//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares the SelectionDAG class, and transitively defines the // SDNode class and subclasses. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SELECTIONDAG_H #define LLVM_CODEGEN_SELECTIONDAG_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/ilist.h" #include "llvm/ADT/iterator.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/LegacyDivergenceAnalysis.h" #include "llvm/CodeGen/DAGCombine.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Metadata.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/ArrayRecycler.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MachineValueType.h" #include "llvm/Support/RecyclingAllocator.h" #include <algorithm> #include <cassert> #include <cstdint> #include <functional> #include <map> #include <string> #include <tuple> #include <utility> #include <vector> namespace llvm { class BlockAddress; class Constant; class ConstantFP; class ConstantInt; class DataLayout; struct fltSemantics; class GlobalValue; struct KnownBits; class LLVMContext; class MachineBasicBlock; class MachineConstantPoolValue; class MCSymbol; class OptimizationRemarkEmitter; class SDDbgValue; class SDDbgLabel; class SelectionDAG; class SelectionDAGTargetInfo; class TargetLibraryInfo; class TargetLowering; class TargetMachine; class TargetSubtargetInfo; class Value; class SDVTListNode : public FoldingSetNode { friend struct FoldingSetTrait<SDVTListNode>; /// A reference to an Interned FoldingSetNodeID for this node. /// The Allocator in SelectionDAG holds the data. /// SDVTList contains all types which are frequently accessed in SelectionDAG. /// The size of this list is not expected to be big so it won't introduce /// a memory penalty. FoldingSetNodeIDRef FastID; const EVT *VTs; unsigned int NumVTs; /// The hash value for SDVTList is fixed, so cache it to avoid /// hash calculation. unsigned HashValue; public: SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) : FastID(ID), VTs(VT), NumVTs(Num) { HashValue = ID.ComputeHash(); } SDVTList getSDVTList() { SDVTList result = {VTs, NumVTs}; return result; } }; /// Specialize FoldingSetTrait for SDVTListNode /// to avoid computing temp FoldingSetNodeID and hash value. template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> { static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) { ID = X.FastID; } static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, unsigned IDHash, FoldingSetNodeID &TempID) { if (X.HashValue != IDHash) return false; return ID == X.FastID; } static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) { return X.HashValue; } }; template <> struct ilist_alloc_traits<SDNode> { static void deleteNode(SDNode *) { llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!"); } }; /// Keeps track of dbg_value information through SDISel. We do /// not build SDNodes for these so as not to perturb the generated code; /// instead the info is kept off to the side in this structure. Each SDNode may /// have one or more associated dbg_value entries. This information is kept in /// DbgValMap. /// Byval parameters are handled separately because they don't use alloca's, /// which busts the normal mechanism. There is good reason for handling all /// parameters separately: they may not have code generated for them, they /// should always go at the beginning of the function regardless of other code /// motion, and debug info for them is potentially useful even if the parameter /// is unused. Right now only byval parameters are handled separately. class SDDbgInfo { BumpPtrAllocator Alloc; SmallVector<SDDbgValue*, 32> DbgValues; SmallVector<SDDbgValue*, 32> ByvalParmDbgValues; SmallVector<SDDbgLabel*, 4> DbgLabels; using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>; DbgValMapType DbgValMap; public: SDDbgInfo() = default; SDDbgInfo(const SDDbgInfo &) = delete; SDDbgInfo &operator=(const SDDbgInfo &) = delete; void add(SDDbgValue *V, const SDNode *Node, bool isParameter) { if (isParameter) { ByvalParmDbgValues.push_back(V); } else DbgValues.push_back(V); if (Node) DbgValMap[Node].push_back(V); } void add(SDDbgLabel *L) { DbgLabels.push_back(L); } /// Invalidate all DbgValues attached to the node and remove /// it from the Node-to-DbgValues map. void erase(const SDNode *Node); void clear() { DbgValMap.clear(); DbgValues.clear(); ByvalParmDbgValues.clear(); DbgLabels.clear(); Alloc.Reset(); } BumpPtrAllocator &getAlloc() { return Alloc; } bool empty() const { return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty(); } ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const { auto I = DbgValMap.find(Node); if (I != DbgValMap.end()) return I->second; return ArrayRef<SDDbgValue*>(); } using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator; using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator; DbgIterator DbgBegin() { return DbgValues.begin(); } DbgIterator DbgEnd() { return DbgValues.end(); } DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); } DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); } DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); } DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); } }; void checkForCycles(const SelectionDAG *DAG, bool force = false); /// This is used to represent a portion of an LLVM function in a low-level /// Data Dependence DAG representation suitable for instruction selection. /// This DAG is constructed as the first step of instruction selection in order /// to allow implementation of machine specific optimizations /// and code simplifications. /// /// The representation used by the SelectionDAG is a target-independent /// representation, which has some similarities to the GCC RTL representation, /// but is significantly more simple, powerful, and is a graph form instead of a /// linear form. /// class SelectionDAG { const TargetMachine &TM; const SelectionDAGTargetInfo *TSI = nullptr; const TargetLowering *TLI = nullptr; const TargetLibraryInfo *LibInfo = nullptr; MachineFunction *MF; Pass *SDAGISelPass = nullptr; LLVMContext *Context; CodeGenOpt::Level OptLevel; LegacyDivergenceAnalysis * DA = nullptr; FunctionLoweringInfo * FLI = nullptr; /// The function-level optimization remark emitter. Used to emit remarks /// whenever manipulating the DAG. OptimizationRemarkEmitter *ORE; /// The starting token. SDNode EntryNode; /// The root of the entire DAG. SDValue Root; /// A linked list of nodes in the current DAG. ilist<SDNode> AllNodes; /// The AllocatorType for allocating SDNodes. We use /// pool allocation with recycling. using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode, sizeof(LargestSDNode), alignof(MostAlignedSDNode)>; /// Pool allocation for nodes. NodeAllocatorType NodeAllocator; /// This structure is used to memoize nodes, automatically performing /// CSE with existing nodes when a duplicate is requested. FoldingSet<SDNode> CSEMap; /// Pool allocation for machine-opcode SDNode operands. BumpPtrAllocator OperandAllocator; ArrayRecycler<SDUse> OperandRecycler; /// Pool allocation for misc. objects that are created once per SelectionDAG. BumpPtrAllocator Allocator; /// Tracks dbg_value and dbg_label information through SDISel. SDDbgInfo *DbgInfo; uint16_t NextPersistentId = 0; public: /// Clients of various APIs that cause global effects on /// the DAG can optionally implement this interface. This allows the clients /// to handle the