std::is_same<decltype(T::serialize(std::declval<ChannelT &>(), std::declval<const ConcreteT &>())), Error>::value, void *>::type); template <typename> static std::false_type check(...); public: static const bool value = decltype(check<S>(0))::value; }; template <typename ChannelT, typename WireT, typename ConcreteT> class CanDeserialize { private: using S = SerializationTraits<ChannelT, WireT, ConcreteT>; template <typename T> static std::true_type check(typename std::enable_if< std::is_same<decltype(T::deserialize(std::declval<ChannelT &>(), std::declval<ConcreteT &>())), Error>::value, void *>::type); template <typename> static std::false_type check(...); public: static const bool value = decltype(check<S>(0))::value; }; /// Contains primitive utilities for defining, calling and handling calls to /// remote procedures. ChannelT is a bidirectional stream conforming to the /// RPCChannel interface (see RPCChannel.h), FunctionIdT is a procedure /// identifier type that must be serializable on ChannelT, and SequenceNumberT /// is an integral type that will be used to number in-flight function calls. /// /// These utilities support the construction of very primitive RPC utilities. /// Their intent is to ensure correct serialization and deserialization of /// procedure arguments, and to keep the client and server's view of the API in /// sync. template <typename ImplT, typename ChannelT, typename FunctionIdT, typename SequenceNumberT> class RPCEndpointBase { protected: class OrcRPCInvalid : public Function<OrcRPCInvalid, void()> { public: static const char *getName() { return "__orc_rpc$invalid"; } }; class OrcRPCResponse : public Function<OrcRPCResponse, void()> { public: static const char *getName() { return "__orc_rpc$response"; } }; class OrcRPCNegotiate : public Function<OrcRPCNegotiate, FunctionIdT(std::string)> { public: static const char *getName() { return "__orc_rpc$negotiate"; } }; // Helper predicate for testing for the presence of SerializeTraits // serializers. template <typename WireT, typename ConcreteT> class CanSerializeCheck : detail::CanSerialize<ChannelT, WireT, ConcreteT> { public: using detail::CanSerialize<ChannelT, WireT, ConcreteT>::value; static_assert(value, "Missing serializer for argument (Can't serialize the " "first template type argument of CanSerializeCheck " "from the second)"); }; // Helper predicate for testing for the presence of SerializeTraits // deserializers. template <typename WireT, typename ConcreteT> class CanDeserializeCheck : detail::CanDeserialize<ChannelT, WireT, ConcreteT> { public: using detail::CanDeserialize<ChannelT, WireT, ConcreteT>::value; static_assert(value, "Missing deserializer for argument (Can't deserialize " "the second template type argument of " "CanDeserializeCheck from the first)"); }; public: /// Construct an RPC instance on a channel. RPCEndpointBase(ChannelT &C, bool LazyAutoNegotiation) : C(C), LazyAutoNegotiation(LazyAutoNegotiation) { // Hold ResponseId in a special variable, since we expect Response to be // called relatively frequently, and want to avoid the map lookup. ResponseId = FnIdAllocator.getResponseId(); RemoteFunctionIds[OrcRPCResponse::getPrototype()] = ResponseId; // Register the negotiate function id and handler. auto NegotiateId = FnIdAllocator.getNegotiateId(); RemoteFunctionIds[OrcRPCNegotiate::getPrototype()] = NegotiateId; Handlers[NegotiateId] = wrapHandler<OrcRPCNegotiate>( [this](const std::string &Name) { return handleNegotiate(Name); }); } /// Negotiate a function id for Func with the other end of the channel. template <typename Func> Error negotiateFunction(bool Retry = false) { return getRemoteFunctionId<Func>(true, Retry).takeError(); } /// Append a call Func, does not call send on the channel. /// The first argument specifies a user-defined handler to be run when the /// function returns. The handler should take an Expected<Func::ReturnType>, /// or an Error (if Func::ReturnType is void). The handler will be called /// with an error if the return value is abandoned due to a channel error. template <typename Func, typename HandlerT, typename... ArgTs> Error appendCallAsync(HandlerT Handler, const ArgTs &... Args) { static_assert( detail::RPCArgTypeCheck<CanSerializeCheck, typename Func::Type, void(ArgTs...)