//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the IRBuilder class, which is used as a convenient way // to create LLVM instructions with a consistent and simplified interface. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_IRBUILDER_H #define LLVM_IR_IRBUILDER_H #include "llvm-c/Types.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantFolder.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include <cassert> #include <cstddef> #include <cstdint> #include <functional> #include <utility> namespace llvm { class APInt; class MDNode; class Use; /// This provides the default implementation of the IRBuilder /// 'InsertHelper' method that is called whenever an instruction is created by /// IRBuilder and needs to be inserted. /// /// By default, this inserts the instruction at the insertion point. class IRBuilderDefaultInserter { protected: void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const { if (BB) BB->getInstList().insert(InsertPt, I); I->setName(Name); } }; /// Provides an 'InsertHelper' that calls a user-provided callback after /// performing the default insertion. class IRBuilderCallbackInserter : IRBuilderDefaultInserter { std::function<void(Instruction *)> Callback; public: IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback) : Callback(std::move(Callback)) {} protected: void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB, BasicBlock::iterator InsertPt) const { IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); Callback(I); } }; /// Common base class shared among various IRBuilders. class IRBuilderBase { DebugLoc CurDbgLocation; protected: BasicBlock *BB; BasicBlock::iterator InsertPt; LLVMContext &Context; MDNode *DefaultFPMathTag; FastMathFlags FMF; ArrayRef<OperandBundleDef> DefaultOperandBundles; public: IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : Context(context), DefaultFPMathTag(FPMathTag), DefaultOperandBundles(OpBundles) { ClearInsertionPoint(); } //===--------------------------------------------------------------------===// // Builder configuration methods //===--------------------------------------------------------------------===// /// Clear the insertion point: created instructions will not be /// inserted into a block. void ClearInsertionPoint() { BB = nullptr; InsertPt = BasicBlock::iterator(); } BasicBlock *GetInsertBlock() const { return BB; } BasicBlock::iterator GetInsertPoint() const { return InsertPt; } LLVMContext &getContext() const { return Context; } /// This specifies that created instructions should be appended to the /// end of the specified block. void SetInsertPoint(BasicBlock *TheBB) { BB = TheBB; InsertPt = BB->end(); } /// This specifies that created instructions should be inserted before /// the specified instruction. void SetInsertPoint(Instruction *I) { BB = I->getParent(); InsertPt = I->getIterator(); assert(InsertPt != BB->end() && "Can't read debug loc from end()"); SetCurrentDebugLocation(I->getDebugLoc()); } /// This specifies that created instructions should be inserted at the /// specified point. void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) { BB = TheBB; InsertPt = IP; if (IP != TheBB->end()) SetCurrentDebugLocation(IP->getDebugLoc()); } /// Set location information used by debugging information. void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); } /// Get location information used by debugging information. const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; } /// If this builder has a current debug location, set it on the /// specified instruction. void SetInstDebugLocation(Instruction *I) const { if (CurDbgLocation) I->setDebugLoc(CurDbgLocation); } /// Get the return type of the current function that we're emitting /// into. Type *getCurrentFunctionReturnType() const; /// InsertPoint - A saved insertion point. class InsertPoint { BasicBlock *Block = nullptr; BasicBlock::iterator Point; public: /// Creates a new insertion point which doesn't point to anything. InsertPoint() = default; /// Creates a new insertion point at the given location. InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint) : Block(InsertBlock), Point(InsertPoint) {} /// Returns true if this insert point is set. bool isSet() const { return (Block != nullptr); } BasicBlock *getBlock() const { return Block; } BasicBlock::iterator getPoint() const { return Point; } }; /// Returns the current insert point. InsertPoint saveIP() const { return InsertPoint(GetInsertBlock(), GetInsertPoint()); } /// Returns the current insert point, clearing it in the process. InsertPoint saveAndClearIP() { InsertPoint IP(GetInsertBlock(), GetInsertPoint()); ClearInsertionPoint(); return IP; } /// Sets the current insert point to a previously-saved location. void restoreIP(InsertPoint IP) { if (IP.isSet()) SetInsertPoint(IP.getBlock(), IP.getPoint()); else ClearInsertionPoint(); } /// Get the floating point math metadata being used. MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; } /// Get the flags to be applied to created floating point ops FastMathFlags getFastMathFlags() const { return FMF; } /// Clear the fast-math flags. void clearFastMathFlags() { FMF.clear(); } /// Set the floating point math metadata to be used. void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; } /// Set the fast-math flags to be used with generated fp-math operators void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; } //===--------------------------------------------------------------------===// // RAII helpers. //===--------------------------------------------------------------------===// // RAII object that stores the current insertion point and restores it // when the object is destroyed. This includes the debug location. class InsertPointGuard { IRBuilderBase &Builder; AssertingVH<BasicBlock> Block; BasicBlock::iterator Point; DebugLoc DbgLoc; public: InsertPointGuard(IRBuilderBase &B) : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), DbgLoc(B.getCurrentDebugLocation()) {} InsertPointGuard(const InsertPointGuard &) = delete; InsertPointGuard &operator=(const InsertPointGuard &) = delete; ~InsertPointGuard() { Builder.restoreIP(InsertPoint(Block, Point)); Builder.SetCurrentDebugLocation(DbgLoc); } }; // RAII object that stores the current fast math settings and restores // them when the object is destroyed. class FastMathFlagGuard { IRBuilderBase &Builder; FastMathFlags FMF; MDNode *FPMathTag; public: FastMathFlagGuard(IRBuilderBase &B) : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {} FastMathFlagGuard(const FastMathFlagGuard &) = delete; FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete; ~FastMathFlagGuard() { Builder.FMF = FMF; Builder.DefaultFPMathTag = FPMathTag; } }; //===--------------------------------------------------------------------===// // Miscellaneous creation methods. //===--------------------------------------------------------------------===// /// Make a new global variable with initializer type i8* /// /// Make a new global variable with an initializer that has array of i8 type /// filled