various sorts of updates that happen. /// /// A DAGUpdateListener automatically registers itself with DAG when it is /// constructed, and removes itself when destroyed in RAII fashion. struct DAGUpdateListener { DAGUpdateListener *const Next; SelectionDAG &DAG; explicit DAGUpdateListener(SelectionDAG &D) : Next(D.UpdateListeners), DAG(D) { DAG.UpdateListeners = this; } virtual ~DAGUpdateListener() { assert(DAG.UpdateListeners == this && "DAGUpdateListeners must be destroyed in LIFO order"); DAG.UpdateListeners = Next; } /// The node N that was deleted and, if E is not null, an /// equivalent node E that replaced it. virtual void NodeDeleted(SDNode *N, SDNode *E); /// The node N that was updated. virtual void NodeUpdated(SDNode *N); }; struct DAGNodeDeletedListener : public DAGUpdateListener { std::function<void(SDNode *, SDNode *)> Callback; DAGNodeDeletedListener(SelectionDAG &DAG, std::function<void(SDNode *, SDNode *)> Callback) : DAGUpdateListener(DAG), Callback(std::move(Callback)) {} void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); } }; /// When true, additional steps are taken to /// ensure that getConstant() and similar functions return DAG nodes that /// have legal types. This is important after type legalization since /// any illegally typed nodes generated after this point will not experience /// type legalization. bool NewNodesMustHaveLegalTypes = false; private: /// DAGUpdateListener is a friend so it can manipulate the listener stack. friend struct DAGUpdateListener; /// Linked list of registered DAGUpdateListener instances. /// This stack is maintained by DAGUpdateListener RAII. DAGUpdateListener *UpdateListeners = nullptr; /// Implementation of setSubgraphColor. /// Return whether we had to truncate the search. bool setSubgraphColorHelper(SDNode *N, const char *Color, DenseSet<SDNode *> &visited, int level, bool &printed); template <typename SDNodeT, typename... ArgTypes> SDNodeT *newSDNode(ArgTypes &&... Args) { return new (NodeAllocator.template Allocate<SDNodeT>()) SDNodeT(std::forward<ArgTypes>(Args)...); } /// Build a synthetic SDNodeT with the given args and extract its subclass /// data as an integer (e.g. for use in a folding set). /// /// The args to this function are the same as the args to SDNodeT's /// constructor, except the second arg (assumed to be a const DebugLoc&) is /// omitted. template <typename SDNodeT, typename... ArgTypes> static uint16_t getSyntheticNodeSubclassData(unsigned IROrder, ArgTypes &&... Args) { // The compiler can reduce this expression to a constant iff we pass an // empty DebugLoc. Thankfully, the debug location doesn't have any bearing // on the subclass data. return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...) .getRawSubclassData(); } template <typename SDNodeTy> static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order, SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO) { return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO) .getRawSubclassData(); } void createOperands(SDNode *Node, ArrayRef<SDValue> Vals); void removeOperands(SDNode *Node) { if (!Node->OperandList) return; OperandRecycler.deallocate( ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands), Node->OperandList); Node->NumOperands = 0; Node->OperandList = nullptr; } void CreateTopologicalOrder(std::vector<SDNode*>& Order); public: explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level); SelectionDAG(const SelectionDAG &) = delete; SelectionDAG &operator=(const SelectionDAG &) = delete; ~SelectionDAG(); /// Prepare this SelectionDAG to process code in the given MachineFunction. void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, LegacyDivergenceAnalysis * Divergence); void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) { FLI = FuncInfo; } /// Clear state and free memory necessary to make this /// SelectionDAG ready to process a new block. void clear(); MachineFunction &getMachineFunction() const { return *MF; } const Pass *getPass() const { return SDAGISelPass; } const DataLayout &getDataLayout() const { return MF->getDataLayout(); } const TargetMachine &getTarget() const { return TM; } const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); } const TargetLowering &getTargetLoweringInfo() const { return *TLI; } const TargetLibraryInfo &getLibInfo() const { return *LibInfo; } const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; } LLVMContext *getContext() const {return Context; } OptimizationRemarkEmitter &getORE() const { return *ORE; } /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'. void viewGraph(const std::string &Title); void viewGraph(); #ifndef NDEBUG std::map<const SDNode *, std::string> NodeGraphAttrs; #endif /// Clear all previously defined node graph attributes. /// Intended to be used from a debugging tool (eg. gdb). void clearGraphAttrs(); /// Set graph attributes for a node. (eg. "color=red".) void setGraphAttrs(const SDNode *N, const char *Attrs); /// Get graph attributes for a node. (eg. "color=red".) /// Used from getNodeAttributes. const std::string getGraphAttrs(const SDNode *N) const; /// Convenience for setting node color attribute. void setGraphColor(const SDNode *N, const char *Color); /// Convenience for setting subgraph color attribute. void setSubgraphColor(SDNode *N, const char *Color); using allnodes_const_iterator = ilist<SDNode>::const_iterator; allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } using allnodes_iterator = ilist<SDNode>::iterator; allnodes_iterator allnodes_begin() { return AllNodes.begin(); } allnodes_iterator allnodes_end() { return AllNodes.end(); } ilist<SDNode>::size_type allnodes_size() const { return AllNodes.size(); } iterator_range<allnodes_iterator> allnodes() { return make_range(allnodes_begin(), allnodes_end()); } iterator_range<allnodes_const_iterator> allnodes() const { return make_range(allnodes_begin(), allnodes_end()); } /// Return the root tag of the SelectionDAG. const SDValue &getRoot() const { return Root; } /// Return the token chain corresponding to the entry of the function. SDValue getEntryNode() const { return SDValue(const_cast<SDNode *>(&EntryNode), 0); } /// Set the current root tag of the SelectionDAG. /// const SDValue &setRoot(SDValue N) { assert((!N.getNode() || N.getValueType() == MVT::Other) && "DAG root value is not a chain!"); if (N.getNode()) checkForCycles(N.getNode(), this); Root = N; if (N.getNode()) checkForCycles(this); return Root; } #ifndef NDEBUG void VerifyDAGDiverence(); #endif /// This iterates over the nodes in the SelectionDAG, folding /// certain types of nodes together, or eliminating superfluous nodes. The /// Level argument controls whether Combine is allowed to produce nodes and /// types that are illegal on the target. void Combine(CombineLevel Level, AliasAnalysis *AA, CodeGenOpt::Level OptLevel); /// This transforms the SelectionDAG into a SelectionDAG that /// only uses types natively supported by the target. /// Returns "true" if it made any changes. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. bool LegalizeTypes(); /// This transforms the SelectionDAG into a SelectionDAG that is /// compatible with the target instruction selector, as indicated by the /// TargetLowering object. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. void Legalize(); /// Transforms a SelectionDAG node and any operands to it into a node /// that is compatible with the target instruction selector, as indicated by /// the TargetLowering object. /// /// \returns true if \c N is a valid, legal node after calling this. /// /// This essentially runs a single recursive walk of the \c Legalize process /// over the given node (and its operands). This can be used to incrementally /// legalize the DAG. All of the nodes which are directly replaced, /// potentially including N, are added to the output parameter \c /// UpdatedNodes so that the delta to the DAG can be understood by the /// caller. /// /// When this returns false, N has been legalized in a way that make the /// pointer passed in no longer valid. It may have even been deleted from the /// DAG, and so it shouldn't be used further. When this returns true, the /// N passed in is a legal node, and can be immediately processed as such. /// This may still have done some work on the DAG, and will still populate /// UpdatedNodes with any new nodes replacing those originally in the DAG. bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes); /// This transforms the SelectionDAG into a SelectionDAG /// that only uses vector math operations supported by the target. This is /// necessary as a separate step from Legalize because unrolling a vector /// operation can introduce illegal types, which requires running /// LegalizeTypes again. /// /// This returns true if it made any changes; in that case, LegalizeTypes /// is called again before Legalize. /// /// Note that this is an involved process that may invalidate pointers into /// the graph. bool LegalizeVectors(); /// This method deletes all unreachable nodes in the SelectionDAG. void RemoveDeadNodes(); /// Remove the specified node from the system. This node must /// have no referrers. void DeleteNode(SDNode *N); /// Return an SDVTList that represents the list of values specified. SDVTList getVTList(EVT VT); SDVTList getVTList(EVT VT1, EVT VT2); SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3); SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4); SDVTList getVTList(ArrayRef<EVT> VTs); //===--------------------------------------------------------------------===// // Node creation methods. /// Create a ConstantSDNode wrapping a constant value. /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. /// /// If only legal types can be produced, this does the necessary /// transformations (e.g., if the vector element type is illegal). /// @{ SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isTarget = false, bool isOpaque = false); SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isTarget = false, bool isOpaque = false); SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false, bool IsOpaque = false) { return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT, IsTarget, IsOpaque); } SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isTarget = false, bool isOpaque = false); SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, bool isTarget = false); SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, bool isOpaque = false) { return getConstant(Val, DL, VT, true, isOpaque); } SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, bool isOpaque = false) { return getConstant(Val, DL, VT, true, isOpaque); } SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, bool isOpaque = false) { return getConstant(Val, DL, VT, true, isOpaque); } /// Create a true or false constant of type \p VT using the target's /// BooleanContent for type \p OpVT. SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT); /// @} /// Create a ConstantFPSDNode wrapping a constant value. /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. /// /// If only legal types can be produced, this does the necessary /// transformations (e.g., if the vector element type is illegal). /// The forms that take a double should only be used for simple constants /// that can be exactly represented in VT. No checks are made. /// @{ SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget = false); SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT, bool isTarget = false); SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT, bool isTarget = false); SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) { return getConstantFP(Val, DL, VT, true); } SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) { return getConstantFP(Val, DL, VT, true); } SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) { return getConstantFP(Val, DL, VT, true); } /// @} SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset = 0, bool isTargetGA = false, unsigned char TargetFlags = 0); SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, int64_t offset = 0, unsigned char TargetFlags = 0) { return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags); } SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false); SDValue getTargetFrameIndex(int FI, EVT VT) { return getFrameIndex(FI, VT, true); } SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false, unsigned char TargetFlags = 0); SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) { return getJumpTable(JTI, VT, true, TargetFlags); } SDValue getConstantPool(const Constant *C, EVT VT, unsigned Align = 0, int Offs = 0, bool isT=false, unsigned char TargetFlags = 0); SDValue getTargetConstantPool(const Constant *C, EVT VT, unsigned Align = 0, int Offset = 0, unsigned char TargetFlags = 0) { return getConstantPool(C, VT, Align, Offset, true, TargetFlags); } SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align = 0, int Offs = 0, bool isT=false, unsigned char TargetFlags = 0); SDValue getTargetConstantPool(MachineConstantPoolValue *C, EVT VT, unsigned Align = 0, int Offset = 0, unsigned char TargetFlags=0) { return getConstantPool(C, VT, Align, Offset, true, TargetFlags); } SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0, unsigned char TargetFlags = 0); // When generating a branch to a BB, we don't in general know enough // to provide debug info for the BB at that time, so keep this one around. SDValue getBasicBlock(MachineBasicBlock *MBB); SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl); SDValue getExternalSymbol(const char *Sym, EVT VT); SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT); SDValue getTargetExternalSymbol(const char *Sym, EVT VT, unsigned char TargetFlags = 0); SDValue getMCSymbol(MCSymbol *Sym, EVT VT); SDValue getValueType(EVT); SDValue getRegister(unsigned Reg, EVT VT); SDValue getRegisterMask(const uint32_t *RegMask); SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label); SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, MCSymbol *Label); SDValue getBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0, bool isTarget = false, unsigned char TargetFlags = 0); SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, int64_t Offset = 0, unsigned char TargetFlags = 0) { return getBlockAddress(BA, VT, Offset, true, TargetFlags); } SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N) { return getNode(ISD::CopyToReg, dl, MVT::Other, Chain, getRegister(Reg, N.getValueType()), N); } // This version of the getCopyToReg method takes an extra operand, which // indicates that there is potentially an incoming glue value (if Glue is not // null) and that there should be a glue result. SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N, SDValue Glue) { SDVTList VTs = getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue }; return getNode(ISD::CopyToReg, dl, VTs, makeArrayRef(Ops, Glue.getNode() ? 