>::value, ""); // Look up the function ID. FunctionIdT FnId; if (auto FnIdOrErr = getRemoteFunctionId<Func>(LazyAutoNegotiation, false)) FnId = *FnIdOrErr; else { // Negotiation failed. Notify the handler then return the negotiate-failed // error. cantFail(Handler(make_error<ResponseAbandoned>())); return FnIdOrErr.takeError(); } SequenceNumberT SeqNo; // initialized in locked scope below. { // Lock the pending responses map and sequence number manager. std::lock_guard<std::mutex> Lock(ResponsesMutex); // Allocate a sequence number. SeqNo = SequenceNumberMgr.getSequenceNumber(); assert(!PendingResponses.count(SeqNo) && "Sequence number already allocated"); // Install the user handler. PendingResponses[SeqNo] = detail::createResponseHandler<ChannelT, typename Func::ReturnType>( std::move(Handler)); } // Open the function call message. if (auto Err = C.startSendMessage(FnId, SeqNo)) { abandonPendingResponses(); return Err; } // Serialize the call arguments. if (auto Err = detail::HandlerTraits<typename Func::Type>::serializeArgs( C, Args...)) { abandonPendingResponses(); return Err; } // Close the function call messagee. if (auto Err = C.endSendMessage()) { abandonPendingResponses(); return Err; } return Error::success(); } Error sendAppendedCalls() { return C.send(); }; template <typename Func, typename HandlerT, typename... ArgTs> Error callAsync(HandlerT Handler, const ArgTs &... Args) { if (auto Err = appendCallAsync<Func>(std::move(Handler), Args...)) return Err; return C.send(); } /// Handle one incoming call. Error handleOne() { FunctionIdT FnId; SequenceNumberT SeqNo; if (auto Err = C.startReceiveMessage(FnId, SeqNo)) { abandonPendingResponses(); return Err; } if (FnId == ResponseId) return handleResponse(SeqNo); auto I = Handlers.find(FnId); if (I != Handlers.end()) return I->second(C, SeqNo); // else: No handler found. Report error to client? return make_error<BadFunctionCall<FunctionIdT, SequenceNumberT>>(FnId, SeqNo); } /// Helper for handling setter procedures - this method returns a functor that /// sets the variables referred to by Args... to values deserialized from the /// channel. /// E.g. /// /// typedef Function<0, bool, int> Func1; /// /// ... /// bool B; /// int I; /// if (auto Err = expect<Func1>(Channel, readArgs(B, I))) /// /* Handle Args */ ; /// template <typename... ArgTs> static detail::ReadArgs<ArgTs...> readArgs(ArgTs &... Args) { return detail::ReadArgs<ArgTs...>(Args...); } /// Abandon all outstanding result handlers. /// /// This will call all currently registered result handlers to receive an /// "abandoned" error as their argument. This is used internally by the RPC /// in error situations, but can also be called directly by clients who are /// disconnecting from the remote and don't or can't expect responses to their /// outstanding calls. (Especially for outstanding blocking calls, calling /// this function may be necessary to avoid dead threads). void abandonPendingResponses() { // Lock the pending responses map and sequence number manager. std::lock_guard<std::mutex> Lock(ResponsesMutex); for (auto &KV : PendingResponses) KV.second->abandon(); PendingResponses.clear(); SequenceNumberMgr.reset(); } /// Remove the handler for the given function. /// A handler must currently be registered for this function. template <typename Func> void removeHandler() { auto IdItr = LocalFunctionIds.find(Func::getPrototype()); assert(IdItr != LocalFunctionIds.end() && "Function does not have a registered handler"); auto HandlerItr = Handlers.find(IdItr->second); assert(HandlerItr != Handlers.end() && "Function does not have a registered handler"); Handlers.erase(HandlerItr); } /// Clear all handlers. void clearHandlers() { Handlers.clear(); } protected: FunctionIdT getInvalidFunctionId() const { return FnIdAllocator.getInvalidId(); } /// Add the given handler to the handler map and make it available