in with the null terminated string value specified. The new global /// variable will be marked mergable with any others of the same contents. If /// Name is specified, it is the name of the global variable created. GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "", unsigned AddressSpace = 0); /// Get a constant value representing either true or false. ConstantInt *getInt1(bool V) { return ConstantInt::get(getInt1Ty(), V); } /// Get the constant value for i1 true. ConstantInt *getTrue() { return ConstantInt::getTrue(Context); } /// Get the constant value for i1 false. ConstantInt *getFalse() { return ConstantInt::getFalse(Context); } /// Get a constant 8-bit value. ConstantInt *getInt8(uint8_t C) { return ConstantInt::get(getInt8Ty(), C); } /// Get a constant 16-bit value. ConstantInt *getInt16(uint16_t C) { return ConstantInt::get(getInt16Ty(), C); } /// Get a constant 32-bit value. ConstantInt *getInt32(uint32_t C) { return ConstantInt::get(getInt32Ty(), C); } /// Get a constant 64-bit value. ConstantInt *getInt64(uint64_t C) { return ConstantInt::get(getInt64Ty(), C); } /// Get a constant N-bit value, zero extended or truncated from /// a 64-bit value. ConstantInt *getIntN(unsigned N, uint64_t C) { return ConstantInt::get(getIntNTy(N), C); } /// Get a constant integer value. ConstantInt *getInt(const APInt &AI) { return ConstantInt::get(Context, AI); } //===--------------------------------------------------------------------===// // Type creation methods //===--------------------------------------------------------------------===// /// Fetch the type representing a single bit IntegerType *getInt1Ty() { return Type::getInt1Ty(Context); } /// Fetch the type representing an 8-bit integer. IntegerType *getInt8Ty() { return Type::getInt8Ty(Context); } /// Fetch the type representing a 16-bit integer. IntegerType *getInt16Ty() { return Type::getInt16Ty(Context); } /// Fetch the type representing a 32-bit integer. IntegerType *getInt32Ty() { return Type::getInt32Ty(Context); } /// Fetch the type representing a 64-bit integer. IntegerType *getInt64Ty() { return Type::getInt64Ty(Context); } /// Fetch the type representing a 128-bit integer. IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); } /// Fetch the type representing an N-bit integer. IntegerType *getIntNTy(unsigned N) { return Type::getIntNTy(Context, N); } /// Fetch the type representing a 16-bit floating point value. Type *getHalfTy() { return Type::getHalfTy(Context); } /// Fetch the type representing a 32-bit floating point value. Type *getFloatTy() { return Type::getFloatTy(Context); } /// Fetch the type representing a 64-bit floating point value. Type *getDoubleTy() { return Type::getDoubleTy(Context); } /// Fetch the type representing void. Type *getVoidTy() { return Type::getVoidTy(Context); } /// Fetch the type representing a pointer to an 8-bit integer value. PointerType *getInt8PtrTy(unsigned AddrSpace = 0) { return Type::getInt8PtrTy(Context, AddrSpace); } /// Fetch the type representing a pointer to an integer value. IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) { return DL.getIntPtrType(Context, AddrSpace); } //===--------------------------------------------------------------------===// // Intrinsic creation methods //===--------------------------------------------------------------------===// /// Create and insert a memset to the specified pointer and the /// specified value. /// /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile, TBAATag, ScopeTag, NoAliasTag); } CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert an element unordered-atomic memset of the region of /// memory starting at the given pointer to the given value. /// /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size), Align, ElementSize, TBAATag, ScopeTag, NoAliasTag); } CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert a memcpy between the specified pointers. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile, TBAATag, TBAAStructTag, ScopeTag, NoAliasTag); } CallInst *CreateMemCpy(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert an element unordered-atomic memcpy between the /// specified pointers. /// /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateElementUnorderedAtomicMemCpy( Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag, TBAAStructTag, ScopeTag, NoAliasTag); } CallInst *CreateElementUnorderedAtomicMemCpy( Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create and insert a memmove between the specified /// pointers. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size), isVolatile, TBAATag, ScopeTag, NoAliasTag); } CallInst *CreateMemMove(Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size, bool isVolatile = false, MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// \brief Create and insert an element unordered-atomic memmove between the /// specified pointers. /// /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, /// respectively. /// /// If the pointers aren't i8*, they will be converted. If a TBAA tag is /// specified, it will be added to the instruction. Likewise with alias.scope /// and noalias tags. CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, uint64_t Size, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr) { return CreateElementUnorderedAtomicMemMove( Dst, DstAlign, Src, SrcAlign, getInt64(Size), ElementSize, TBAATag, TBAAStructTag, ScopeTag, NoAliasTag); } CallInst *CreateElementUnorderedAtomicMemMove( Value *Dst, unsigned DstAlign, Value *Src, unsigned SrcAlign, Value *Size, uint32_t ElementSize, MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr); /// Create a vector fadd reduction intrinsic of the source vector. /// The first parameter is a scalar accumulator value for ordered reductions. CallInst *CreateFAddReduce(Value *Acc, Value *Src); /// Create a vector fmul reduction intrinsic of the source vector. /// The first parameter is a scalar accumulator value for ordered reductions. CallInst *CreateFMulReduce(Value *Acc, Value *Src); /// Create a vector int add reduction intrinsic of the source vector. CallInst *CreateAddReduce(Value *Src); /// Create a vector int mul reduction intrinsic of the source vector. CallInst *CreateMulReduce(Value *Src); /// Create a vector int AND reduction intrinsic of the source vector. CallInst *CreateAndReduce(Value *Src); /// Create a vector int OR reduction intrinsic of the source vector. CallInst *CreateOrReduce(Value *Src); /// Create a vector int XOR reduction intrinsic of the source vector. CallInst *CreateXorReduce(Value *Src); /// Create a vector integer max reduction intrinsic of the source /// vector. CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false); /// Create a vector integer min reduction intrinsic of the source /// vector. CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false); /// Create a vector float max reduction intrinsic of the source /// vector. CallInst *CreateFPMaxReduce(Value *Src, bool NoNaN = false); /// Create a vector float min reduction intrinsic of the source /// vector. CallInst *CreateFPMinReduce(Value *Src, bool NoNaN = false); /// Create a lifetime.start intrinsic. /// /// If the pointer isn't i8* it will be converted. CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr); /// Create a lifetime.end intrinsic. /// /// If the pointer isn't i8* it will be converted. CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr); /// Create a call to invariant.start intrinsic. /// /// If the pointer isn't i8* it will be converted. CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr); /// Create a call to Masked Load intrinsic CallInst *CreateMaskedLoad(Value *Ptr, unsigned Align, Value *Mask, Value *PassThru = nullptr, const Twine &Name = ""); /// Create a call to Masked Store intrinsic CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Align, Value *Mask); /// Create a call to Masked Gather intrinsic CallInst *CreateMaskedGather(Value *Ptrs, unsigned Align, Value *Mask = nullptr, Value *PassThru = nullptr, const Twine& Name = ""); /// Create a call to Masked Scatter intrinsic CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, unsigned Align, Value *Mask = nullptr); /// Create an assume intrinsic call that allows the optimizer to /// assume that the provided condition will be true. CallInst *CreateAssumption(Value *Cond); /// Create a call to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, ArrayRef<Value *> CallArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name = ""); /// Create a call to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, uint32_t Flags, ArrayRef<Use> CallArgs, ArrayRef<Use> TransitionArgs, ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name = ""); /// Conveninence function for the common case when CallArgs are filled /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be /// .get()'ed to get the Value pointer. CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes, Value *ActualCallee, ArrayRef<Use> CallArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name = ""); /// Create an invoke to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. InvokeInst * CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name = ""); /// Create an invoke to the experimental.gc.statepoint intrinsic to /// start a new statepoint sequence. InvokeInst *CreateGCStatepointInvoke( uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags, ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs, ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name = ""); // Conveninence function for the common case when CallArgs are filled in using // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to // get the Value *. InvokeInst * CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs, ArrayRef<Value *> DeoptArgs, ArrayRef<Value *> GCArgs, const Twine &Name = ""); /// Create a call to the experimental.gc.result intrinsic to extract /// the result from a call wrapped in a statepoint. CallInst *CreateGCResult(Instruction *Statepoint, Type *ResultType, const Twine &Name = ""); /// Create a call to the experimental.gc.relocate intrinsics to /// project the relocated value of one pointer from the statepoint. CallInst *CreateGCRelocate(Instruction *Statepoint, int BaseOffset, int DerivedOffset, Type *ResultType, const Twine &Name = ""); /// Create a call to intrinsic \p ID with 2 operands which is mangled on the /// first type. CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS, const Twine &Name = ""); /// Create a call to intrinsic \p ID with no operands. CallInst *CreateIntrinsic(Intrinsic::ID ID, Instruction *FMFSource = nullptr, const Twine &Name = ""); /// Create a call to intrinsic \p ID with 1 or more operands assuming the /// intrinsic and all operands have the same type. If \p FMFSource is /// provided, copy fast-math-flags from that instruction to the intrinsic. CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Value *> Args, Instruction *FMFSource = nullptr, const Twine &Name = ""); /// Create call to the minnum intrinsic. CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, Name); } /// Create call to the maxnum intrinsic. CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, Name); } private: /// Create a call to a masked intrinsic with given Id. CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops, ArrayRef<Type *> OverloadedTypes, const Twine &Name = ""); Value *getCastedInt8PtrValue(Value *Ptr); }; /// This provides a uniform API for creating instructions and inserting /// them into a basic block: either at the end of a BasicBlock, or at a specific /// iterator location in a block. /// /// Note that the builder does not expose the full generality of LLVM /// instructions. For access to extra instruction properties, use the mutators /// (e.g. setVolatile) on the instructions after they have been /// created. Convenience state exists to specify fast-math flags and fp-math /// tags. /// /// The first template argument specifies a class to use for creating constants. /// This defaults to creating minimally folded constants. The second template /// argument allows clients to specify custom insertion hooks that are called on /// every newly created insertion. template <typename T = ConstantFolder, typename Inserter = IRBuilderDefaultInserter> class IRBuilder : public IRBuilderBase, public Inserter { T Folder; public: IRBuilder(LLVMContext &C, const T &F, Inserter I = Inserter(), MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(C, FPMathTag, OpBundles), Inserter(std::move(I)), Folder(F) {} explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(C, FPMathTag, OpBundles) {} explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) { SetInsertPoint(TheBB); } explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) { SetInsertPoint(TheBB); } explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(IP->getContext(), FPMathTag, OpBundles) { SetInsertPoint(IP); } IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T &F, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles), Folder(F) { SetInsertPoint(TheBB, IP); } IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, MDNode *FPMathTag = nullptr, ArrayRef<OperandBundleDef> OpBundles = None) : IRBuilderBase(TheBB->getContext(), FPMathTag, OpBundles) { SetInsertPoint(TheBB, IP); } /// Get the constant folder being used. const T &getFolder() { return Folder; } /// Insert and return the specified instruction. template<typename InstTy> InstTy *Insert(InstTy *I, const Twine &Name = "") const { this->InsertHelper(I, Name, BB, InsertPt); this->SetInstDebugLocation(I); return I; } /// No-op overload to handle constants. Constant *Insert(Constant *C, const Twine& = "") const { return C; } //===--------------------------------------------------------------------===// // Instruction creation methods: Terminators //===--------------------------------------------------------------------===// private: /// Helper to add branch weight and unpredictable metadata onto an /// instruction. /// \returns The annotated instruction. template <typename InstTy> InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) { if (Weights) I->setMetadata(LLVMContext::MD_prof, Weights); if (Unpredictable) I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable); return I; } public: /// Create a 'ret void' instruction. ReturnInst *CreateRetVoid() { return Insert(ReturnInst::Create(Context)); } /// Create a 'ret <val>' instruction. ReturnInst *CreateRet(Value *V) { return Insert(ReturnInst::Create(Context, V)); } /// Create a sequence of N insertvalue instructions, /// with one Value from the retVals array each, that build a aggregate /// return value one value at a time, and a ret instruction to return /// the resulting aggregate value. /// /// This is a convenience function for code that uses aggregate return values /// as a vehicle for having multiple return values. ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) { Value *V = UndefValue::get(getCurrentFunctionReturnType()); for (unsigned i = 0; i != N; ++i) V = CreateInsertValue(V, retVals[i], i, "mrv"); return Insert(ReturnInst::Create(Context, V)); } /// Create an unconditional 'br label X' instruction. BranchInst *CreateBr(BasicBlock *Dest) { return Insert(BranchInst::Create(Dest)); } /// Create a conditional 'br Cond, TrueDest, FalseDest' /// instruction. BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, MDNode *BranchWeights = nullptr, MDNode *Unpredictable = nullptr) { return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond), BranchWeights, Unpredictable)); } /// Create a conditional 'br Cond, TrueDest, FalseDest' /// instruction. Copy branch meta data if available. BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False, Instruction *MDSrc) { BranchInst *Br = BranchInst::Create(True, False, Cond); if (MDSrc) { unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable, LLVMContext::MD_make_implicit, LLVMContext::MD_dbg}; Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4)); } return Insert(Br); } /// Create a switch instruction with the specified value, default dest, /// and with a hint for the number of cases that will be added (for efficient /// allocation). SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10, MDNode *BranchWeights = nullptr, MDNode *Unpredictable = nullptr) { return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases), BranchWeights, Unpredictable)); } /// Create an indirect branch instruction with the specified address /// operand, with an optional hint for the number of destinations that will be /// added (for efficient allocation). IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) { return Insert(IndirectBrInst::Create(Addr, NumDests)); } /// Create an invoke instruction. InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Value *> Args = None, const Twine &Name = "") { return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args), Name); } InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest, BasicBlock *UnwindDest, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> OpBundles, const Twine &Name = "") { return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args, OpBundles), Name); } ResumeInst *CreateResume(Value *Exn) { return Insert(ResumeInst::Create(Exn)); } CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad, BasicBlock *UnwindBB = nullptr) { return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB)); } CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB, unsigned NumHandlers, const Twine &Name = "") { return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers), Name); } CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args, const Twine &Name = "") { return Insert(CatchPadInst::Create(ParentPad, Args), Name); } CleanupPadInst *CreateCleanupPad(Value *ParentPad, ArrayRef<Value *> Args = None, const Twine &Name = "") { return Insert(CleanupPadInst::Create(ParentPad, Args), Name); } CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) { return Insert(CatchReturnInst::Create(CatchPad, BB)); } UnreachableInst *CreateUnreachable() { return Insert(new UnreachableInst(Context)); } //===--------------------------------------------------------------------===// // Instruction creation methods: Binary Operators //===--------------------------------------------------------------------===// private: BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name, bool HasNUW, bool HasNSW) { BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name); if (HasNUW) BO->setHasNoUnsignedWrap(); if (HasNSW) BO->setHasNoSignedWrap(); return BO; } Instruction *setFPAttrs(Instruction *I, MDNode *FPMD, FastMathFlags FMF) const { if (!FPMD) FPMD = DefaultFPMathTag; if (FPMD) I->setMetadata(LLVMContext::MD_fpmath, FPMD); I->setFastMathFlags(FMF); return I; } Value *foldConstant(Instruction::BinaryOps Opc, Value *L, Value *R, const Twine &Name = nullptr) const { auto *LC = dyn_cast<Constant>(L); auto *RC = dyn_cast<Constant>(R); return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr; } public: Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name); return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateAdd(LHS, RHS, Name, false, true); } Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateAdd(LHS, RHS, Name, true, false); } Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name); return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSub(LHS, RHS, Name, false, true); } Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSub(LHS, RHS, Name, true, false); } Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name); return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateMul(LHS, RHS, Name, false, true); } Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateMul(LHS, RHS, Name, true, false); } Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateUDiv(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name); } Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateUDiv(LHS, RHS, Name, true); } Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateSDiv(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name); } Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateSDiv(LHS, RHS, Name, true); } Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V; return Insert(BinaryOperator::CreateURem(LHS, RHS), Name); } Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V; return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name); } Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name); return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name, HasNUW, HasNSW); } Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, HasNUW, HasNSW); } Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name, HasNUW, HasNSW); } Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateLShr(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name); } Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "", bool isExact = false) { return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "", bool isExact = false) { return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "", bool isExact = false) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateAShr(LC, RC, isExact), Name); if (!isExact) return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name); return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name); } Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "", bool isExact = false) { return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "", bool isExact = false) { return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact); } Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") { if (auto *RC = dyn_cast<Constant>(RHS)) { if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isMinusOne()) return LHS; // LHS & -1 -> LHS if (auto *LC = dyn_cast<Constant>(LHS)) return Insert(Folder.CreateAnd(LC, RC), Name); } return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name); } Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") { if (auto *RC = dyn_cast<Constant>(RHS)) { if (RC->isNullValue()) return LHS; // LHS | 0 -> LHS if (auto *LC = dyn_cast<Constant>(LHS)) return Insert(Folder.CreateOr(LC, RC), Name); } return Insert(BinaryOperator::CreateOr(LHS, RHS), Name); } Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V; return Insert(BinaryOperator::CreateXor(LHS, RHS), Name); } Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") { return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") { return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name); } Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr, FMFSource->getFastMathFlags()); return Insert(I, Name); } Value *CreateFSub(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr, FMFSource->getFastMathFlags()); return Insert(I, Name); } Value *CreateFMul(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr, FMFSource->getFastMathFlags()); return Insert(I, Name); } Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr, FMFSource->getFastMathFlags()); return Insert(I, Name); } Value *CreateFRem(Value *L, Value *R, const Twine &Name = "", MDNode *FPMD = nullptr) { if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF); return Insert(I, Name); } /// Copy fast-math-flags from an instruction rather than using the builder's /// default FMF. Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource, const Twine &Name = "") { if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V; Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr, FMFSource->getFastMathFlags()); return Insert(I, Name); } Value *CreateBinOp(Instruction::BinaryOps Opc, Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V; Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS); if (isa<FPMathOperator>(BinOp)) BinOp = setFPAttrs(BinOp, FPMathTag, FMF); return Insert(BinOp, Name); } Value *CreateNeg(Value *V, const Twine &Name = "", bool HasNUW = false, bool HasNSW = false) { if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name); BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name); if (HasNUW) BO->setHasNoUnsignedWrap(); if (HasNSW) BO->setHasNoSignedWrap(); return BO; } Value *CreateNSWNeg(Value *V, const Twine &Name = "") { return CreateNeg(V, Name, false, true); } Value *CreateNUWNeg(Value *V, const Twine &Name = "") { return CreateNeg(V, Name, true, false); } Value *CreateFNeg(Value *V, const Twine &Name = "", MDNode *FPMathTag = nullptr) { if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateFNeg(VC), Name); return Insert(setFPAttrs(BinaryOperator::CreateFNeg(V), FPMathTag, FMF), Name); } Value *CreateNot(Value *V, const Twine &Name = "") { if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateNot(VC), Name); return Insert(BinaryOperator::CreateNot(V), Name); } //===--------------------------------------------------------------------===// // Instruction creation methods: Memory Instructions //===--------------------------------------------------------------------===// AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace, Value *ArraySize = nullptr, const Twine &Name = "") { return Insert(new AllocaInst(Ty, AddrSpace, ArraySize), Name); } AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr, const Twine &Name = "") { const DataLayout &DL = BB->getParent()->getParent()->getDataLayout(); return Insert(new AllocaInst(Ty, DL.getAllocaAddrSpace(), ArraySize), Name); } /// Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of /// converting the string to 'bool' for the isVolatile parameter. LoadInst *CreateLoad(Value *Ptr, const char *Name) { return Insert(new LoadInst(Ptr), Name); } LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") { return Insert(new LoadInst(Ptr), Name); } LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") { return Insert(new LoadInst(Ty, Ptr), Name); } LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") { return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name); } StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) { return Insert(new StoreInst(Val, Ptr, isVolatile)); } /// Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")' /// correctly, instead of converting the string to 'bool' for the isVolatile /// parameter. LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) { LoadInst *LI = CreateLoad(Ptr, Name); LI->setAlignment(Align); return LI; } LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const Twine &Name = "") { LoadInst *LI = CreateLoad(Ptr, Name); LI->setAlignment(Align); return LI; } LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile, const Twine &Name = "") { LoadInst *LI = CreateLoad(Ptr, isVolatile, Name); LI->setAlignment(Align); return LI; } StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align, bool isVolatile = false) { StoreInst *SI = CreateStore(Val, Ptr, isVolatile); SI->setAlignment(Align); return SI; } FenceInst *CreateFence(AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System, const Twine &Name = "") { return Insert(new FenceInst(Context, Ordering, SSID), Name); } AtomicCmpXchgInst * CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID = SyncScope::System) { return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID)); } AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val, AtomicOrdering Ordering, SyncScope::ID SSID = SyncScope::System) { return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SSID)); } Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { return CreateGEP(nullptr, Ptr, IdxList, Name); } Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { if (auto *PC = dyn_cast<Constant>(Ptr)) { // Every index must be constant. size_t i, e; for (i = 0, e = IdxList.size(); i != e; ++i) if (!isa<Constant>(IdxList[i])) break; if (i == e) return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name); } return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name); } Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { return CreateInBoundsGEP(nullptr, Ptr, IdxList, Name); } Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList, const Twine &Name = "") { if (auto *PC = dyn_cast<Constant>(Ptr)) { // Every index must be constant. size_t i, e; for (i = 0, e = IdxList.size(); i != e; ++i) if (!isa<Constant>(IdxList[i])) break; if (i == e) return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList), Name); } return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name); } Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") { return CreateGEP(nullptr, Ptr, Idx, Name); } Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") { if (auto *PC = dyn_cast<Constant>(Ptr)) if (auto *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name); return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); } Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") { if (auto *PC = dyn_cast<Constant>(Ptr)) if (auto *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name); return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); } Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") { return CreateConstGEP1_32(nullptr, Ptr, Idx0, Name); } Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0); if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name); return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name); } Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0); if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name); return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name); } Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt32Ty(Context), Idx0), ConstantInt::get(Type::getInt32Ty(Context), Idx1) }; if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name); return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name); } Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt32Ty(Context), Idx0), ConstantInt::get(Type::getInt32Ty(Context), Idx1) }; if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name); return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name); } Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0); if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idx), Name); return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idx), Name); } Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") { Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0); if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idx), Name); return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idx), Name); } Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt64Ty(Context), Idx0), ConstantInt::get(Type::getInt64Ty(Context), Idx1) }; if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idxs), Name); return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idxs), Name); } Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1, const Twine &Name = "") { Value *Idxs[] = { ConstantInt::get(Type::getInt64Ty(Context), Idx0), ConstantInt::get(Type::getInt64Ty(Context), Idx1) }; if (auto *PC = dyn_cast<Constant>(Ptr)) return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idxs), Name); return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idxs), Name); } Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx, const Twine &Name = "") { return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name); } Value *CreateStructGEP(Value *Ptr, unsigned Idx, const Twine &Name = "") { return CreateConstInBoundsGEP2_32(nullptr, Ptr, 0, Idx, Name); } /// Same as CreateGlobalString, but return a pointer with "i8*" type /// instead of a pointer to array of i8. Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "", unsigned AddressSpace = 0) { GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace); Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0); Constant *Indices[] = {Zero, Zero}; return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV, Indices); } //===--------------------------------------------------------------------===// // Instruction creation methods: Cast/Conversion Operators //===--------------------------------------------------------------------===// Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::Trunc, V, DestTy, Name); } Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::ZExt, V, DestTy, Name); } Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::SExt, V, DestTy, Name); } /// Create a ZExt or Trunc from the integer value V to DestTy. Return /// the value untouched if the type of V is already DestTy. Value *CreateZExtOrTrunc(Value *V, Type *DestTy, const Twine &Name = "") { assert(V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"); Type *VTy = V->getType(); if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) return CreateZExt(V, DestTy, Name); if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return CreateTrunc(V, DestTy, Name); return V; } /// Create a SExt or Trunc from the integer value V to DestTy. Return /// the value untouched if the type of V is already DestTy. Value *CreateSExtOrTrunc(Value *V, Type *DestTy, const Twine &Name = "") { assert(V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"); Type *VTy = V->getType(); if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits()) return CreateSExt(V, DestTy, Name); if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) return CreateTrunc(V, DestTy, Name); return V; } Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::FPToUI, V, DestTy, Name); } Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::FPToSI, V, DestTy, Name); } Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::UIToFP, V, DestTy, Name); } Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){ return CreateCast(Instruction::SIToFP, V, DestTy, Name); } Value *CreateFPTrunc(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::FPTrunc, V, DestTy, Name); } Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::FPExt, V, DestTy, Name); } Value *CreatePtrToInt(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::PtrToInt, V, DestTy, Name); } Value *CreateIntToPtr(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::IntToPtr, V, DestTy, Name); } Value *CreateBitCast(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::BitCast, V, DestTy, Name); } Value *CreateAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name = "") { return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name); } Value *CreateZExtOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name); } Value *CreateSExtOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name); } Value *CreateTruncOrBitCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name); return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name); } Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateCast(Op, VC, DestTy), Name); return Insert(CastInst::Create(Op, V, DestTy), Name); } Value *CreatePointerCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreatePointerCast(VC, DestTy), Name); return Insert(CastInst::CreatePointerCast(V, DestTy), Name); } Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) { return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy), Name); } return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy), Name); } Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name); return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name); } Value *CreateBitOrPointerCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy()) return CreatePtrToInt(V, DestTy, Name); if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy()) return