//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the target-independent interfaces used by SelectionDAG // instruction selection generators. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Selection DAG Type Constraint definitions. // // Note that the semantics of these constraints are hard coded into tblgen. To // modify or add constraints, you have to hack tblgen. // class SDTypeConstraint<int opnum> { int OperandNum = opnum; } // SDTCisVT - The specified operand has exactly this VT. class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { ValueType VT = vt; } class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisInt - The specified operand has integer type. class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisFP - The specified operand has floating-point type. class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisVec - The specified operand has a vector type. class SDTCisVec<int OpNum> : SDTypeConstraint<OpNum>; // SDTCisSameAs - The two specified operands have identical types. class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } // SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is // smaller than the 'Other' operand. class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{ int BigOperandNum = BigOp; } /// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same /// type as the element type of OtherOp, which is a vector type. class SDTCisEltOfVec<int ThisOp, int OtherOp> : SDTypeConstraint<ThisOp> { int OtherOpNum = OtherOp; } /// SDTCisSubVecOfVec - This indicates that ThisOp is a vector type /// with length less that of OtherOp, which is a vector type. class SDTCisSubVecOfVec<int ThisOp, int OtherOp> : SDTypeConstraint<ThisOp> { int OtherOpNum = OtherOp; } // SDTCVecEltisVT - The specified operand is vector type with element type // of VT. class SDTCVecEltisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> { ValueType VT = vt; } // SDTCisSameNumEltsAs - The two specified operands have identical number // of elements. class SDTCisSameNumEltsAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } // SDTCisSameSizeAs - The two specified operands have identical size. class SDTCisSameSizeAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> { int OtherOperandNum = OtherOp; } //===----------------------------------------------------------------------===// // Selection DAG Type Profile definitions. // // These use the constraints defined above to describe the type requirements of // the various nodes. These are not hard coded into tblgen, allowing targets to // add their own if needed. // // SDTypeProfile - This profile describes the type requirements of a Selection // DAG node. class SDTypeProfile<int numresults, int numoperands, list<SDTypeConstraint> constraints> { int NumResults = numresults; int NumOperands = numoperands; list<SDTypeConstraint> Constraints = constraints; } // Builtin profiles. def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'. def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'. def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'. def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'. def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'. def SDTUnaryOp : SDTypeProfile<1, 1, []>; // for bitconvert. def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0> ]>; def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2> ]>; def SDTIntSatNoShOp : SDTypeProfile<1, 2, [ // ssat with no shift SDTCisSameAs<0, 1>, SDTCisInt<2> ]>; def SDTIntBinHiLoOp : SDTypeProfile<2, 2, [ // mulhi, mullo, sdivrem, udivrem SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>,SDTCisInt<0> ]>; def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0> ]>; def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign. SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2> ]>; def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc. SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0> ]>; def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz, cttz SDTCisSameAs<0, 1>, SDTCisInt<0> ]>; def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc SDTCisSameAs<0, 1>, SDTCisFP<0> ]>; def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fround SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fextend SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp SDTCisFP<0>, SDTCisInt<1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int SDTCisInt<0>, SDTCisFP<1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>, SDTCisVTSmallerThanOp<2, 1> ]>; def SDTExtInvec : SDTypeProfile<1, 1, [ // sext_invec SDTCisInt<0>, SDTCisVec<0>, SDTCisInt<1>, SDTCisVec<1>, SDTCisOpSmallerThanOp<1, 0>, SDTCisSameSizeAs<0,1> ]>; def SDTSetCC : SDTypeProfile<1, 3, [ // setcc SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> ]>; def SDTSelect : SDTypeProfile<1, 3, [ // select SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3> ]>; def SDTVSelect : SDTypeProfile<1, 3, [ // vselect SDTCisVec<0>, SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>, SDTCisVT<5, OtherVT> ]>; def SDTBr : SDTypeProfile<0, 1, [ // br SDTCisVT<0, OtherVT> ]>; def SDTBrCC : SDTypeProfile<0, 4, [ // brcc