4 : 3)); } // Similar to last getCopyToReg() except parameter Reg is a SDValue SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, SDValue Glue) { SDVTList VTs = getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, Reg, N, Glue }; return getNode(ISD::CopyToReg, dl, VTs, makeArrayRef(Ops, Glue.getNode() ? 4 : 3)); } SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) { SDVTList VTs = getVTList(VT, MVT::Other); SDValue Ops[] = { Chain, getRegister(Reg, VT) }; return getNode(ISD::CopyFromReg, dl, VTs, Ops); } // This version of the getCopyFromReg method takes an extra operand, which // indicates that there is potentially an incoming glue value (if Glue is not // null) and that there should be a glue result. SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT, SDValue Glue) { SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue }; return getNode(ISD::CopyFromReg, dl, VTs, makeArrayRef(Ops, Glue.getNode() ? 3 : 2)); } SDValue getCondCode(ISD::CondCode Cond); /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT, /// which must be a vector type, must match the number of mask elements /// NumElts. An integer mask element equal to -1 is treated as undefined. SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, ArrayRef<int> Mask); /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, /// which must be a vector type, must match the number of operands in Ops. /// The operands must have the same type as (or, for integers, a type wider /// than) VT's element type. SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) { // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); } /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, /// which must be a vector type, must match the number of operands in Ops. /// The operands must have the same type as (or, for integers, a type wider /// than) VT's element type. SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) { // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); } /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all /// elements. VT must be a vector type. Op's type must be the same as (or, /// for integers, a type wider than) VT's element type. SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) { // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. if (Op.getOpcode() == ISD::UNDEF) { assert((VT.getVectorElementType() == Op.getValueType() || (VT.isInteger() && VT.getVectorElementType().bitsLE(Op.getValueType()))) && "A splatted value must have a width equal or (for integers) " "greater than the vector element type!"); return getNode(ISD::UNDEF, SDLoc(), VT); } SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op); return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); } /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to /// the shuffle node in input but with swapped operands. /// /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3> SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV); /// Convert Op, which must be of float type, to the /// float type VT, by either extending or rounding (by truncation). SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT); /// Convert Op, which must be of integer type, to the /// integer type VT, by either any-extending or truncating it. SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); /// Convert Op, which must be of integer type, to the /// integer type VT, by either sign-extending or truncating it. SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); /// Convert Op, which must be of integer type, to the /// integer type VT, by either zero-extending or truncating it. SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); /// Return the expression required to zero extend the Op /// value assuming it was the smaller SrcTy value. SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT); /// Return an operation which will any-extend the low lanes of the operand /// into the specified vector type. For example, /// this can convert a v16i8 into a v4i32 by any-extending the low four /// lanes of the operand from i8 to i32. SDValue getAnyExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT); /// Return an operation which will sign extend the low lanes of the operand /// into the specified vector type. For example, /// this can convert a v16i8 into a v4i32 by sign extending the low four /// lanes of the operand from i8 to i32. SDValue getSignExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT); /// Return an operation which will zero extend the low lanes of the operand /// into the specified vector type. For example, /// this can convert a v16i8 into a v4i32 by zero extending the low four /// lanes of the operand from i8 to i32. SDValue getZeroExtendVectorInReg(SDValue Op, const SDLoc &DL, EVT VT); /// Convert Op, which must be of integer type, to the integer type VT, /// by using an extension appropriate for the target's /// BooleanContent for type OpVT or truncating it. SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT); /// Create a bitwise NOT operation as (XOR Val, -1). SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT); /// Create a logical NOT operation as (XOR Val, BooleanOne). SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT); /// Create an add instruction with appropriate flags when used for /// addressing some offset of an object. i.e. if a load is split into multiple /// components, create an add nuw from the base pointer to the offset. SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) { EVT VT = Op.getValueType(); return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT)); } SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) { EVT VT = Op.getValueType(); // The object itself can't wrap around the address space, so it shouldn't be // possible for the adds of the offsets to the split parts to overflow. SDNodeFlags Flags; Flags.setNoUnsignedWrap(true); return getNode(ISD::ADD, SL, VT, Op, Offset, Flags); } /// Return a new CALLSEQ_START node, that starts new call frame, in which /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and /// OutSize specifies part of the frame set up prior to the sequence. SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, const SDLoc &DL) { SDVTList VTs = getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, getIntPtrConstant(InSize, DL, true), getIntPtrConstant(OutSize, DL, true) }; return getNode(ISD::CALLSEQ_START, DL, VTs, Ops); } /// Return a new CALLSEQ_END node, which always must have a /// glue result (to ensure it's not CSE'd). /// CALLSEQ_END does not have a useful SDLoc. SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, SDValue InGlue, const SDLoc &DL) { SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 4> Ops; Ops.push_back(Chain); Ops.push_back(Op1); Ops.push_back(Op2); if (InGlue.getNode()) Ops.push_back(InGlue); return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops); } /// Return true if the result of this operation is always undefined. bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops); /// Return an UNDEF node. UNDEF does not have a useful SDLoc. SDValue getUNDEF(EVT VT) { return getNode(ISD::UNDEF, SDLoc(), VT); } /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc. SDValue getGLOBAL_OFFSET_TABLE(EVT VT) { return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT); } /// Gets or creates the specified