CreateIntToPtr(V, DestTy, Name); return CreateBitCast(V, DestTy, Name); } Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") { if (V->getType() == DestTy) return V; if (auto *VC = dyn_cast<Constant>(V)) return Insert(Folder.CreateFPCast(VC, DestTy), Name); return Insert(CastInst::CreateFPCast(V, DestTy), Name); } // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a // compile time error, instead of converting the string to bool for the // isSigned parameter. Value *CreateIntCast(Value *, Type *, const char *) = delete; //===--------------------------------------------------------------------===// // Instruction creation methods: Compare Instructions //===--------------------------------------------------------------------===// Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name); } Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name); } Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name); } Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name); } Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name); } Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name); } Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name); } Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name); } Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name); } Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") { return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name); } Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag); } Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag); } Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "") { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateICmp(P, LC, RC), Name); return Insert(new ICmpInst(P, LHS, RHS), Name); } Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS, const Twine &Name = "", MDNode *FPMathTag = nullptr) { if (auto *LC = dyn_cast<Constant>(LHS)) if (auto *RC = dyn_cast<Constant>(RHS)) return Insert(Folder.CreateFCmp(P, LC, RC), Name); return Insert(setFPAttrs(new FCmpInst(P, LHS, RHS), FPMathTag, FMF), Name); } //===--------------------------------------------------------------------===// // Instruction creation methods: Other Instructions //===--------------------------------------------------------------------===// PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues, const Twine &Name = "") { return Insert(PHINode::Create(Ty, NumReservedValues), Name); } CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args = None, const Twine &Name = "", MDNode *FPMathTag = nullptr) { auto *PTy = cast<PointerType>(Callee->getType()); auto *FTy = cast<FunctionType>(PTy->getElementType()); return CreateCall(FTy, Callee, Args, Name, FPMathTag); } CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args, const Twine &Name = "", MDNode *FPMathTag = nullptr) { CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles); if (isa<FPMathOperator>(CI)) CI = cast<CallInst>(setFPAttrs(CI, FPMathTag, FMF)); return Insert(CI, Name); } CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> OpBundles, const Twine &Name = "", MDNode *FPMathTag = nullptr) { CallInst *CI = CallInst::Create(Callee, Args, OpBundles); if (isa<FPMathOperator>(CI)) CI = cast<CallInst>(setFPAttrs(CI, FPMathTag, FMF)); return Insert(CI, Name); } CallInst *CreateCall(Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "", MDNode *FPMathTag = nullptr) { return CreateCall(Callee->getFunctionType(), Callee, Args, Name, FPMathTag); } Value *CreateSelect(Value *C, Value *True, Value *False, const Twine &Name = "", Instruction *MDFrom = nullptr) { if (auto *CC = dyn_cast<Constant>(C)) if (auto *TC = dyn_cast<Constant>(True)) if (auto *FC = dyn_cast<Constant>(False)) return Insert(Folder.CreateSelect(CC, TC, FC), Name); SelectInst *Sel = SelectInst::Create(C, True, False); if (MDFrom) { MDNode *Prof = MDFrom->getMetadata(LLVMContext::MD_prof); MDNode *Unpred = MDFrom->getMetadata(LLVMContext::MD_unpredictable); Sel = addBranchMetadata(Sel, Prof, Unpred); } return Insert(Sel, Name); } VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") { return Insert(new VAArgInst(List, Ty), Name); } Value *CreateExtractElement(Value *Vec, Value *Idx, const Twine &Name = "") { if (auto *VC = dyn_cast<Constant>(Vec)) if (auto *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateExtractElement(VC, IC), Name); return Insert(ExtractElementInst::Create(Vec, Idx), Name); } Value *CreateExtractElement(Value *Vec, uint64_t Idx, const Twine &Name = "") { return CreateExtractElement(Vec, getInt64(Idx), Name); } Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx, const Twine &Name = "") { if (auto *VC = dyn_cast<Constant>(Vec)) if (auto *NC = dyn_cast<Constant>(NewElt)) if (auto *IC = dyn_cast<Constant>(Idx)) return Insert(Folder.CreateInsertElement(VC, NC, IC), Name); return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name); } Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx, const Twine &Name = "") { return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name); } Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask, const Twine &Name = "") { if (auto *V1C = dyn_cast<Constant>(V1)) if (auto *V2C = dyn_cast<Constant>(V2)) if (auto *MC = dyn_cast<Constant>(Mask)) return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name); return Insert(new ShuffleVectorInst(V1, V2, Mask), Name); } Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<uint32_t> IntMask, const Twine &Name = "") { Value *Mask = ConstantDataVector::get(Context, IntMask); return CreateShuffleVector(V1, V2, Mask, Name); } Value *CreateExtractValue(Value *Agg, ArrayRef<unsigned> Idxs, const Twine &Name = "") { if (auto *AggC = dyn_cast<Constant>(Agg)) return Insert(Folder.CreateExtractValue(AggC, Idxs), Name); return Insert(ExtractValueInst::Create(Agg, Idxs), Name); } Value *CreateInsertValue(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const Twine &Name = "") { if (auto *AggC = dyn_cast<Constant>(Agg)) if (auto *ValC = dyn_cast<Constant>(Val)) return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name); return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name); } LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses, const Twine &Name = "") { return Insert(LandingPadInst::Create(Ty, NumClauses), Name); } //===--------------------------------------------------------------------===// // Utility creation methods //===--------------------------------------------------------------------===// /// Return an i1 value testing if \p Arg is null. Value *CreateIsNull(Value *Arg, const Twine &Name = "") { return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()), Name); } /// Return an i1 value testing if \p Arg is not null. Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") { return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()), Name); } /// Return the i64 difference between two pointer values, dividing out /// the size of the pointed-to objects. /// /// This is intended to implement C-style pointer subtraction. As such, the /// pointers must be appropriately aligned for their element types and /// pointing into the same object. Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") { assert(LHS->getType() == RHS->getType() && "Pointer subtraction operand types must match!"); auto *ArgType = cast<PointerType>(LHS->getType()); Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context)); Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context)); Value *Difference = CreateSub(LHS_int, RHS_int); return CreateExactSDiv(Difference, ConstantExpr::getSizeOf(ArgType->getElementType()), Name); } /// Create a launder.invariant.group intrinsic call. If Ptr type is /// different from pointer to i8, it's casted to pointer to i8 in the same /// address space before call and casted back to Ptr type after call. Value *CreateLaunderInvariantGroup(Value *Ptr) { assert(isa<PointerType>(Ptr->getType()) && "launder.invariant.group only applies to pointers."); // FIXME: we could potentially avoid casts to/from i8*. auto *PtrType = Ptr->getType(); auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace()); if (PtrType != Int8PtrTy) Ptr = CreateBitCast(Ptr, Int8PtrTy); Module *M = BB->getParent()->getParent(); Function *FnLaunderInvariantGroup = Intrinsic::getDeclaration( M, Intrinsic::launder_invariant_group, {Int8PtrTy}); assert(FnLaunderInvariantGroup->getReturnType() == Int8PtrTy && FnLaunderInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && "LaunderInvariantGroup should take and return the same type"); CallInst *Fn = CreateCall(FnLaunderInvariantGroup, {Ptr}); if (PtrType != Int8PtrTy) return CreateBitCast(Fn, PtrType); return Fn; } /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is /// different from pointer to i8, it's casted to pointer to i8 in the same /// address space before call and casted back to Ptr type after call. Value *CreateStripInvariantGroup(Value *Ptr) { assert(isa<PointerType>(Ptr->getType()) && "strip.invariant.group only applies to pointers."); // FIXME: we could potentially avoid casts to/from i8*. auto *PtrType = Ptr->getType(); auto *Int8PtrTy = getInt8PtrTy(PtrType->getPointerAddressSpace()); if (PtrType != Int8PtrTy) Ptr = CreateBitCast(Ptr, Int8PtrTy); Module *M = BB->getParent()->getParent(); Function *FnStripInvariantGroup = Intrinsic::getDeclaration( M, Intrinsic::strip_invariant_group, {Int8PtrTy}); assert(FnStripInvariantGroup->getReturnType() == Int8PtrTy && FnStripInvariantGroup->getFunctionType()->getParamType(0) == Int8PtrTy && "StripInvariantGroup should take and return the same type"); CallInst *Fn = CreateCall(FnStripInvariantGroup, {Ptr}); if (PtrType != Int8PtrTy) return CreateBitCast(Fn, PtrType); return Fn; } /// Return a vector value that contains \arg V broadcasted to \p /// NumElts elements. Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") { assert(NumElts > 0 && "Cannot splat to an empty vector!"); // First insert it into an undef vector so we can shuffle it. Type *I32Ty = getInt32Ty(); Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts)); V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0), Name + ".splatinsert"); // Shuffle the value across the desired number of elements. Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts)); return CreateShuffleVector(V, Undef, Zeros, Name + ".splat"); } /// Return a value that has been extracted from a larger integer type. Value *CreateExtractInteger(const DataLayout &DL, Value *From, IntegerType *ExtractedTy, uint64_t Offset, const Twine &Name) { auto *IntTy = cast<IntegerType>(From->getType()); assert(DL.getTypeStoreSize(ExtractedTy) + Offset <= DL.getTypeStoreSize(IntTy) && "Element extends past full value"); uint64_t ShAmt = 8 * Offset; Value *V = From; if (DL.isBigEndian()) ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(ExtractedTy) - Offset); if (ShAmt) { V = CreateLShr(V, ShAmt, Name + ".shift"); } assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() && "Cannot extract to a larger integer!"); if (ExtractedTy != IntTy) { V = CreateTrunc(V, ExtractedTy, Name + ".trunc"); } return V; } private: /// Helper function that creates an assume intrinsic call that /// represents an alignment assumption on the provided Ptr, Mask, Type /// and Offset. CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL, Value *PtrValue, Value *Mask, Type *IntPtrTy, Value *OffsetValue) { Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); if (OffsetValue) { bool IsOffsetZero = false; if (const auto *CI = dyn_cast<ConstantInt>(OffsetValue)) IsOffsetZero = CI->isZero(); if (!IsOffsetZero) { if (OffsetValue->getType() != IntPtrTy) OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true, "offsetcast"); PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr"); } } Value *Zero = ConstantInt::get(IntPtrTy, 0); Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr"); Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond"); return CreateAssumption(InvCond); } public: /// Create an assume intrinsic call that represents an alignment /// assumption on the provided pointer. /// /// An optional offset can be provided, and if it is provided, the offset /// must be subtracted from the provided pointer to get the pointer with the /// specified alignment. CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, unsigned Alignment, Value *OffsetValue = nullptr) { assert(isa<PointerType>(PtrValue->getType()) && "trying to create an alignment assumption on a non-pointer?"); auto *PtrTy = cast<PointerType>(PtrValue->getType()); Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace()); Value *Mask = ConstantInt::get(IntPtrTy, Alignment > 0 ? Alignment - 1 : 0); return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy, OffsetValue); } /// Create an assume intrinsic call that represents an alignment /// assumption on the provided pointer. /// /// An optional offset can be provided, and if it is provided, the offset /// must be subtracted from the provided pointer to get the pointer with the /// specified alignment. /// /// This overload handles the condition where the Alignment is dependent /// on an existing value rather than a static value. CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue, Value *Alignment, Value *OffsetValue = nullptr) { assert(isa<PointerType>(PtrValue->getType()) && "trying to create an alignment assumption on a non-pointer?"); auto *PtrTy = cast<PointerType>(PtrValue->getType()); Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace()); if (Alignment->getType() != IntPtrTy) Alignment = CreateIntCast(Alignment, IntPtrTy, /*isSigned*/ true, "alignmentcast"); Value *IsPositive = CreateICmp(CmpInst::ICMP_SGT, Alignment, ConstantInt::get(Alignment->getType(), 0), "ispositive"); Value *PositiveMask = CreateSub(Alignment, ConstantInt::get(IntPtrTy, 1), "positivemask"); Value *Mask = CreateSelect(IsPositive, PositiveMask, ConstantInt::get(IntPtrTy, 0), "mask"); return CreateAlignmentAssumptionHelper(DL, PtrValue, Mask, IntPtrTy, OffsetValue); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef) } // end namespace llvm #endif // LLVM_IR_IRBUILDER_H