for /// autonegotiation and execution. template <typename Func, typename HandlerT> void addHandlerImpl(HandlerT Handler) { static_assert(detail::RPCArgTypeCheck< CanDeserializeCheck, typename Func::Type, typename detail::HandlerTraits<HandlerT>::Type>::value, ""); FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>(); LocalFunctionIds[Func::getPrototype()] = NewFnId; Handlers[NewFnId] = wrapHandler<Func>(std::move(Handler)); } template <typename Func, typename HandlerT> void addAsyncHandlerImpl(HandlerT Handler) { static_assert(detail::RPCArgTypeCheck< CanDeserializeCheck, typename Func::Type, typename detail::AsyncHandlerTraits< typename detail::HandlerTraits<HandlerT>::Type >::Type>::value, ""); FunctionIdT NewFnId = FnIdAllocator.template allocate<Func>(); LocalFunctionIds[Func::getPrototype()] = NewFnId; Handlers[NewFnId] = wrapAsyncHandler<Func>(std::move(Handler)); } Error handleResponse(SequenceNumberT SeqNo) { using Handler = typename decltype(PendingResponses)::mapped_type; Handler PRHandler; { // Lock the pending responses map and sequence number manager. std::unique_lock<std::mutex> Lock(ResponsesMutex); auto I = PendingResponses.find(SeqNo); if (I != PendingResponses.end()) { PRHandler = std::move(I->second); PendingResponses.erase(I); SequenceNumberMgr.releaseSequenceNumber(SeqNo); } else { // Unlock the pending results map to prevent recursive lock. Lock.unlock(); abandonPendingResponses(); return make_error< InvalidSequenceNumberForResponse<SequenceNumberT>>(SeqNo); } } assert(PRHandler && "If we didn't find a response handler we should have bailed out"); if (auto Err = PRHandler->handleResponse(C)) { abandonPendingResponses(); return Err; } return Error::success(); } FunctionIdT handleNegotiate(const std::string &Name) { auto I = LocalFunctionIds.find(Name); if (I == LocalFunctionIds.end()) return getInvalidFunctionId(); return I->second; } // Find the remote FunctionId for the given function. template <typename Func> Expected<FunctionIdT> getRemoteFunctionId(bool NegotiateIfNotInMap, bool NegotiateIfInvalid) { bool DoNegotiate; // Check if we already have a function id... auto I = RemoteFunctionIds.find(Func::getPrototype()); if (I != RemoteFunctionIds.end()) { // If it's valid there's nothing left to do. if (I->second != getInvalidFunctionId()) return I->second; DoNegotiate = NegotiateIfInvalid; } else DoNegotiate = NegotiateIfNotInMap; // We don't have a function id for Func yet, but we're allowed to try to // negotiate one. if (DoNegotiate) { auto &Impl = static_cast<ImplT &>(*this); if (auto RemoteIdOrErr = Impl.template callB<OrcRPCNegotiate>(Func::getPrototype())) { RemoteFunctionIds[Func::getPrototype()] = *RemoteIdOrErr; if (*RemoteIdOrErr == getInvalidFunctionId()) return make_error<CouldNotNegotiate>(Func::getPrototype()); return *RemoteIdOrErr; } else return RemoteIdOrErr.takeError(); } // No key was available in the map and we weren't allowed to try to // negotiate one, so return an unknown function error. return make_error<CouldNotNegotiate>(Func::getPrototype()); } using WrappedHandlerFn = std::function<Error(ChannelT &, SequenceNumberT)>; // Wrap the given user handler in the necessary argument-deserialization code, // result-serialization code, and call to the launch policy (if present). template <typename Func, typename HandlerT> WrappedHandlerFn wrapHandler(HandlerT Handler) { return [this, Handler](ChannelT &Channel, SequenceNumberT SeqNo) mutable -> Error { // Start by deserializing the arguments. using ArgsTuple = typename detail::FunctionArgsTuple< typename detail::HandlerTraits<HandlerT>::Type>::Type; auto Args = std::make_shared<ArgsTuple>(); if (auto Err = detail::HandlerTraits<typename Func::Type>::deserializeArgs( Channel, *Args)) return Err; // GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning // for RPCArgs. Void cast RPCArgs to work around this for now. // FIXME: Remove this workaround once we can assume a working GCC version. (void)Args; // End receieve message, unlocking the channel for reading. if (auto Err = Channel.endReceiveMessage()) return