//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// Interface for Targets to specify which operations they can successfully /// select and how the others should be expanded most efficiently. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H #define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/LowLevelTypeImpl.h" #include <cassert> #include <cstdint> #include <tuple> #include <unordered_map> #include <utility> namespace llvm { extern cl::opt<bool> DisableGISelLegalityCheck; class MachineInstr; class MachineIRBuilder; class MachineRegisterInfo; class MCInstrInfo; namespace LegalizeActions { enum LegalizeAction : std::uint8_t { /// The operation is expected to be selectable directly by the target, and /// no transformation is necessary. Legal, /// The operation should be synthesized from multiple instructions acting on /// a narrower scalar base-type. For example a 64-bit add might be /// implemented in terms of 32-bit add-with-carry. NarrowScalar, /// The operation should be implemented in terms of a wider scalar /// base-type. For example a <2 x s8> add could be implemented as a <2 /// x s32> add (ignoring the high bits). WidenScalar, /// The (vector) operation should be implemented by splitting it into /// sub-vectors where the operation is legal. For example a <8 x s64> add /// might be implemented as 4 separate <2 x s64> adds. FewerElements, /// The (vector) operation should be implemented by widening the input /// vector and ignoring the lanes added by doing so. For example <2 x i8> is /// rarely legal, but you might perform an <8 x i8> and then only look at /// the first two results. MoreElements, /// The operation itself must be expressed in terms of simpler actions on /// this target. E.g. a SREM replaced by an SDIV and subtraction. Lower, /// The operation should be implemented as a call to some kind of runtime /// support library. For example this usually happens on machines that don't /// support floating-point operations natively. Libcall, /// The target wants to do something special with this combination of /// operand and type. A callback will be issued when it is needed. Custom, /// This operation is completely unsupported on the target. A programming /// error has occurred. Unsupported, /// Sentinel value for when no action was found in the specified table. NotFound, /// Fall back onto the old rules. /// TODO: Remove this once we've migrated UseLegacyRules, }; } // end namespace LegalizeActions using LegalizeActions::LegalizeAction; /// Legalization is decided based on an instruction's opcode, which type slot /// we're considering, and what the existing type is. These aspects are gathered /// together for convenience in the InstrAspect class. struct InstrAspect { unsigned Opcode; unsigned Idx = 0; LLT Type; InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {} InstrAspect(unsigned Opcode, unsigned Idx, LLT Type) : Opcode(Opcode), Idx(Idx), Type(Type) {} bool operator==(const InstrAspect &RHS) const { return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type; } }; /// The LegalityQuery object bundles together all the information that's needed /// to decide whether a given operation is legal or not. /// For efficiency, it doesn't make a copy of Types so care must be taken not /// to free it before using the query. struct LegalityQuery { unsigned Opcode; ArrayRef<LLT> Types; struct MemDesc { uint64_t Size; AtomicOrdering Ordering; }; /// Operations which require memory can use this to place requirements on the /// memory type for each MMO. ArrayRef<MemDesc> MMODescrs; constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types, const ArrayRef<MemDesc> MMODescrs) : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {} constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types) : LegalityQuery(Opcode, Types, {}) {} raw_ostream &print(raw_ostream &OS) const; }; /// The result of a query. It either indicates a final answer of Legal or /// Unsupported or describes an action that must be taken to make an operation /// more legal. struct LegalizeActionStep { /// The action to take or the final answer. LegalizeAction Action; /// If describing an action, the type index to change. Otherwise zero. unsigned TypeIdx; /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. LLT NewType; LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, const LLT &NewType) : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} bool operator==(const LegalizeActionStep &RHS) const { return std::tie(Action, TypeIdx, NewType) == std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); } }; using LegalityPredicate = std::function<bool (const LegalityQuery &)>; using LegalizeMutation = std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>; namespace LegalityPredicates { struct TypePairAndMemSize { LLT Type0; LLT Type1; uint64_t MemSize; bool operator==(const TypePairAndMemSize &Other) const { return Type0 == Other.Type0 && Type1 == Other.Type1 && MemSize == Other.MemSize; } }; /// True iff P0 and P1 are true. template<typename Predicate> Predicate all(Predicate P0, Predicate P1) { return [=](const LegalityQuery &Query) { return P0(Query) && P1(Query); }; } /// True iff all given predicates are true. template<typename Predicate, typename... Args> Predicate all(Predicate P0, Predicate P1, Args... args) { return all(all(P0, P1), args...); } /// True iff the given type index is the specified types. LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit); /// True iff the given type index is one of the specified types. LegalityPredicate typeInSet(unsigned TypeIdx, std::initializer_list<LLT> TypesInit); /// True iff the given types for the given pair of type indexes is one of the /// specified type pairs. LegalityPredicate typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, std::initializer_list<std::pair<LLT, LLT>> TypesInit); /// True iff the given types for the given pair of type indexes is one of the /// specified type pairs. LegalityPredicate typePairAndMemSizeInSet( unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, std::initializer_list<TypePairAndMemSize> TypesAndMemSizeInit); /// True iff the specified type index is a scalar. LegalityPredicate isScalar(unsigned TypeIdx); /// True iff the specified type index is a scalar that's narrower than the given /// size. LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar that's wider than the given /// size. LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size); /// True iff the specified type index is a scalar whose size is not a power of /// 2. LegalityPredicate sizeNotPow2(unsigned TypeIdx); /// True iff the specified MMO index has a size that is not a power of 2 LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx); /// True iff the specified type index is a vector whose element count is not a /// power of 2. LegalityPredicate numElementsNotPow2(unsigned TypeIdx); /// True iff the specified MMO index has at an atomic ordering of at Ordering or /// stronger. LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, AtomicOrdering Ordering); } // end namespace LegalityPredicates namespace LegalizeMutations { /// Select this specific type for the given type index. LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); /// Keep the same type as the given type index. LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx); /// Widen the type for the given type index to the next power of 2. LegalizeMutation widenScalarToNextPow2(unsigned TypeIdx, unsigned Min = 0); /// Add more elements to the type for the given type index to the next power of /// 2. LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); } // end namespace LegalizeMutations /// A single rule in a legalizer info ruleset. /// The specified action is chosen when the predicate is true. Where appropriate /// for the action (e.g. for WidenScalar) the new type is selected using the /// given mutator. class LegalizeRule { LegalityPredicate Predicate; LegalizeAction Action; LegalizeMutation Mutation; public: LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, LegalizeMutation Mutation = nullptr) : Predicate(Predicate), Action(Action), Mutation(Mutation) {} /// Test whether the LegalityQuery matches. bool match(const LegalityQuery &Query) const { return Predicate(Query); } LegalizeAction getAction() const { return Action; } /// Determine the change to make. std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const { if (Mutation) return Mutation(Query); return std::make_pair(0, LLT{}); } }; class LegalizeRuleSet { /// When non-zero, the opcode we are an alias of unsigned AliasOf; /// If true, there is another opcode that aliases this one bool IsAliasedByAnother; SmallVector<LegalizeRule, 2> Rules; #ifndef NDEBUG /// If bit I is set, this rule set contains a rule that may handle (predicate /// or perform an action upon (or both)) the type index I. The uncertainty /// comes from free-form rules executing user-provided lambda functions. We /// conservatively assume such rules do the right thing and cover all type /// indices. The bitset is intentionally 1 bit wider than it absolutely needs /// to be to distinguish such cases from the cases where all type indices are /// individually handled. SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC + 2}; #endif unsigned typeIdx(unsigned TypeIdx) { assert(TypeIdx <= (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) && "Type Index is out of bounds"); #ifndef NDEBUG TypeIdxsCovered.set(TypeIdx); #endif return TypeIdx; } void markAllTypeIdxsAsCovered() { #ifndef NDEBUG TypeIdxsCovered.set(); #endif } void add(const LegalizeRule &Rule) { assert(AliasOf == 0 && "RuleSet is aliased, change the representative opcode instead"); Rules.push_back(Rule); } static bool always(const LegalityQuery &) { return true; } /// Use the given action when the predicate is true. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate) { add({Predicate, Action}); return *this; } /// Use the given action when the predicate is true. /// Action should be an action that requires mutation. LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, LegalizeMutation Mutation) { add({Predicate, Action, Mutation}); return *this; } /// Use the given action when type index 0 is any type in the given list. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list<LLT> Types) { using namespace LegalityPredicates; return actionIf(Action, typeInSet(typeIdx(0), Types)); } /// Use the given action when type index 0 is any type in the given list. /// Action should be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list<LLT> Types, LegalizeMutation Mutation) { using namespace LegalityPredicates; return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation); } /// Use the given action when type indexes 0 and 1 is any type pair in the /// given list. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) { using namespace LegalityPredicates; return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); } /// Use the given action when type indexes 0 and 1 is any type pair in the /// given list. /// Action should be an action that requires mutation. LegalizeRuleSet &actionFor(LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types, LegalizeMutation Mutation) { using namespace LegalityPredicates; return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types), Mutation); } /// Use the given action when type indexes 0 and 1 are both in the given list. /// That is, the type pair is in the cartesian product of the list. /// Action should not be an action that requires mutation. LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, std::initializer_list<LLT> Types) { using namespace LegalityPredicates; return actionIf(Action, all(typeInSet(typeIdx(0), Types), typeInSet(typeIdx(1), Types))); } /// Use the given action when type indexes 0 and 1 are both in their /// respective lists. /// That is, the type pair is in the cartesian product of the lists /// Action should not be an action that requires mutation. LegalizeRuleSet & actionForCartesianProduct(LegalizeAction Action, std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1) { using namespace LegalityPredicates; return actionIf(Action, all(typeInSet(typeIdx(0), Types0), typeInSet(typeIdx(1), Types1))); } /// Use the given action when type indexes 0, 1, and 2 are all in their /// respective lists. /// That is, the type triple is in the cartesian product of the lists /// Action should not be an action that requires mutation. LegalizeRuleSet &actionForCartesianProduct( LegalizeAction Action, std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) { using namespace LegalityPredicates; return actionIf(Action, all(typeInSet(typeIdx(0), Types0), all(typeInSet(typeIdx(1), Types1), typeInSet(typeIdx(2), Types2)))); } public: LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {} bool isAliasedByAnother() { return IsAliasedByAnother; } void setIsAliasedByAnother() { IsAliasedByAnother = true; } void aliasTo(unsigned Opcode) { assert((AliasOf == 0 || AliasOf == Opcode) && "Opcode is already aliased to another opcode"); assert(Rules.empty() && "Aliasing will discard rules"); AliasOf = Opcode; } unsigned getAlias() const { return AliasOf; } /// The instruction is legal if predicate is true. LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { // We have no choice but conservatively assume that the free-form // user-provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::Legal, Predicate); } /// The instruction is legal when type index 0 is any type in the given list. LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) { return actionFor(LegalizeAction::Legal, Types); } /// The instruction is legal when type indexes 0 and 1 is any type pair in the /// given list. LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) { return actionFor(LegalizeAction::Legal, Types); } /// The instruction is legal when type indexes 0 and 1 along with the memory /// size is any type and size tuple in the given list. LegalizeRuleSet &legalForTypesWithMemSize( std::initializer_list<LegalityPredicates::TypePairAndMemSize> TypesAndMemSize) { return actionIf(LegalizeAction::Legal, LegalityPredicates::typePairAndMemSizeInSet( typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemSize)); } /// The instruction is legal when type indexes 0 and 1 are both in the given /// list. That is, the type pair is in the cartesian product of the list. LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) { return actionForCartesianProduct(LegalizeAction::Legal, Types); } /// The instruction is legal when type indexes 0 and 1 are both their /// respective lists. LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1) { return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); } /// The instruction is lowered. LegalizeRuleSet &lower() { using namespace LegalizeMutations; // We have no choice but conservatively assume that predicate-less