SDTCisVT<0, OtherVT>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT> ]>; def SDTBrcond : SDTypeProfile<0, 2, [ // brcond SDTCisInt<0>, SDTCisVT<1, OtherVT> ]>; def SDTBrind : SDTypeProfile<0, 1, [ // brind SDTCisPtrTy<0> ]>; def SDTCatchret : SDTypeProfile<0, 2, [ // catchret SDTCisVT<0, OtherVT>, SDTCisVT<1, OtherVT> ]>; def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap def SDTLoad : SDTypeProfile<1, 1, [ // load SDTCisPtrTy<1> ]>; def SDTStore : SDTypeProfile<0, 2, [ // store SDTCisPtrTy<1> ]>; def SDTIStore : SDTypeProfile<1, 3, [ // indexed store SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3> ]>; def SDTMaskedStore: SDTypeProfile<0, 3, [ // masked store SDTCisPtrTy<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisSameNumEltsAs<1, 2> ]>; def SDTMaskedLoad: SDTypeProfile<1, 3, [ // masked load SDTCisVec<0>, SDTCisPtrTy<1>, SDTCisVec<2>, SDTCisSameAs<0, 3>, SDTCisSameNumEltsAs<0, 2> ]>; def SDTMaskedGather: SDTypeProfile<2, 3, [ // masked gather SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<1, 3>, SDTCisPtrTy<4>, SDTCVecEltisVT<1, i1>, SDTCisSameNumEltsAs<0, 1> ]>; def SDTMaskedScatter: SDTypeProfile<1, 3, [ // masked scatter SDTCisVec<0>, SDTCisVec<1>, SDTCisSameAs<0, 2>, SDTCisSameNumEltsAs<0, 1>, SDTCVecEltisVT<0, i1>, SDTCisPtrTy<3> ]>; def SDTVecShuffle : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2> ]>; def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2> ]>; def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3> ]>; def SDTSubVecExtract : SDTypeProfile<1, 2, [// subvector extract SDTCisSubVecOfVec<0,1>, SDTCisInt<2> ]>; def SDTSubVecInsert : SDTypeProfile<1, 3, [ // subvector insert SDTCisSubVecOfVec<2, 1>, SDTCisSameAs<0,1>, SDTCisInt<3> ]>; def SDTPrefetch : SDTypeProfile<0, 4, [ // prefetch SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>, SDTCisInt<1> ]>; def SDTMemBarrier : SDTypeProfile<0, 5, [ // memory barrier SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>, SDTCisInt<0> ]>; def SDTAtomicFence : SDTypeProfile<0, 2, [ SDTCisSameAs<0,1>, SDTCisPtrTy<0> ]>; def SDTAtomic3 : SDTypeProfile<1, 3, [ SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDTAtomic2 : SDTypeProfile<1, 2, [ SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDTAtomicStore : SDTypeProfile<0, 2, [ SDTCisPtrTy<0>, SDTCisInt<1> ]>; def SDTAtomicLoad : SDTypeProfile<1, 1, [ SDTCisInt<0>, SDTCisPtrTy<1> ]>; def SDTConvertOp : SDTypeProfile<1, 5, [ //cvtss, su, us, uu, ff, fs, fu, sf, su SDTCisVT<2, OtherVT>, SDTCisVT<3, OtherVT>, SDTCisPtrTy<4>, SDTCisPtrTy<5> ]>; class SDCallSeqStart<list<SDTypeConstraint> constraints> : SDTypeProfile<0, 2, constraints>; class SDCallSeqEnd<list<SDTypeConstraint> constraints> : SDTypeProfile<0, 2, constraints>; //===----------------------------------------------------------------------===// // Selection DAG Node definitions. // class SDNode<string opcode, SDTypeProfile typeprof, list<SDNodeProperty> props = [], string sdclass = "SDNode"> : SDPatternOperator { string Opcode = opcode; string SDClass = sdclass; let Properties = props; SDTypeProfile TypeProfile = typeprof; } // Special TableGen-recognized dag nodes def set; def implicit; def node; def srcvalue; def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">; def timm : SDNode<"ISD::TargetConstant",SDTIntLeaf, [], "ConstantSDNode">; def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">; def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">; def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">; def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">; def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>; def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [], "GlobalAddressSDNode">; def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [], "ConstantPoolSDNode">; def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [], "ConstantPoolSDNode">; def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [], "JumpTableSDNode">; def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [], "JumpTableSDNode">; def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [], "FrameIndexSDNode">; def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [], "FrameIndexSDNode">; def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [], "ExternalSymbolSDNode">; def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [], "ExternalSymbolSDNode">; def mcsym: SDNode<"ISD::MCSymbol", SDTPtrLeaf, [], "MCSymbolSDNode">; def blockaddress : SDNode<"ISD::BlockAddress", SDTPtrLeaf, [], "BlockAddressSDNode">; def tblockaddress: SDNode<"ISD::TargetBlockAddress", SDTPtrLeaf, [], "BlockAddressSDNode">; def add : SDNode<"ISD::ADD" , SDTIntBinOp , [SDNPCommutative, SDNPAssociative]>; def sub : SDNode<"ISD::SUB" , SDTIntBinOp>; def mul : SDNode<"ISD::MUL" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>; def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>; def smullohi : SDNode<"ISD::SMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; def umullohi : SDNode<"ISD::UMUL_LOHI" , SDTIntBinHiLoOp, [SDNPCommutative]>; def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>; def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>; def srem : SDNode<"ISD::SREM" , SDTIntBinOp>; def