Err; using HTraits = detail::HandlerTraits<HandlerT>; using FuncReturn = typename Func::ReturnType; return detail::respond<FuncReturn>(Channel, ResponseId, SeqNo, HTraits::unpackAndRun(Handler, *Args)); }; } // Wrap the given user handler in the necessary argument-deserialization code, // result-serialization code, and call to the launch policy (if present). template <typename Func, typename HandlerT> WrappedHandlerFn wrapAsyncHandler(HandlerT Handler) { return [this, Handler](ChannelT &Channel, SequenceNumberT SeqNo) mutable -> Error { // Start by deserializing the arguments. using AHTraits = detail::AsyncHandlerTraits< typename detail::HandlerTraits<HandlerT>::Type>; using ArgsTuple = typename detail::FunctionArgsTuple<typename AHTraits::Type>::Type; auto Args = std::make_shared<ArgsTuple>(); if (auto Err = detail::HandlerTraits<typename Func::Type>::deserializeArgs( Channel, *Args)) return Err; // GCC 4.7 and 4.8 incorrectly issue a -Wunused-but-set-variable warning // for RPCArgs. Void cast RPCArgs to work around this for now. // FIXME: Remove this workaround once we can assume a working GCC version. (void)Args; // End receieve message, unlocking the channel for reading. if (auto Err = Channel.endReceiveMessage()) return Err; using HTraits = detail::HandlerTraits<HandlerT>; using FuncReturn = typename Func::ReturnType; auto Responder = [this, SeqNo](typename AHTraits::ResultType RetVal) -> Error { return detail::respond<FuncReturn>(C, ResponseId, SeqNo, std::move(RetVal)); }; return HTraits::unpackAndRunAsync(Handler, Responder, *Args); }; } ChannelT &C; bool LazyAutoNegotiation; RPCFunctionIdAllocator<FunctionIdT> FnIdAllocator; FunctionIdT ResponseId; std::map<std::string, FunctionIdT> LocalFunctionIds; std::map<const char *, FunctionIdT> RemoteFunctionIds; std::map<FunctionIdT, WrappedHandlerFn> Handlers; std::mutex ResponsesMutex; detail::SequenceNumberManager<SequenceNumberT> SequenceNumberMgr; std::map<SequenceNumberT, std::unique_ptr<detail::ResponseHandler<ChannelT>>> PendingResponses; }; } // end namespace detail template <typename ChannelT, typename FunctionIdT = uint32_t, typename SequenceNumberT = uint32_t> class MultiThreadedRPCEndpoint : public detail::RPCEndpointBase< MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>, ChannelT, FunctionIdT, SequenceNumberT> { private: using BaseClass = detail::RPCEndpointBase< MultiThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>, ChannelT, FunctionIdT, SequenceNumberT>; public: MultiThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation) : BaseClass(C, LazyAutoNegotiation) {} /// Add a handler for the given RPC function. /// This installs the given handler functor for the given RPC Function, and /// makes the RPC function available for negotiation/calling from the remote. template <typename Func, typename HandlerT> void addHandler(HandlerT Handler) { return this->template addHandlerImpl<Func>(std::move(Handler)); } /// Add a class-method as a handler. template <typename Func, typename ClassT, typename RetT, typename... ArgTs> void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) { addHandler<Func>( detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method)); } template <typename Func, typename HandlerT> void addAsyncHandler(HandlerT Handler) { return this->template addAsyncHandlerImpl<Func>(std::move(Handler)); } /// Add a class-method as a handler. template <typename Func, typename ClassT, typename RetT, typename... ArgTs> void addAsyncHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) { addAsyncHandler<Func>( detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method)); } /// Return type for non-blocking call primitives. template <typename Func> using NonBlockingCallResult = typename detail::ResultTraits< typename Func::ReturnType>::ReturnFutureType; /// Call Func on Channel C. Does not block, does not call send. Returns a pair /// of a future result and the sequence number assigned to the result. /// /// This utility function is primarily used for single-threaded mode support, /// where the sequence number can be used