lowering // properly handles all type indices by design: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::Lower, always); } /// The instruction is lowered if predicate is true. Keep type index 0 as the /// same type. LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) { using namespace LegalizeMutations; // We have no choice but conservatively assume that lowering with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::Lower, Predicate); } /// The instruction is lowered if predicate is true. LegalizeRuleSet &lowerIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that lowering with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::Lower, Predicate, Mutation); } /// The instruction is lowered when type index 0 is any type in the given /// list. Keep type index 0 as the same type. LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) { return actionFor(LegalizeAction::Lower, Types, LegalizeMutations::changeTo(0, 0)); } /// The instruction is lowered when type index 0 is any type in the given /// list. LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types, LegalizeMutation Mutation) { return actionFor(LegalizeAction::Lower, Types, Mutation); } /// The instruction is lowered when type indexes 0 and 1 is any type pair in /// the given list. Keep type index 0 as the same type. LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) { return actionFor(LegalizeAction::Lower, Types, LegalizeMutations::changeTo(0, 0)); } /// The instruction is lowered when type indexes 0 and 1 is any type pair in /// the given list. LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types, LegalizeMutation Mutation) { return actionFor(LegalizeAction::Lower, Types, Mutation); } /// The instruction is lowered when type indexes 0 and 1 are both in their /// respective lists. LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1) { using namespace LegalityPredicates; return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1); } /// The instruction is lowered when when type indexes 0, 1, and 2 are all in /// their respective lists. LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) { using namespace LegalityPredicates; return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1, Types2); } /// Like legalIf, but for the Libcall action. LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { // We have no choice but conservatively assume that a libcall with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::Libcall, Predicate); } LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) { return actionFor(LegalizeAction::Libcall, Types); } LegalizeRuleSet & libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) { return actionFor(LegalizeAction::Libcall, Types); } LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list<LLT> Types) { return actionForCartesianProduct(LegalizeAction::Libcall, Types); } LegalizeRuleSet & libcallForCartesianProduct(std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1) { return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); } /// Widen the scalar to the one selected by the mutation if the predicate is /// true. LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); } /// Narrow the scalar to the one selected by the mutation if the predicate is /// true. LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); } /// Add more elements to reach the type selected by the mutation if the /// predicate is true. LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); } /// Remove elements to reach the type selected by the mutation if the /// predicate is true. LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, LegalizeMutation Mutation) { // We have no choice but conservatively assume that an action with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); } /// The instruction is unsupported. LegalizeRuleSet &unsupported() { return actionIf(LegalizeAction::Unsupported, always); } LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { return actionIf(LegalizeAction::Unsupported, Predicate); } LegalizeRuleSet &unsupportedIfMemSizeNotPow2() { return actionIf(LegalizeAction::Unsupported, LegalityPredicates::memSizeInBytesNotPow2(0)); } LegalizeRuleSet &customIf(LegalityPredicate Predicate) { // We have no choice but conservatively assume that a custom action with a // free-form user provided Predicate properly handles all type indices: markAllTypeIdxsAsCovered(); return actionIf(LegalizeAction::Custom, Predicate); } LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) { return actionFor(LegalizeAction::Custom, Types); } LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) { return actionForCartesianProduct(LegalizeAction::Custom, Types); } LegalizeRuleSet & customForCartesianProduct(std::initializer_list<LLT> Types0, std::initializer_list<LLT> Types1) { return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); } /// Widen the scalar to the next power of two that is at least MinSize. /// No effect if the type is