node. /// SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef<SDUse> Ops); SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags()); SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops); SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, ArrayRef<SDValue> Ops); // Specialize based on number of operands. SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT); SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand, const SDNodeFlags Flags = SDNodeFlags()); SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, const SDNodeFlags Flags = SDNodeFlags()); SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, const SDNodeFlags Flags = SDNodeFlags()); SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4); SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5); // Specialize again based on number of operands for nodes with a VTList // rather than a single VT. SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList); SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N); SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2); SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3); SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3, SDValue N4); SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, SDValue N2, SDValue N3, SDValue N4, SDValue N5); /// Compute a TokenFactor to force all the incoming stack arguments to be /// loaded from the stack. This is used in tail call lowering to protect /// stack arguments from being clobbered. SDValue getStackArgumentTokenFactor(SDValue Chain); SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVol, bool AlwaysInline, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo); SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVol, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo); SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, SDValue Size, unsigned Align, bool isVol, bool isTailCall, MachinePointerInfo DstPtrInfo); SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, unsigned DstAlign, SDValue Src, unsigned SrcAlign, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo); SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, unsigned DstAlign, SDValue Src, unsigned SrcAlign, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo); SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, unsigned DstAlign, SDValue Value, SDValue Size, Type *SizeTy, unsigned ElemSz, bool isTailCall, MachinePointerInfo DstPtrInfo); /// Helper function to make it easier to build SetCC's if you just /// have an ISD::CondCode instead of an SDValue. /// SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, ISD::CondCode Cond) { assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() && "Cannot compare scalars to vectors"); assert(LHS.getValueType().isVector() == VT.isVector() && "Cannot compare scalars to vectors"); assert(Cond != ISD::SETCC_INVALID && "Cannot create a setCC of an invalid node."); return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond)); } /// Helper function to make it easier to build Select's if you just /// have operands and don't want to check for vector. SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, SDValue RHS) { assert(LHS.getValueType() == RHS.getValueType() && "Cannot use select on differing types"); assert(VT.isVector() == LHS.getValueType().isVector() && "Cannot mix vectors and scalars"); return getNode(Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT, Cond, LHS, RHS); } /// Helper function to make it easier to build SelectCC's if you /// just have an ISD::CondCode instead of an SDValue. /// SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, SDValue False, ISD::CondCode Cond) { return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True, False, getCondCode(Cond)); } /// VAArg produces a result and token chain, and takes a pointer /// and a source value as input. SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue SV, unsigned Align); /// Gets a node for an atomic cmpxchg op. There are two /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded, /// a success flag (initially i1), and a chain. SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, unsigned Alignment, AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, SyncScope::ID SSID); SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTs, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp, MachineMemOperand *MMO); /// Gets a node for an atomic op, produces result (if relevant) /// and chain and takes 2 operands. SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, const Value *PtrVal, unsigned Alignment, AtomicOrdering Ordering, SyncScope::ID SSID); SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Val, MachineMemOperand *MMO); /// Gets a node for an atomic op, produces result and chain and /// takes 1 operand. SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO); /// Gets a node for an atomic op, produces result and chain and takes N /// operands. SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDVTList VTList, ArrayRef<SDValue> Ops, MachineMemOperand *MMO); /// Creates a MemIntrinsicNode that may produce a /// result and takes a list of operands. Opcode may be INTRINSIC_VOID, /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not /// less than FIRST_TARGET_MEMORY_OPCODE. SDValue getMemIntrinsicNode( unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, EVT MemVT, MachinePointerInfo PtrInfo, unsigned Align = 0, MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore, unsigned Size = 0); SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, ArrayRef<SDValue> Ops, EVT MemVT, MachineMemOperand *MMO); /// Create a MERGE_VALUES node from the given operands. SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl); /// Loads are not normal binary operators: their result type is not /// determined by their operands, and they produce a value AND a token chain. /// /// This function will set the MOLoad flag on MMOFlags, but you can set it if /// you want. The MOStore flag must not be set. SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, unsigned Alignment = 0, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr); SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, MachineMemOperand *MMO); SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes()); SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, SDValue Ptr, EVT MemVT, MachineMemOperand *MMO); SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM); SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes(), const MDNode *Ranges = nullptr); SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, EVT MemVT, MachineMemOperand *MMO); /// Helper function to build ISD::STORE nodes. /// /// This function will set the MOStore flag on MMOFlags, but you can set it if /// you want. The MOLoad and MOInvariant flags must not be set. SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, unsigned Alignment = 0, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes()); SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachineMemOperand *MMO); SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0, MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, const AAMDNodes &AAInfo = AAMDNodes()); SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, EVT SVT, MachineMemOperand *MMO); SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, SDValue Offset, ISD::MemIndexedMode AM); /// Returns sum of