urem : SDNode<"ISD::UREM" , SDTIntBinOp>; def sdivrem : SDNode<"ISD::SDIVREM" , SDTIntBinHiLoOp>; def udivrem : SDNode<"ISD::UDIVREM" , SDTIntBinHiLoOp>; def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>; def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>; def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>; def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>; def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>; def and : SDNode<"ISD::AND" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def or : SDNode<"ISD::OR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def xor : SDNode<"ISD::XOR" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def addc : SDNode<"ISD::ADDC" , SDTIntBinOp, [SDNPCommutative, SDNPOutGlue]>; def adde : SDNode<"ISD::ADDE" , SDTIntBinOp, [SDNPCommutative, SDNPOutGlue, SDNPInGlue]>; def subc : SDNode<"ISD::SUBC" , SDTIntBinOp, [SDNPOutGlue]>; def sube : SDNode<"ISD::SUBE" , SDTIntBinOp, [SDNPOutGlue, SDNPInGlue]>; def smin : SDNode<"ISD::SMIN" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def smax : SDNode<"ISD::SMAX" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def umin : SDNode<"ISD::UMIN" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def umax : SDNode<"ISD::UMAX" , SDTIntBinOp, [SDNPCommutative, SDNPAssociative]>; def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>; def sext_invec : SDNode<"ISD::SIGN_EXTEND_VECTOR_INREG", SDTExtInvec>; def zext_invec : SDNode<"ISD::ZERO_EXTEND_VECTOR_INREG", SDTExtInvec>; def abs : SDNode<"ISD::ABS" , SDTIntUnaryOp>; def bitreverse : SDNode<"ISD::BITREVERSE" , SDTIntUnaryOp>; def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>; def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>; def cttz : SDNode<"ISD::CTTZ" , SDTIntUnaryOp>; def ctpop : SDNode<"ISD::CTPOP" , SDTIntUnaryOp>; def ctlz_zero_undef : SDNode<"ISD::CTLZ_ZERO_UNDEF", SDTIntUnaryOp>; def cttz_zero_undef : SDNode<"ISD::CTTZ_ZERO_UNDEF", SDTIntUnaryOp>; def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>; def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>; def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>; def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>; def bitconvert : SDNode<"ISD::BITCAST" , SDTUnaryOp>; def addrspacecast : SDNode<"ISD::ADDRSPACECAST", SDTUnaryOp>; def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>; def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>; def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>; def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>; def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>; def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>; def frem : SDNode<"ISD::FREM" , SDTFPBinOp>; def fma : SDNode<"ISD::FMA" , SDTFPTernaryOp>; def fmad : SDNode<"ISD::FMAD" , SDTFPTernaryOp>; def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>; def fminnum : SDNode<"ISD::FMINNUM" , SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def fmaxnum : SDNode<"ISD::FMAXNUM" , SDTFPBinOp, [SDNPCommutative, SDNPAssociative]>; def fminnan : SDNode<"ISD::FMINNAN" , SDTFPBinOp>; def fmaxnan : SDNode<"ISD::FMAXNAN" , SDTFPBinOp>; def fgetsign : SDNode<"ISD::FGETSIGN" , SDTFPToIntOp>; def fcanonicalize : SDNode<"ISD::FCANONICALIZE", SDTFPUnaryOp>; def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>; def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>; def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>; def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>; def fexp2 : SDNode<"ISD::FEXP2" , SDTFPUnaryOp>; def fpow : SDNode<"ISD::FPOW" , SDTFPBinOp>; def flog2 : SDNode<"ISD::FLOG2" , SDTFPUnaryOp>; def frint : SDNode<"ISD::FRINT" , SDTFPUnaryOp>; def ftrunc : SDNode<"ISD::FTRUNC" , SDTFPUnaryOp>; def fceil : SDNode<"ISD::FCEIL" , SDTFPUnaryOp>; def ffloor : SDNode<"ISD::FFLOOR" , SDTFPUnaryOp>; def fnearbyint : SDNode<"ISD::FNEARBYINT" , SDTFPUnaryOp>; def fround : SDNode<"ISD::FROUND" , SDTFPUnaryOp>; def fpround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>; def fpextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>; def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>; def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>; def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>; def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>; def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>; def f16_to_fp : SDNode<"ISD::FP16_TO_FP" , SDTIntToFPOp>; def fp_to_f16 : SDNode<"ISD::FP_TO_FP16" , SDTFPToIntOp>; def setcc : SDNode<"ISD::SETCC" , SDTSetCC>; def select : SDNode<"ISD::SELECT" , SDTSelect>; def vselect : SDNode<"ISD::VSELECT" , SDTVSelect>; def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>; def brcc : SDNode<"ISD::BR_CC" , SDTBrCC, [SDNPHasChain]>; def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>; def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>; def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>; def catchret : SDNode<"ISD::CATCHRET" , SDTCatchret, [SDNPHasChain, SDNPSideEffect]>; def cleanupret : SDNode<"ISD::CLEANUPRET" , SDTNone, [SDNPHasChain]>; def catchpad : SDNode<"ISD::CATCHPAD" , SDTNone, [SDNPHasChain, SDNPSideEffect]>; def