not a scalar or is a power of two. LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, unsigned MinSize = 0) { using namespace LegalityPredicates; return actionIf(LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)), LegalizeMutations::widenScalarToNextPow2(TypeIdx, MinSize)); } LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { using namespace LegalityPredicates; return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)), Mutation); } /// Ensure the scalar is at least as wide as Ty. LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::WidenScalar, narrowerThan(TypeIdx, Ty.getSizeInBits()), changeTo(typeIdx(TypeIdx), Ty)); } /// Ensure the scalar is at most as wide as Ty. LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::NarrowScalar, widerThan(TypeIdx, Ty.getSizeInBits()), changeTo(typeIdx(TypeIdx), Ty)); } /// Conditionally limit the maximum size of the scalar. /// For example, when the maximum size of one type depends on the size of /// another such as extracting N bits from an M bit container. LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, const LLT &Ty) { using namespace LegalityPredicates; using namespace LegalizeMutations; return actionIf(LegalizeAction::NarrowScalar, [=](const LegalityQuery &Query) { return widerThan(TypeIdx, Ty.getSizeInBits()) && Predicate(Query); }, changeTo(typeIdx(TypeIdx), Ty)); } /// Limit the range of scalar sizes to MinTy and MaxTy. LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy, const LLT &MaxTy) { assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy); } /// Add more elements to the vector to reach the next power of two. /// No effect if the type is not a vector or the element count is a power of /// two. LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { using namespace LegalityPredicates; return actionIf(LegalizeAction::MoreElements, numElementsNotPow2(typeIdx(TypeIdx)), LegalizeMutations::moreElementsToNextPow2(TypeIdx)); } /// Limit the number of elements in EltTy vectors to at least MinElements. LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy, unsigned MinElements) { // Mark the type index as covered: typeIdx(TypeIdx); return actionIf( LegalizeAction::MoreElements, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return VecTy.isVector() && VecTy.getElementType() == EltTy && VecTy.getNumElements() < MinElements; }, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return std::make_pair( TypeIdx, LLT::vector(MinElements, VecTy.getScalarSizeInBits())); }); } /// Limit the number of elements in EltTy vectors to at most MaxElements. LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy, unsigned MaxElements) { // Mark the type index as covered: typeIdx(TypeIdx); return actionIf( LegalizeAction::FewerElements, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return VecTy.isVector() && VecTy.getElementType() == EltTy && VecTy.getNumElements() > MaxElements; }, [=](const LegalityQuery &Query) { LLT VecTy = Query.Types[TypeIdx]; return std::make_pair( TypeIdx, LLT::vector(MaxElements, VecTy.getScalarSizeInBits())); }); } /// Limit the number of elements for the given vectors to at least MinTy's /// number of elements and at most MaxTy's number of elements. /// /// No effect if the type is not a vector or does not have the same element /// type as the constraints. /// The element type of MinTy and MaxTy must match. LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy, const LLT &MaxTy) { assert(MinTy.getElementType() == MaxTy.getElementType() && "Expected element types to agree"); const LLT &EltTy = MinTy.getElementType(); return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); } /// Fallback on the previous implementation. This should only be used while /// porting a rule. LegalizeRuleSet &fallback() { add({always, LegalizeAction::UseLegacyRules}); return *this; } /// Check if there is no type index which is obviously not handled by the /// LegalizeRuleSet in any way at all. /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const; /// Apply the ruleset to the given LegalityQuery. LegalizeActionStep apply(const LegalityQuery &Query) const; }; class LegalizerInfo { public: LegalizerInfo(); virtual ~LegalizerInfo() = default; unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; unsigned getActionDefinitionsIdx(unsigned Opcode) const; /// Compute any ancillary tables needed to quickly decide how an operation /// should be handled. This must be called after all "set*Action"methods but /// before any query is made or incorrect results may be returned. void computeTables(); /// Perform simple self-diagnostic and assert if there is anything obviously /// wrong with the actions set up. void verify(const MCInstrInfo &MII) const; static bool needsLegalizingToDifferentSize(const LegalizeAction Action) { using namespace LegalizeActions; switch (Action) { case NarrowScalar: case WidenScalar: case FewerElements: case MoreElements: case Unsupported: return true; default: return