the base pointer and offset. SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL); SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Mask, SDValue Src0, EVT MemVT, MachineMemOperand *MMO, ISD::LoadExtType, bool IsExpanding = false); SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, SDValue Mask, EVT MemVT, MachineMemOperand *MMO, bool IsTruncating = false, bool IsCompressing = false); SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef<SDValue> Ops, MachineMemOperand *MMO); SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, ArrayRef<SDValue> Ops, MachineMemOperand *MMO); /// Return (create a new or find existing) a target-specific node. /// TargetMemSDNode should be derived class from MemSDNode. template <class TargetMemSDNode> SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops, const SDLoc &dl, EVT MemVT, MachineMemOperand *MMO); /// Construct a node to track a Value* through the backend. SDValue getSrcValue(const Value *v); /// Return an MDNodeSDNode which holds an MDNode. SDValue getMDNode(const MDNode *MD); /// Return a bitcast using the SDLoc of the value operand, and casting to the /// provided type. Use getNode to set a custom SDLoc. SDValue getBitcast(EVT VT, SDValue V); /// Return an AddrSpaceCastSDNode. SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, unsigned DestAS); /// Return the specified value casted to /// the target's desired shift amount type. SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op); /// Expand the specified \c ISD::VAARG node as the Legalize pass would. SDValue expandVAArg(SDNode *Node); /// Expand the specified \c ISD::VACOPY node as the Legalize pass would. SDValue expandVACopy(SDNode *Node); /// *Mutate* the specified node in-place to have the /// specified operands. If the resultant node already exists in the DAG, /// this does not modify the specified node, instead it returns the node that /// already exists. If the resultant node does not exist in the DAG, the /// input node is returned. As a degenerate case, if you specify the same /// input operands as the node already has, the input node is returned. SDNode *UpdateNodeOperands(SDNode *N, SDValue Op); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4); SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3, SDValue Op4, SDValue Op5); SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops); /// *Mutate* the specified machine node's memory references to the provided /// list. void setNodeMemRefs(MachineSDNode *N, ArrayRef<MachineMemOperand *> NewMemRefs); // Propagates the change in divergence to users void updateDivergence(SDNode * N); /// These are used for target selectors to *mutate* the /// specified node to have the specified return type, Target opcode, and /// operands. Note that target opcodes are stored as /// ~TargetOpcode in the node opcode field. The resultant node is returned. SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1, SDValue Op2); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1, SDValue Op2, SDValue Op3); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, ArrayRef<SDValue> Ops); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, ArrayRef<SDValue> Ops); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, EVT VT2, SDValue Op1); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2); SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs, ArrayRef<SDValue> Ops); /// This *mutates* the specified node to have the specified /// return type, opcode, and operands. SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, ArrayRef<SDValue> Ops); /// Mutate the specified strict FP node to its non-strict equivalent, /// unlinking the node from its chain and dropping the metadata arguments. /// The node must be a strict FP node. SDNode *mutateStrictFPToFP(SDNode *Node); /// These are used for target selectors to create a new node /// with specified return type(s), MachineInstr opcode, and operands. /// /// Note that getMachineNode returns the resultant node. If there is already /// a node of the specified opcode and operands, it returns that node instead /// of the current one. MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, SDValue Op1); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, SDValue Op1, SDValue Op2); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, SDValue Op1, SDValue Op2, SDValue Op3); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, ArrayRef<SDValue> Ops); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, ArrayRef<SDValue> Ops); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, SDValue Op3); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops); MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs, ArrayRef<SDValue> Ops); /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes. SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand); /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes. SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, SDValue Operand, SDValue Subreg); /// Get the specified node if it's already available, or else return NULL. SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags()); /// Creates a SDDbgValue node. SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, unsigned R, bool IsIndirect, const DebugLoc &DL, unsigned O); /// Creates a constant SDDbgValue node. SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr, const Value *C, const DebugLoc &DL, unsigned O); /// Creates a FrameIndex SDDbgValue node. SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, unsigned FI, bool IsIndirect, const DebugLoc &DL, unsigned O); /// Creates a VReg SDDbgValue node. SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr, unsigned VReg, bool IsIndirect, const DebugLoc &DL, unsigned O); /// Creates a SDDbgLabel node. SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O); /// Transfer debug values from one node to another, while optionally /// generating fragment expressions for split-up values. If \p InvalidateDbg /// is set, debug values are invalidated after they are transferred. void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0, unsigned SizeInBits = 0, bool InvalidateDbg = true); /// Remove the specified node from the system. If any of its /// operands then becomes dead, remove them as well. Inform UpdateListener /// for each node deleted. void RemoveDeadNode(SDNode *N); /// This method deletes the unreachable nodes in the /// given list, and any nodes that become unreachable as a result. void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes); /// Modify anything using 'From' to use 'To' instead. /// This can cause recursive merging of nodes in the DAG. Use the first /// version if 'From' is known to have a single result, use the second /// if you have two nodes with identical results (or if 'To' has a superset /// of the results of 'From'), use the third otherwise. /// /// These methods all take an optional UpdateListener, which (if not null) is /// informed about nodes that are deleted and modified due to recursive /// changes in the dag. /// /// These functions only replace all existing uses. It's possible that as /// these replacements are being performed, CSE may cause the From node /// to be given new uses. These new uses of From are left in place, and /// not automatically transferred to To. /// void ReplaceAllUsesWith(SDValue From, SDValue To); void ReplaceAllUsesWith(SDNode *From, SDNode *To); void ReplaceAllUsesWith(SDNode *From, const SDValue *To); /// Replace any uses of From with To, leaving /// uses of other values produced by From.getNode() alone. void ReplaceAllUsesOfValueWith(SDValue From, SDValue To); /// Like ReplaceAllUsesOfValueWith, but for multiple values at once. /// This correctly handles the case where /// there is an overlap between the From values and the To values. void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, unsigned Num); /// If an existing load has uses of its chain, create a token factor node with /// that chain and the new memory node's chain and update users of the old /// chain to the token factor. This ensures that the new memory node will have /// the same relative memory dependency position as the old load. Returns the /// new merged load chain. SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New); /// Topological-sort the AllNodes list and a /// assign a unique node id for each node in the DAG based on their /// topological order. Returns the number of nodes. unsigned AssignTopologicalOrder(); /// Move node N in the AllNodes list to be immediately /// before the given iterator Position. This may be used to update the /// topological ordering when the list of nodes is modified. void RepositionNode(allnodes_iterator Position, SDNode *N) { AllNodes.insert(Position, AllNodes.remove(N)); } /// Returns an APFloat semantics tag appropriate for the given type. If VT is /// a vector type, the element semantics are returned. static const fltSemantics &EVTToAPFloatSemantics(EVT VT) { switch (VT.getScalarType().getSimpleVT().SimpleTy) { default: llvm_unreachable("Unknown FP format"); case MVT::f16: return APFloat::IEEEhalf(); case MVT::f32: return APFloat::IEEEsingle(); case MVT::f64: return APFloat::IEEEdouble(); case MVT::f80: return APFloat::x87DoubleExtended(); case MVT::f128: return APFloat::IEEEquad(); case MVT::ppcf128: return APFloat::PPCDoubleDouble(); } } /// Add a dbg_value SDNode. If SD is non-null that means the /// value is produced by SD. void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter); /// Add a dbg_label SDNode. void AddDbgLabel(SDDbgLabel *DB); /// Get the debug values which reference the given SDNode. ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const { return DbgInfo->getSDDbgValues(SD); } public: /// Return true if there are any SDDbgValue nodes associated /// with this SelectionDAG. bool hasDebugValues() const { return !DbgInfo->empty(); } SDDbgInfo::DbgIterator DbgBegin() { return DbgInfo->DbgBegin(); } SDDbgInfo::DbgIterator DbgEnd() { return DbgInfo->DbgEnd(); } SDDbgInfo::DbgIterator ByvalParmDbgBegin() { return DbgInfo->ByvalParmDbgBegin(); } SDDbgInfo::DbgIterator ByvalParmDbgEnd() { return DbgInfo->ByvalParmDbgEnd(); } SDDbgInfo::DbgLabelIterator DbgLabelBegin() { return DbgInfo->DbgLabelBegin(); } SDDbgInfo::DbgLabelIterator DbgLabelEnd() { return DbgInfo->DbgLabelEnd(); } /// To be invoked on an SDNode that is slated to be erased. This /// function mirrors \c llvm::salvageDebugInfo. void salvageDebugInfo(SDNode &N); void dump() const; /// Create a stack temporary, suitable for holding the specified value type. /// If minAlign is specified, the slot size will have at least that alignment. SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1); /// Create a stack temporary suitable for holding either of the specified /// value types. SDValue CreateStackTemporary(EVT VT1, EVT VT2); SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, const GlobalAddressSDNode *GA, const SDNode *N2); SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, SDNode *Cst1, SDNode *Cst2); SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, const ConstantSDNode *Cst1, const ConstantSDNode *Cst2); SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags()); /// Constant fold a setcc to true or false. SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, const SDLoc &dl); /// See if the specified operand can be simplified with the knowledge that only /// the bits specified by Mask are used. If so, return the simpler operand, /// otherwise return a null SDValue. /// /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can /// simplify nodes with multiple uses more aggressively.) SDValue GetDemandedBits(SDValue V, const APInt &Mask); /// Return true if the sign bit of Op is known to be zero. /// We use this predicate to simplify operations downstream. bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const; /// Return true if 'Op & Mask' is known to be zero. We /// use this predicate to simplify operations downstream. Op and Mask are /// known to be the same type. bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0) const; /// Determine which bits of Op are known to be either zero or one and return /// them in Known. For vectors, the known bits are those that are shared by /// every vector element. /// Targets can implement the computeKnownBitsForTargetNode method in the /// TargetLowering class to allow target nodes to be understood. KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const; /// Determine which bits of Op are known to be either zero or one and return /// them in Known. The DemandedElts argument allows us to only collect the /// known bits that are shared by the requested vector elements. /// Targets can implement the computeKnownBitsForTargetNode method in the /// TargetLowering class to allow target nodes to be understood. KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts, unsigned Depth = 0) const; /// \copydoc SelectionDAG::computeKnownBits(SDValue,unsigned) void computeKnownBits(SDValue Op, KnownBits &Known, unsigned Depth = 0) const { Known = computeKnownBits(Op, Depth); } /// \copydoc SelectionDAG::computeKnownBits(SDValue,const APInt&,unsigned) void computeKnownBits(SDValue Op, KnownBits &Known, const APInt &DemandedElts, unsigned Depth = 0) const { Known = computeKnownBits(Op, DemandedElts, Depth); } /// Used to represent the possible overflow behavior of an operation. /// Never: the operation cannot overflow. /// Always: the operation will always overflow. /// Sometime: the operation may or may not overflow. enum OverflowKind { OFK_Never, OFK_Sometime, OFK_Always, }; /// Determine if the result of the addition of 2 node can overflow. OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const; /// Test if the given value is known to have exactly one bit set. This differs /// from computeKnownBits in that it doesn't necessarily determine which bit /// is set. bool isKnownToBeAPowerOfTwo(SDValue Val) const; /// Return the number of times the sign bit of the register is replicated into /// the other bits. We know that at least 1 bit is always equal to the sign /// bit (itself), but other cases can give us information. For example, /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal /// to each other, so we return 3. Targets can implement the /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow /// target nodes to be understood. unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const; /// Return the number of times the sign bit of the register is replicated into /// the other bits. We know that at least 1 bit is always equal to the sign /// bit (itself), but other cases can give us information. For example, /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal /// to each other, so we return 3. The DemandedElts argument allows /// us