trap : SDNode<"ISD::TRAP" , SDTNone, [SDNPHasChain, SDNPSideEffect]>; def debugtrap : SDNode<"ISD::DEBUGTRAP" , SDTNone, [SDNPHasChain, SDNPSideEffect]>; def prefetch : SDNode<"ISD::PREFETCH" , SDTPrefetch, [SDNPHasChain, SDNPMayLoad, SDNPMayStore, SDNPMemOperand]>; def readcyclecounter : SDNode<"ISD::READCYCLECOUNTER", SDTIntLeaf, [SDNPHasChain, SDNPSideEffect]>; def atomic_fence : SDNode<"ISD::ATOMIC_FENCE" , SDTAtomicFence, [SDNPHasChain, SDNPSideEffect]>; def atomic_cmp_swap : SDNode<"ISD::ATOMIC_CMP_SWAP" , SDTAtomic3, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_add : SDNode<"ISD::ATOMIC_LOAD_ADD" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_sub : SDNode<"ISD::ATOMIC_LOAD_SUB" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_clr : SDNode<"ISD::ATOMIC_LOAD_CLR" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_nand: SDNode<"ISD::ATOMIC_LOAD_NAND", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", SDTAtomic2, [SDNPHasChain, SDNPMayStore, SDNPMayLoad, SDNPMemOperand]>; def atomic_load : SDNode<"ISD::ATOMIC_LOAD", SDTAtomicLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def atomic_store : SDNode<"ISD::ATOMIC_STORE", SDTAtomicStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def masked_store : SDNode<"ISD::MSTORE", SDTMaskedStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def masked_load : SDNode<"ISD::MLOAD", SDTMaskedLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def masked_scatter : SDNode<"ISD::MSCATTER", SDTMaskedScatter, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def masked_gather : SDNode<"ISD::MGATHER", SDTMaskedGather, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; // Do not use ld, st directly. Use load, extload, sextload, zextload, store, // and truncst (see below). def ld : SDNode<"ISD::LOAD" , SDTLoad, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; def st : SDNode<"ISD::STORE" , SDTStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def ist : SDNode<"ISD::STORE" , SDTIStore, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>; def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>; def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, -1, []>, []>; def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>, []>; // vector_extract/vector_insert are deprecated. extractelt/insertelt // are preferred. def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>; def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT", SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>; def concat_vectors : SDNode<"ISD::CONCAT_VECTORS", SDTypeProfile<1, 2, [SDTCisSubVecOfVec<1, 0>, SDTCisSameAs<1, 2>]>,[]>; // This operator does not do subvector type checking. The ARM // backend, at least, needs it. def vector_extract_subvec : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTypeProfile<1, 2, [SDTCisInt<2>, SDTCisVec<1>, SDTCisVec<0>]>, []>; // This operator does subvector type checking. def extract_subvector : SDNode<"ISD::EXTRACT_SUBVECTOR", SDTSubVecExtract, []>; def insert_subvector : SDNode<"ISD::INSERT_SUBVECTOR", SDTSubVecInsert, []>; // Nodes for intrinsics, you should use the intrinsic itself and let tblgen use // these internally. Don't reference these directly. def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID", SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>, [SDNPHasChain]>; def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN", SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, [SDNPHasChain]>; def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN", SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>; def SDT_assertext : SDTypeProfile<1, 1, [SDTCisInt<0>, SDTCisInt<1>, SDTCisSameAs<1, 0>]>; def assertsext : SDNode<"ISD::AssertSext", SDT_assertext>; def assertzext : SDNode<"ISD::AssertZext", SDT_assertext>; //===----------------------------------------------------------------------===// // Selection DAG Condition Codes class CondCode; // ISD::CondCode enums def SETOEQ : CondCode; def SETOGT : CondCode; def SETOGE : CondCode; def SETOLT : CondCode; def SETOLE : CondCode; def SETONE : CondCode; def SETO : CondCode; def SETUO : CondCode; def SETUEQ : CondCode; def SETUGT : CondCode; def SETUGE : CondCode; def SETULT : CondCode; def SETULE : CondCode; def SETUNE : CondCode; def SETEQ : CondCode; def SETGT : CondCode; def SETGE : CondCode; def SETLT : CondCode; def SETLE : CondCode; def SETNE : CondCode; //===----------------------------------------------------------------------===// // Selection DAG Node Transformation Functions. // // This mechanism allows targets to manipulate nodes in the output DAG once a // match has been formed. This is typically used to manipulate immediate // values. // class SDNodeXForm<SDNode opc, code xformFunction> { SDNode Opcode = opc; code XFormFunction = xformFunction; } def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>; //===----------------------------------------------------------------------===// // PatPred Subclasses. // // These allow specifying different sorts of predicates that control whether a // node is matched. // class PatPred; class CodePatPred<code predicate> : PatPred { code PredicateCode = predicate; } //===----------------------------------------------------------------------===// // Selection DAG Pattern Fragments. // // Pattern fragments are reusable chunks of dags that match specific things. // They can take arguments and have C++ predicates that control whether they // match. They are intended to make the patterns for common instructions more // compact and readable. // /// PatFrags - Represents a set of pattern fragments. Each single fragment /// can match something on the DAG, from a single node to multiple nested other /// fragments. The whole set of fragments matches if any of the single /// fragemnts match. This allows e.g. matching and "add with overflow" and /// a regular "add" with the same fragment set. /// class PatFrags<dag ops, list<dag> frags, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> : SDPatternOperator { dag Operands = ops; list<dag> Fragments = frags; code PredicateCode = pred; code GISelPredicateCode = [{}]; code ImmediateCode = [{}]; SDNodeXForm OperandTransform = xform; // Define a few pre-packaged predicates. This helps GlobalISel import // existing rules from SelectionDAG for many common cases. // They will be tested prior to the code in pred and must not be used in // ImmLeaf and its subclasses. // Is the desired pre-packaged predicate for a load? bit IsLoad = ?; // Is the desired pre-packaged predicate for a store? bit IsStore = ?; // Is the desired pre-packaged predicate for an atomic? bit IsAtomic = ?; // cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; // cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; bit IsUnindexed = ?; // cast<LoadSDNode>(N)->getExtensionType() != ISD::NON_EXTLOAD bit IsNonExtLoad = ?; // cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; bit IsAnyExtLoad = ?; // cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; bit IsSignExtLoad = ?; // cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; bit IsZeroExtLoad = ?; // !cast<StoreSDNode>(N)->isTruncatingStore(); // cast<StoreSDNode>(N)->isTruncatingStore(); bit IsTruncStore = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Monotonic bit IsAtomicOrderingMonotonic = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Acquire bit IsAtomicOrderingAcquire = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::Release bit IsAtomicOrderingRelease = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::AcquireRelease bit IsAtomicOrderingAcquireRelease = ?; // cast<AtomicSDNode>(N)->getOrdering() == AtomicOrdering::SequentiallyConsistent bit IsAtomicOrderingSequentiallyConsistent = ?; // isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) // !isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering()) bit IsAtomicOrderingAcquireOrStronger = ?; // isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) // !isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering()) bit IsAtomicOrderingReleaseOrStronger = ?; // cast<LoadSDNode>(N)->getMemoryVT() == MVT::<VT>; // cast<StoreSDNode>(N)->getMemoryVT() == MVT::<VT>; ValueType MemoryVT = ?; // cast<LoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; // cast<StoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::<VT>; ValueType ScalarMemoryVT = ?; } // PatFrag - A version of PatFrags matching only a single fragment. class PatFrag<dag ops, dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> : PatFrags<ops, [frag], pred, xform>; // OutPatFrag is a pattern fragment that is used as part of an output pattern // (not an input pattern). These do not have predicates or transforms, but are // used to avoid repeated subexpressions in output patterns. class OutPatFrag<dag ops, dag frag> : PatFrag<ops, frag, [{}], NOOP_SDNodeXForm>; // PatLeaf's are pattern fragments that have no operands. This is just a helper // to define immediates and other common things concisely. class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm> : PatFrag<(ops), frag, pred, xform>; // ImmLeaf is a pattern fragment with a constraint on the immediate. The // constraint is a function that is run on the immediate (always with the value // sign extended out to an int64_t) as Imm. For example: // // def immSExt8 : ImmLeaf<i16, [{ return (char)Imm == Imm; }]>; // // this is a more convenient form to match 'imm' nodes in than PatLeaf and also // is preferred over using PatLeaf because it allows the code generator to // reason more about the constraint. // // If FastIsel should ignore all instructions that have an operand of this type, // the FastIselShouldIgnore flag can be set. This is an optimization to reduce // the code size of the generated fast instruction selector. class ImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm, SDNode ImmNode = imm> : PatFrag<(ops), (vt ImmNode), [{}], xform> { let ImmediateCode = pred; bit FastIselShouldIgnore = 0; // Is the data type of the immediate an APInt? bit IsAPInt = 0; // Is the data type of the immediate an APFloat? bit IsAPFloat = 0; } // An ImmLeaf except that Imm is an APInt. This is useful when you need to // zero-extend the immediate instead of sign-extend it. // // Note that FastISel does not currently understand IntImmLeaf and will not // generate code for