false; } } using SizeAndAction = std::pair<uint16_t, LegalizeAction>; using SizeAndActionsVec = std::vector<SizeAndAction>; using SizeChangeStrategy = std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>; /// More friendly way to set an action for common types that have an LLT /// representation. /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize /// returns false. void setAction(const InstrAspect &Aspect, LegalizeAction Action) { assert(!needsLegalizingToDifferentSize(Action)); TablesInitialized = false; const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx) SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1); SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action; } /// The setAction calls record the non-size-changing legalization actions /// to take on specificly-sized types. The SizeChangeStrategy defines what /// to do when the size of the type needs to be changed to reach a legally /// sized type (i.e., one that was defined through a setAction call). /// e.g. /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal); /// setLegalizeScalarToDifferentSizeStrategy( /// G_ADD, 0, widenToLargerTypesAndNarrowToLargest); /// will end up defining getAction({G_ADD, 0, T}) to return the following /// actions for different scalar types T: /// LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)} /// LLT::scalar(32): {Legal, 0, LLT::scalar(32)} /// LLT::scalar(33)..: {NarrowScalar, 0, LLT::scalar(32)} /// /// If no SizeChangeAction gets defined, through this function, /// the default is unsupportedForDifferentSizes. void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode, const unsigned TypeIdx, SizeChangeStrategy S) { const unsigned OpcodeIdx = Opcode - FirstOp; if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; } /// See also setLegalizeScalarToDifferentSizeStrategy. /// This function allows to set the SizeChangeStrategy for vector elements. void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode, const unsigned TypeIdx, SizeChangeStrategy S) { const unsigned OpcodeIdx = Opcode - FirstOp; if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; } /// A SizeChangeStrategy for the common case where legalization for a /// particular operation consists of only supporting a specific set of type /// sizes. E.g. /// setAction ({G_DIV, 0, LLT::scalar(32)}, Legal); /// setAction ({G_DIV, 0, LLT::scalar(64)}, Legal); /// setLegalizeScalarToDifferentSizeStrategy( /// G_DIV, 0, unsupportedForDifferentSizes); /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64, /// and Unsupported for all other scalar types T. static SizeAndActionsVec unsupportedForDifferentSizes(const SizeAndActionsVec &v) { using namespace LegalizeActions; return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported, Unsupported); } /// A SizeChangeStrategy for the common case where legalization for a /// particular operation consists of widening the type to a large legal type, /// unless there is no such type and then instead it should be narrowed to the /// largest legal type. static SizeAndActionsVec widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) { using namespace LegalizeActions; assert(v.size() > 0 && "At least one size that can be legalized towards is needed" " for this SizeChangeStrategy"); return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, NarrowScalar); } static SizeAndActionsVec widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) { using namespace LegalizeActions; return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, Unsupported); } static SizeAndActionsVec narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) { using namespace LegalizeActions; return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, Unsupported); } static SizeAndActionsVec narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) { using namespace LegalizeActions; assert(v.size() > 0 && "At least one size that can be legalized towards is needed" " for this SizeChangeStrategy"); return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, WidenScalar); } /// A SizeChangeStrategy for the common case where legalization for a /// particular vector operation consists of having more elements in the /// vector, to a type that is legal. Unless there is no such type and then /// instead it should be legalized towards the widest vector that's still /// legal. E.g. /// setAction({G_ADD, LLT::vector(8, 8)}, Legal); /// setAction({G_ADD, LLT::vector(16, 8)}, Legal); /// setAction({G_ADD, LLT::vector(2, 32)}, Legal); /// setAction({G_ADD, LLT::vector(4, 32)}, Legal); /// setLegalizeVectorElementToDifferentSizeStrategy( /// G_ADD, 0, moreToWiderTypesAndLessToWidest); /// will result in the following getAction results: /// * getAction({G_ADD, LLT::vector(8,8)}) returns /// (Legal, vector(8,8)). /// * getAction({G_ADD, LLT::vector(9,8)}) returns /// (MoreElements, vector(16,8)). /// * getAction({G_ADD, LLT::vector(8,32)}) returns /// (FewerElements, vector(4,32)). static