to only collect the minimum sign bits of the requested vector elements. /// Targets can implement the ComputeNumSignBitsForTarget method in the /// TargetLowering class to allow target nodes to be understood. unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, unsigned Depth = 0) const; /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that /// is guaranteed to have the same semantics as an ADD. This handles the /// equivalence: /// X|Cst == X+Cst iff X&Cst = 0. bool isBaseWithConstantOffset(SDValue Op) const; /// Test whether the given SDValue is known to never be NaN. If \p SNaN is /// true, returns if \p Op is known to never be a signaling NaN (it may still /// be a qNaN). bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const; /// \returns true if \p Op is known to never be a signaling NaN. bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const { return isKnownNeverNaN(Op, true, Depth); } /// Test whether the given floating point SDValue is known to never be /// positive or negative zero. bool isKnownNeverZeroFloat(SDValue Op) const; /// Test whether the given SDValue is known to contain non-zero value(s). bool isKnownNeverZero(SDValue Op) const; /// Test whether two SDValues are known to compare equal. This /// is true if they are the same value, or if one is negative zero and the /// other positive zero. bool isEqualTo(SDValue A, SDValue B) const; /// Return true if A and B have no common bits set. As an example, this can /// allow an 'add' to be transformed into an 'or'. bool haveNoCommonBitsSet(SDValue A, SDValue B) const; /// Match a binop + shuffle pyramid that represents a horizontal reduction /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p /// Extract. The reduction must use one of the opcodes listed in /p /// CandidateBinOps and on success /p BinOp will contain the matching opcode. /// Returns the vector that is being reduced on, or SDValue() if a reduction /// was not matched. SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, ArrayRef<ISD::NodeType> CandidateBinOps); /// Utility function used by legalize and lowering to /// "unroll" a vector operation by splitting out the scalars and operating /// on each element individually. If the ResNE is 0, fully unroll the vector /// op. If ResNE is less than the width of the vector op, unroll up to ResNE. /// If the ResNE is greater than the width of the vector op, unroll the /// vector op and fill the end of the resulting vector with UNDEFS. SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0); /// Return true if loads are next to each other and can be /// merged. Check that both are nonvolatile and if LD is loading /// 'Bytes' bytes from a location that is 'Dist' units away from the /// location that the 'Base' load is loading from. bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, unsigned Bytes, int Dist) const; /// Infer alignment of a load / store address. Return 0 if /// it cannot be inferred. unsigned InferPtrAlignment(SDValue Ptr) const; /// Compute the VTs needed for the low/hi parts of a type /// which is split (or expanded) into two not necessarily identical pieces. std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const; /// Split the vector with EXTRACT_SUBVECTOR using the provides /// VTs and return the low/high part. std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL, const EVT &LoVT, const EVT &HiVT); /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part. std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) { EVT LoVT, HiVT; std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType()); return SplitVector(N, DL, LoVT, HiVT); } /// Split the node's operand with EXTRACT_SUBVECTOR and /// return the low/high part. std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo) { return SplitVector(N->getOperand(OpNo), SDLoc(N)); } /// Append the extracted elements from Start to Count out of the vector Op /// in Args. If Count is 0, all of the elements will be extracted. void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args, unsigned Start = 0, unsigned Count = 0); /// Compute the default alignment value for the given type. unsigned getEVTAlignment(EVT MemoryVT) const; /// Test whether the given value is a constant int or similar node. SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N); /// Test whether the given value is a constant FP or similar node. SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N); /// \returns true if \p N is any kind of constant or build_vector of /// constants, int or float. If a vector, it may not necessarily be a splat. inline bool isConstantValueOfAnyType(SDValue N) { return isConstantIntBuildVectorOrConstantInt(N) || isConstantFPBuildVectorOrConstantFP(N); } private: void InsertNode(SDNode *N); bool RemoveNodeFromCSEMaps(SDNode *N); void AddModifiedNodeToCSEMaps(SDNode *N); SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, void *&InsertPos); SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, void *&InsertPos); SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc); void DeleteNodeNotInCSEMaps(SDNode *N); void DeallocateNode(SDNode *N); void allnodes_clear(); /// Look up the node specified by ID in CSEMap. If it exists, return it. If /// not, return the insertion token that will make insertion faster. This /// overload is for nodes other than Constant or ConstantFP, use the other one /// for those. SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); /// Look up the node specified by ID in CSEMap. If it exists, return it. If /// not, return the insertion token that will make insertion faster. Performs /// additional processing for constant nodes. SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL, void *&InsertPos); /// List of non-single value types. FoldingSet<SDVTListNode> VTListMap; /// Maps to auto-CSE operations. std::vector<CondCodeSDNode*> CondCodeNodes; std::vector<SDNode*> ValueTypeNodes; std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes; StringMap<SDNode*> ExternalSymbols; std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols; DenseMap<MCSymbol *, SDNode *> MCSymbols; }; template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> { using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>; static nodes_iterator nodes_begin(SelectionDAG *G) { return nodes_iterator(G->allnodes_begin()); } static nodes_iterator nodes_end(SelectionDAG *G) { return nodes_iterator(G->allnodes_end()); } }; template <class TargetMemSDNode> SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops, const SDLoc &dl, EVT MemVT, MachineMemOperand *MMO) { /// Compose node ID and try to find an existing node. FoldingSetNodeID ID; unsigned Opcode = TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode(); ID.AddInteger(Opcode); ID.AddPointer(VTs.VTs); for (auto& Op : Ops) { ID.AddPointer(Op.getNode()); ID.AddInteger(Op.getResNo()); } ID.AddInteger(MemVT.getRawBits()); ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>( dl.getIROrder(), VTs, MemVT, MMO)); void *IP = nullptr; if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { cast<TargetMemSDNode>(E)->refineAlignment(MMO); return SDValue(E, 0); } /// Existing node was not found. Create a new one. auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, MemVT, MMO); createOperands(N, Ops); CSEMap.InsertNode(N, IP); InsertNode(N); return SDValue(N, 0); } } // end namespace llvm #endif // LLVM_CODEGEN_SELECTIONDAG_H