rules that make use of it. As such, it does not make sense // to replace ImmLeaf with IntImmLeaf. However, replacing PatLeaf with an // IntImmLeaf will allow GlobalISel to import the rule. class IntImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> : ImmLeaf<vt, pred, xform> { let IsAPInt = 1; let FastIselShouldIgnore = 1; } // An ImmLeaf except that Imm is an APFloat. // // Note that FastISel does not currently understand FPImmLeaf and will not // generate code for rules that make use of it. class FPImmLeaf<ValueType vt, code pred, SDNodeXForm xform = NOOP_SDNodeXForm> : ImmLeaf<vt, pred, xform, fpimm> { let IsAPFloat = 1; let FastIselShouldIgnore = 1; } // Leaf fragments. def vtInt : PatLeaf<(vt), [{ return N->getVT().isInteger(); }]>; def vtFP : PatLeaf<(vt), [{ return N->getVT().isFloatingPoint(); }]>; def immAllOnesV: PatLeaf<(build_vector), [{ return ISD::isBuildVectorAllOnes(N); }]>; def immAllZerosV: PatLeaf<(build_vector), [{ return ISD::isBuildVectorAllZeros(N); }]>; // Other helper fragments. def not : PatFrag<(ops node:$in), (xor node:$in, -1)>; def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>; def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>; // null_frag - The null pattern operator is used in multiclass instantiations // which accept an SDPatternOperator for use in matching patterns for internal // definitions. When expanding a pattern, if the null fragment is referenced // in the expansion, the pattern is discarded and it is as-if '[]' had been // specified. This allows multiclasses to have the isel patterns be optional. def null_frag : SDPatternOperator; // load fragments. def unindexedload : PatFrag<(ops node:$ptr), (ld node:$ptr)> { let IsLoad = 1; let IsUnindexed = 1; } def load : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = 1; let IsNonExtLoad = 1; } // extending load fragments. def extload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = 1; let IsAnyExtLoad = 1; } def sextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = 1; let IsSignExtLoad = 1; } def zextload : PatFrag<(ops node:$ptr), (unindexedload node:$ptr)> { let IsLoad = 1; let IsZeroExtLoad = 1; } def extloadi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let MemoryVT = i1; } def extloadi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let MemoryVT = i8; } def extloadi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let MemoryVT = i16; } def extloadi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let MemoryVT = i32; } def extloadf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let MemoryVT = f32; } def extloadf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let MemoryVT = f64; } def sextloadi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i1; } def sextloadi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i8; } def sextloadi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i16; } def sextloadi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i32; } def zextloadi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i1; } def zextloadi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i8; } def zextloadi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i16; } def zextloadi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let MemoryVT = i32; } def extloadvi1 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i1; } def extloadvi8 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i8; } def extloadvi16 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i16; } def extloadvi32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i32; } def extloadvf32 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = f32; } def extloadvf64 : PatFrag<(ops node:$ptr), (extload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = f64; } def sextloadvi1 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i1; } def sextloadvi8 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i8; } def sextloadvi16 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i16; } def sextloadvi32 : PatFrag<(ops node:$ptr), (sextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i32; } def zextloadvi1 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i1; } def zextloadvi8 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i8; } def zextloadvi16 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i16; } def zextloadvi32 : PatFrag<(ops node:$ptr), (zextload node:$ptr)> { let IsLoad = 1; let ScalarMemoryVT = i32; } // store fragments. def unindexedstore : PatFrag<(ops node:$val, node:$ptr), (st node:$val, node:$ptr)> { let IsStore = 1; let IsUnindexed = 1; } def store : PatFrag<(ops node:$val, node:$ptr), (unindexedstore node:$val, node:$ptr)> { let IsStore = 1; let IsTruncStore = 0; } // truncstore fragments. def truncstore : PatFrag<(ops node:$val, node:$ptr), (unindexedstore node:$val, node:$ptr)> { let IsStore = 1; let IsTruncStore = 1; } def truncstorei8 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let MemoryVT = i8; } def truncstorei16 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let MemoryVT = i16; } def truncstorei32 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let MemoryVT = i32; } def truncstoref32 