SizeAndActionsVec moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) { using namespace LegalizeActions; return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements, FewerElements); } /// Helper function to implement many typical SizeChangeStrategy functions. static SizeAndActionsVec increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v, LegalizeAction IncreaseAction, LegalizeAction DecreaseAction); /// Helper function to implement many typical SizeChangeStrategy functions. static SizeAndActionsVec decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v, LegalizeAction DecreaseAction, LegalizeAction IncreaseAction); /// Get the action definitions for the given opcode. Use this to run a /// LegalityQuery through the definitions. const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; /// Get the action definition builder for the given opcode. Use this to define /// the action definitions. /// /// It is an error to request an opcode that has already been requested by the /// multiple-opcode variant. LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); /// Get the action definition builder for the given set of opcodes. Use this /// to define the action definitions for multiple opcodes at once. The first /// opcode given will be considered the representative opcode and will hold /// the definitions whereas the other opcodes will be configured to refer to /// the representative opcode. This lowers memory requirements and very /// slightly improves performance. /// /// It would be very easy to introduce unexpected side-effects as a result of /// this aliasing if it were permitted to request different but intersecting /// sets of opcodes but that is difficult to keep track of. It is therefore an /// error to request the same opcode twice using this API, to request an /// opcode that already has definitions, or to use the single-opcode API on an /// opcode that has already been requested by this API. LegalizeRuleSet & getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes); void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); /// Determine what action should be taken to legalize the described /// instruction. Requires computeTables to have been called. /// /// \returns a description of the next legalization step to perform. LegalizeActionStep getAction(const LegalityQuery &Query) const; /// Determine what action should be taken to legalize the given generic /// instruction. /// /// \returns a description of the next legalization step to perform. LegalizeActionStep getAction(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; virtual bool legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder) const; private: /// Determine what action should be taken to legalize the given generic /// instruction opcode, type-index and type. Requires computeTables to have /// been called. /// /// \returns a pair consisting of the kind of legalization that should be /// performed and the destination type. std::pair<LegalizeAction, LLT> getAspectAction(const InstrAspect &Aspect) const; /// The SizeAndActionsVec is a representation mapping between all natural /// numbers and an Action. The natural number represents the bit size of /// the InstrAspect. For example, for a target with native support for 32-bit /// and 64-bit additions, you'd express that as: /// setScalarAction(G_ADD, 0, /// {{1, WidenScalar}, // bit sizes [ 1, 31[ /// {32, Legal}, // bit sizes [32, 33[ /// {33, WidenScalar}, // bit sizes [33, 64[ /// {64, Legal}, // bit sizes [64, 65[ /// {65, NarrowScalar} // bit sizes [65, +inf[ /// }); /// It may be that only 64-bit pointers are supported on your target: /// setPointerAction(G_GEP, 0, LLT:pointer(1), /// {{1, Unsupported}, // bit sizes [ 1, 63[ /// {64, Legal}, // bit sizes [64, 65[ /// {65, Unsupported}, // bit sizes [65, +inf[ /// }); void setScalarAction(const unsigned Opcode, const unsigned TypeIndex, const SizeAndActionsVec &SizeAndActions) { const unsigned OpcodeIdx = Opcode - FirstOp; SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx]; setActions(TypeIndex, Actions, SizeAndActions); } void setPointerAction(const unsigned Opcode, const unsigned TypeIndex, const unsigned AddressSpace, const SizeAndActionsVec &SizeAndActions) { const unsigned OpcodeIdx = Opcode - FirstOp; if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) == AddrSpace2PointerActions[OpcodeIdx].end()) AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}}; SmallVector<SizeAndActionsVec, 1> &Actions = AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second; setActions(TypeIndex, Actions, SizeAndActions); } /// If an operation on a given vector type (say <M x iN>) isn't explicitly /// specified, we proceed in 2 stages. First we legalize the underlying scalar /// (so that there's at least one legal vector with that scalar), then we /// adjust the number of elements in the vector so that it is legal. The /// desired action in the first step is controlled by