to wait for the corresponding /// result. In multi-threaded mode the appendCallNB method, which does not /// return the sequence numeber, should be preferred. template <typename Func, typename... ArgTs> Expected<NonBlockingCallResult<Func>> appendCallNB(const ArgTs &... Args) { using RTraits = detail::ResultTraits<typename Func::ReturnType>; using ErrorReturn = typename RTraits::ErrorReturnType; using ErrorReturnPromise = typename RTraits::ReturnPromiseType; // FIXME: Stack allocate and move this into the handler once LLVM builds // with C++14. auto Promise = std::make_shared<ErrorReturnPromise>(); auto FutureResult = Promise->get_future(); if (auto Err = this->template appendCallAsync<Func>( [Promise](ErrorReturn RetOrErr) { Promise->set_value(std::move(RetOrErr)); return Error::success(); }, Args...)) { RTraits::consumeAbandoned(FutureResult.get()); return std::move(Err); } return std::move(FutureResult); } /// The same as appendCallNBWithSeq, except that it calls C.send() to /// flush the channel after serializing the call. template <typename Func, typename... ArgTs> Expected<NonBlockingCallResult<Func>> callNB(const ArgTs &... Args) { auto Result = appendCallNB<Func>(Args...); if (!Result) return Result; if (auto Err = this->C.send()) { this->abandonPendingResponses(); detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned( std::move(Result->get())); return std::move(Err); } return Result; } /// Call Func on Channel C. Blocks waiting for a result. Returns an Error /// for void functions or an Expected<T> for functions returning a T. /// /// This function is for use in threaded code where another thread is /// handling responses and incoming calls. template <typename Func, typename... ArgTs, typename AltRetT = typename Func::ReturnType> typename detail::ResultTraits<AltRetT>::ErrorReturnType callB(const ArgTs &... Args) { if (auto FutureResOrErr = callNB<Func>(Args...)) return FutureResOrErr->get(); else return FutureResOrErr.takeError(); } /// Handle incoming RPC calls. Error handlerLoop() { while (true) if (auto Err = this->handleOne()) return Err; return Error::success(); } }; template <typename ChannelT, typename FunctionIdT = uint32_t, typename SequenceNumberT = uint32_t> class SingleThreadedRPCEndpoint : public detail::RPCEndpointBase< SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>, ChannelT, FunctionIdT, SequenceNumberT> { private: using BaseClass = detail::RPCEndpointBase< SingleThreadedRPCEndpoint<ChannelT, FunctionIdT, SequenceNumberT>, ChannelT, FunctionIdT, SequenceNumberT>; public: SingleThreadedRPCEndpoint(ChannelT &C, bool LazyAutoNegotiation) : BaseClass(C, LazyAutoNegotiation) {} template <typename Func, typename HandlerT> void addHandler(HandlerT Handler) { return this->template addHandlerImpl<Func>(std::move(Handler)); } template <typename Func, typename ClassT, typename RetT, typename... ArgTs> void addHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) { addHandler<Func>( detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method)); } template <typename Func, typename HandlerT> void addAsyncHandler(HandlerT Handler) { return this->template addAsyncHandlerImpl<Func>(std::move(Handler)); } /// Add a class-method as a handler. template <typename Func, typename ClassT, typename RetT, typename... ArgTs> void addAsyncHandler(ClassT &Object, RetT (ClassT::*Method)(ArgTs...)) { addAsyncHandler<Func>( detail::MemberFnWrapper<ClassT, RetT, ArgTs...>(Object, Method)); } template <typename Func, typename... ArgTs, typename AltRetT = typename Func::ReturnType> typename detail::ResultTraits<AltRetT>::ErrorReturnType callB(const ArgTs &... Args) { bool ReceivedResponse = false; using ResultType = typename detail::ResultTraits<AltRetT>::ErrorReturnType; auto Result = detail::ResultTraits<AltRetT>::createBlankErrorReturnValue(); // We have to 'Check' result (which we know is in a success state at this // point) so that it can be overwritten in the async handler. (void)!!Result; if (auto Err = this->template appendCallAsync<Func>( [&](ResultType R) { Result = std::move(R); ReceivedResponse = true; return Error::success(); }, Args...)) { detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned( std::move(Result)); return std::move(Err); } while (!ReceivedResponse) { if (auto Err = this->handleOne()) { detail::ResultTraits<typename Func::ReturnType>::consumeAbandoned( std::move(Result)); return std::move(Err); } } return Result; } }; /// Asynchronous dispatch for a function on an RPC endpoint. template <typename RPCClass, typename Func> class RPCAsyncDispatch { public: RPCAsyncDispatch(RPCClass &Endpoint) : Endpoint(Endpoint) {} template <typename HandlerT, typename... ArgTs> Error operator()(HandlerT Handler, const ArgTs &... Args) const { return Endpoint.template appendCallAsync<Func>(std::move(Handler), Args...); } private: RPCClass &Endpoint; }; /// Construct an asynchronous dispatcher from an RPC endpoint and a Func. template <typename Func, typename RPCEndpointT> RPCAsyncDispatch<RPCEndpointT, Func> rpcAsyncDispatch(RPCEndpointT &Endpoint) { return RPCAsyncDispatch<RPCEndpointT, Func>(Endpoint); } /// Allows a set of asynchrounous calls to be dispatched, and then /// waited on as a group. class ParallelCallGroup { public: ParallelCallGroup() = default; ParallelCallGroup(const ParallelCallGroup &) = delete; ParallelCallGroup &operator=(const ParallelCallGroup &) = delete; /// Make as asynchronous call. template <typename AsyncDispatcher, typename HandlerT, typename... ArgTs> Error call(const AsyncDispatcher &AsyncDispatch, HandlerT Handler, const ArgTs &... Args) { // Increment the count of outstanding calls. This has to happen before // we invoke the call, as the handler may (depending on scheduling) // be run immediately on another thread, and we don't want the decrement // in the wrapped handler below to run before the increment. { std::unique_lock<std::mutex> Lock(M); ++NumOutstandingCalls; } // Wrap the user handler in a lambda that will decrement the // outstanding calls count, then poke the condition variable. using ArgType = typename detail::ResponseHandlerArg< typename detail::HandlerTraits<HandlerT>::Type>::ArgType; // FIXME: Move handler into wrapped handler once we have C++14. auto WrappedHandler = [this, Handler](ArgType Arg) { auto Err = Handler(std::move(Arg)); std::unique_lock<std::mutex> Lock(M); --NumOutstandingCalls; CV.notify_all(); return Err; }; return AsyncDispatch(std::move(WrappedHandler), Args...); } /// Blocks until all calls have been completed and their return value /// handlers run. void wait() { std::unique_lock<std::mutex> Lock(M); while (NumOutstandingCalls > 0) CV.wait(Lock); } private: std::mutex M; std::condition_variable CV; uint32_t NumOutstandingCalls = 0; }; /// Convenience class for grouping RPC Functions into APIs that can be /// negotiated as a block. /// template <typename... Funcs> class APICalls { public: /// Test whether this API contains Function F. template <typename F> class Contains { public: static const bool value = false; }; /// Negotiate all functions in this API. template <typename RPCEndpoint> static Error negotiate(RPCEndpoint &R) { return Error::success(); } }; template <typename Func, typename... Funcs> class APICalls<Func, Funcs...> { public: template <typename F> class Contains { public: static const bool value = std::is_same<F, Func>::value | APICalls<Funcs...>::template Contains<F>::value; }; template <typename RPCEndpoint> static Error negotiate(RPCEndpoint &R) { if (auto Err = R.template negotiateFunction<Func>()) return Err; return APICalls<Funcs...>::negotiate(R); } }; template <typename... InnerFuncs, typename... Funcs> class APICalls<APICalls<InnerFuncs...>, Funcs...> { public: template <typename F> class Contains { public: static const bool value = APICalls<InnerFuncs...>::template Contains<F>::value | APICalls<Funcs...>::template Contains<F>::value; }; template <typename RPCEndpoint> static Error negotiate(RPCEndpoint &R) { if (auto Err = APICalls<InnerFuncs...>::negotiate(R)) return Err; return APICalls<Funcs...>::negotiate(R); } }; } // end namespace rpc } // end namespace orc } // end namespace llvm #endif