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let MemoryVT = f32; } def truncstoref64 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let MemoryVT = f64; } def truncstorevi8 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let ScalarMemoryVT = i8; } def truncstorevi16 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let ScalarMemoryVT = i16; } def truncstorevi32 : PatFrag<(ops node:$val, node:$ptr), (truncstore node:$val, node:$ptr)> { let IsStore = 1; let ScalarMemoryVT = i32; } // indexed store fragments. def istore : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset)> { let IsStore = 1; let IsTruncStore = 0; } def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset), (istore node:$val, node:$base, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; }]>; def itruncstore : PatFrag<(ops node:$val, node:$base, node:$offset), (ist node:$val, node:$base, node:$offset)> { let IsStore = 1; let IsTruncStore = 1; } def pre_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), (itruncstore node:$val, node:$base, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; }]>; def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i1; } def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i8; } def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i16; } def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i32; } def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), (pre_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = f32; } def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), (istore node:$val, node:$ptr, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::POST_INC || AM == ISD::POST_DEC; }]>; def post_truncst : PatFrag<(ops node:$val, node:$base, node:$offset), (itruncstore node:$val, node:$base, node:$offset), [{ ISD::MemIndexedMode AM = cast<StoreSDNode>(N)->getAddressingMode(); return AM == ISD::POST_INC || AM == ISD::POST_DEC; }]>; def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i1; } def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i8; } def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i16; } def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = i32; } def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset), (post_truncst node:$val, node:$base, node:$offset)> { let IsStore = 1; let MemoryVT = f32; } def nonvolatile_load : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return !cast<LoadSDNode>(N)->isVolatile(); }]>; def nonvolatile_store : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return !cast<StoreSDNode>(N)->isVolatile(); }]>; // nontemporal store fragments. def nontemporalstore : PatFrag<(ops node:$val, node:$ptr), (store node:$val, node:$ptr), [{ return cast<StoreSDNode>(N)->isNonTemporal(); }]>; def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (nontemporalstore node:$val, node:$ptr), [{ StoreSDNode *St = cast<StoreSDNode>(N); return St->getAlignment() >= St->getMemoryVT().getStoreSize(); }]>; def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr), (nontemporalstore node:$val, node:$ptr), [{ StoreSDNode *St = cast<StoreSDNode>(N); return St->getAlignment() < St->getMemoryVT().getStoreSize(); }]>; // nontemporal load fragments. def nontemporalload : PatFrag<(ops node:$ptr), (load node:$ptr), [{ return cast<LoadSDNode>(N)->isNonTemporal(); }]>; def alignednontemporalload : PatFrag<(ops node:$ptr), (nontemporalload node:$ptr), [{ LoadSDNode *Ld = cast<LoadSDNode>(N); return Ld->getAlignment() >= Ld->getMemoryVT().getStoreSize(); }]>; // setcc convenience fragments. def setoeq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOEQ)>; def setogt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOGT)>; def setoge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOGE)>; def setolt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOLT)>; def setole : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETOLE)>; def setone : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETONE)>; def seto : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETO)>; def setuo : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUO)>; def setueq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUEQ)>; def setugt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUGT)>; def setuge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUGE)>; def setult : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETULT)>; def setule : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETULE)>; def setune : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETUNE)>; def seteq : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETEQ)>; def setgt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETGT)>; def setge : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETGE)>; def setlt : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETLT)>; def setle : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETLE)>; def setne : PatFrag<(ops node:$lhs, node:$rhs), (setcc node:$lhs, node:$rhs, SETNE)>; multiclass binary_atomic_op_ord<SDNode atomic_op> { def #NAME#_monotonic : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingMonotonic = 1; } def #NAME#_acquire : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingAcquire = 1; } def #NAME#_release : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingRelease = 1; } def #NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingAcquireRelease = 1; } def #NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingSequentiallyConsistent = 1; } } multiclass ternary_atomic_op_ord<SDNode atomic_op> { def #NAME#_monotonic : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingMonotonic = 1; } def #NAME#_acquire : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingAcquire = 1; } def #NAME#_release : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingRelease = 1; } def #NAME#_acq_rel : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingAcquireRelease = 1; } def #NAME#_seq_cst : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (!cast<SDPatternOperator>(#NAME) node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let IsAtomicOrderingSequentiallyConsistent = 1; } } multiclass binary_atomic_op<SDNode atomic_op> { def _8 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = 1; let MemoryVT = i8; } def _16 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = 1; let MemoryVT = i16; } def _32 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = 1; let MemoryVT = i32; } def _64 : PatFrag<(ops node:$ptr, node:$val), (atomic_op node:$ptr, node:$val)> { let IsAtomic = 1; let MemoryVT = i64; } defm NAME#_8 : binary_atomic_op_ord<atomic_op>; defm NAME#_16 : binary_atomic_op_ord<atomic_op>; defm NAME#_32 : binary_atomic_op_ord<atomic_op>; defm NAME#_64 : binary_atomic_op_ord<atomic_op>; } multiclass ternary_atomic_op<SDNode atomic_op> { def _8 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let MemoryVT = i8; } def _16 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let MemoryVT = i16; } def _32 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let MemoryVT = i32; } def _64 : PatFrag<(ops node:$ptr, node:$cmp, node:$val), (atomic_op node:$ptr, node:$cmp, node:$val)> { let IsAtomic = 1; let MemoryVT = i64; } defm NAME#_8 : ternary_atomic_op_ord<atomic_op>; defm NAME#_16 : ternary_atomic_op_ord<atomic_op>; defm NAME#_32 : ternary_atomic_op_ord<atomic_op>; defm NAME#_64 : ternary_atomic_op_ord<atomic_op>; } defm atomic_load_add : binary_atomic_op<atomic_load_add>; defm atomic_swap : binary_atomic_op<atomic_swap>; defm atomic_load_sub : binary_atomic_op<atomic_load_sub>; defm atomic_load_and : binary_atomic_op<atomic_load_and>; defm atomic_load_clr : binary_atomic_op<atomic_load_clr>; defm atomic_load_or : binary_atomic_op<atomic_load_or>; defm atomic_load_xor : binary_atomic_op<atomic_load_xor>; defm atomic_load_nand : binary_atomic_op<atomic_load_nand>; defm atomic_load_min : binary_atomic_op<atomic_load_min>; defm atomic_load_max : binary_atomic_op<atomic_load_max>; defm atomic_load_umin : binary_atomic_op<atomic_load_umin>; defm atomic_load_umax : binary_atomic_op<atomic_load_umax>; defm atomic_store : binary_atomic_op<atomic_store>; defm atomic_cmp_swap : ternary_atomic_op<atomic_cmp_swap>; def atomic_load_8 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = 1; let MemoryVT = i8; } def atomic_load_16 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = 1; let MemoryVT = i16; } def atomic_load_32 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = 1; let MemoryVT = i32; } def atomic_load_64 : PatFrag<(ops node:$ptr), (atomic_load node:$ptr)> { let IsAtomic = 1; let MemoryVT = i64; } //===----------------------------------------------------------------------===// // Selection DAG Pattern Support. // // Patterns are what are actually matched against by the target-flavored // instruction selection DAG. Instructions defined by the target implicitly // define patterns in most cases, but patterns can also be explicitly added when // an operation is defined by a sequence of instructions (e.g. loading a large // immediate value on RISC targets that do not support immediates as large as // their GPRs). // class Pattern<dag patternToMatch, list<dag> resultInstrs> { dag PatternToMatch = patternToMatch; list<dag> ResultInstrs = resultInstrs; list<Predicate> Predicates = []; // See class Instruction in Target.td. int AddedComplexity = 0; // See class Instruction in Target.td. } // Pat - A simple (but common) form of a pattern, which produces a simple result // not needing a full list. class Pat<dag pattern, dag result> : Pattern<pattern, [result]>; //===----------------------------------------------------------------------===// // Complex pattern definitions. // // Complex patterns, e.g. X86 addressing mode, requires pattern matching code // in C++. NumOperands is the number of operands returned by the select function; // SelectFunc is the name of the function used to pattern match the max. pattern; // RootNodes are the list of possible root nodes of the sub-dags to match. // e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>; // class ComplexPattern<ValueType ty, int numops, string fn, list<SDNode> roots = [], list<SDNodeProperty> props = [], int complexity = -1> { ValueType Ty = ty; int NumOperands = numops; string SelectFunc = fn; list<SDNode> RootNodes = roots; list<SDNodeProperty> Properties = props; int Complexity = complexity; }