this function. void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex, const SizeAndActionsVec &SizeAndActions) { unsigned OpcodeIdx = Opcode - FirstOp; SmallVector<SizeAndActionsVec, 1> &Actions = ScalarInVectorActions[OpcodeIdx]; setActions(TypeIndex, Actions, SizeAndActions); } /// See also setScalarInVectorAction. /// This function let's you specify the number of elements in a vector that /// are legal for a legal element size. void setVectorNumElementAction(const unsigned Opcode, const unsigned TypeIndex, const unsigned ElementSize, const SizeAndActionsVec &SizeAndActions) { const unsigned OpcodeIdx = Opcode - FirstOp; if (NumElements2Actions[OpcodeIdx].find(ElementSize) == NumElements2Actions[OpcodeIdx].end()) NumElements2Actions[OpcodeIdx][ElementSize] = {{}}; SmallVector<SizeAndActionsVec, 1> &Actions = NumElements2Actions[OpcodeIdx].find(ElementSize)->second; setActions(TypeIndex, Actions, SizeAndActions); } /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes, /// i.e. it's OK if it doesn't start from size 1. static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) { using namespace LegalizeActions; #ifndef NDEBUG // The sizes should be in increasing order int prev_size = -1; for(auto SizeAndAction: v) { assert(SizeAndAction.first > prev_size); prev_size = SizeAndAction.first; } // - for every Widen action, there should be a larger bitsize that // can be legalized towards (e.g. Legal, Lower, Libcall or Custom // action). // - for every Narrow action, there should be a smaller bitsize that // can be legalized towards. int SmallestNarrowIdx = -1; int LargestWidenIdx = -1; int SmallestLegalizableToSameSizeIdx = -1; int LargestLegalizableToSameSizeIdx = -1; for(size_t i=0; i<v.size(); ++i) { switch (v[i].second) { case FewerElements: case NarrowScalar: if (SmallestNarrowIdx == -1) SmallestNarrowIdx = i; break; case WidenScalar: case MoreElements: LargestWidenIdx = i; break; case Unsupported: break; default: if (SmallestLegalizableToSameSizeIdx == -1) SmallestLegalizableToSameSizeIdx = i; LargestLegalizableToSameSizeIdx = i; } } if (SmallestNarrowIdx != -1) { assert(SmallestLegalizableToSameSizeIdx != -1); assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx); } if (LargestWidenIdx != -1) assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx); #endif } /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with /// from size 1. static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) { #ifndef NDEBUG // Data structure invariant: The first bit size must be size 1. assert(v.size() >= 1); assert(v[0].first == 1); checkPartialSizeAndActionsVector(v); #endif } /// Sets actions for all bit sizes on a particular generic opcode, type /// index and scalar or pointer type. void setActions(unsigned TypeIndex, SmallVector<SizeAndActionsVec, 1> &Actions, const SizeAndActionsVec &SizeAndActions) { checkFullSizeAndActionsVector(SizeAndActions); if (Actions.size() <= TypeIndex) Actions.resize(TypeIndex + 1); Actions[TypeIndex] = SizeAndActions; } static SizeAndAction findAction(const SizeAndActionsVec &Vec, const uint32_t Size); /// Returns the next action needed to get the scalar or pointer type closer /// to being legal /// E.g. findLegalAction({G_REM, 13}) should return /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will /// probably be called, which should return (Lower, 32). /// This is assuming the setScalarAction on G_REM was something like: /// setScalarAction(G_REM, 0, /// {{1, WidenScalar}, // bit sizes [ 1, 31[ /// {32, Lower}, // bit sizes [32, 33[ /// {33, NarrowScalar} // bit sizes [65, +inf[ /// }); std::pair<LegalizeAction, LLT> findScalarLegalAction(const InstrAspect &Aspect) const; /// Returns the next action needed towards legalizing the vector type. std::pair<LegalizeAction, LLT> findVectorLegalAction(const InstrAspect &Aspect) const; static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; // Data structures used temporarily during construction of legality data: using TypeMap = DenseMap<LLT, LegalizeAction>; SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1]; SmallVector<SizeChangeStrategy, 1> ScalarSizeChangeStrategies[LastOp - FirstOp + 1]; SmallVector<SizeChangeStrategy, 1> VectorElementSizeChangeStrategies[LastOp - FirstOp + 1]; bool TablesInitialized; // Data structures used by getAction: SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1]; SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1]; std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> AddrSpace2PointerActions[LastOp - FirstOp + 1]; std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> NumElements2Actions[LastOp - FirstOp + 1]; LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; }; #ifndef NDEBUG /// Checks that MIR is fully legal, returns an illegal instruction if it's not, /// nullptr otherwise const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); #endif } // end namespace llvm. #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H