//===- Transforms/Instrumentation.h - Instrumentation passes ----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines constructor functions for instrumentation passes. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_INSTRUMENTATION_H #define LLVM_TRANSFORMS_INSTRUMENTATION_H #include "llvm/ADT/StringRef.h" #include "llvm/IR/BasicBlock.h" #include <cassert> #include <cstdint> #include <limits> #include <string> #include <vector> namespace llvm { class FunctionPass; class ModulePass; class OptimizationRemarkEmitter; /// Instrumentation passes often insert conditional checks into entry blocks. /// Call this function before splitting the entry block to move instructions /// that must remain in the entry block up before the split point. Static /// allocas and llvm.localescape calls, for example, must remain in the entry /// block. BasicBlock::iterator PrepareToSplitEntryBlock(BasicBlock &BB, BasicBlock::iterator IP); // Insert GCOV profiling instrumentation struct GCOVOptions { static GCOVOptions getDefault(); // Specify whether to emit .gcno files. bool EmitNotes; // Specify whether to modify the program to emit .gcda files when run. bool EmitData; // A four-byte version string. The meaning of a version string is described in // gcc's gcov-io.h char Version[4]; // Emit a "cfg checksum" that follows the "line number checksum" of a // function. This affects both .gcno and .gcda files. bool UseCfgChecksum; // Add the 'noredzone' attribute to added runtime library calls. bool NoRedZone; // Emit the name of the function in the .gcda files. This is redundant, as // the function identifier can be used to find the name from the .gcno file. bool FunctionNamesInData; // Emit the exit block immediately after the start block, rather than after // all of the function body's blocks. bool ExitBlockBeforeBody; }; ModulePass *createGCOVProfilerPass(const GCOVOptions &Options = GCOVOptions::getDefault()); // PGO Instrumention ModulePass *createPGOInstrumentationGenLegacyPass(); ModulePass * createPGOInstrumentationUseLegacyPass(StringRef Filename = StringRef("")); ModulePass *createPGOIndirectCallPromotionLegacyPass(bool InLTO = false, bool SamplePGO = false); FunctionPass *createPGOMemOPSizeOptLegacyPass(); // The pgo-specific indirect call promotion function declared below is used by // the pgo-driven indirect call promotion and sample profile passes. It's a // wrapper around llvm::promoteCall, et al. that additionally computes !prof // metadata. We place it in a pgo namespace so it's not confused with the // generic utilities. namespace pgo { // Helper function that transforms Inst (either an indirect-call instruction, or // an invoke instruction , to a conditional call to F. This is like: // if (Inst.CalledValue == F) // F(...); // else // Inst(...); // end // TotalCount is the profile count value that the instruction executes. // Count is the profile count value that F is the target function. // These two values are used to update the branch weight. // If \p AttachProfToDirectCall is true, a prof metadata is attached to the // new direct call to contain \p Count. // Returns the promoted direct call instruction. Instruction *promoteIndirectCall(Instruction *Inst, Function *F, uint64_t Count, uint64_t TotalCount, bool AttachProfToDirectCall, OptimizationRemarkEmitter *ORE); } // namespace pgo /// Options for the frontend instrumentation based profiling pass. struct InstrProfOptions { // Add the 'noredzone' attribute to added runtime library calls. bool NoRedZone = false; // Do counter register promotion bool DoCounterPromotion = false; // Use atomic profile counter increments. bool Atomic = false; // Name of the profile file to use as output std::string InstrProfileOutput; InstrProfOptions() = default; }; /// Insert frontend instrumentation based profiling. ModulePass *createInstrProfilingLegacyPass( const InstrProfOptions &Options = InstrProfOptions()); // Insert AddressSanitizer (address sanity checking) instrumentation FunctionPass *createAddressSanitizerFunctionPass(bool CompileKernel = false, bool Recover = false, bool UseAfterScope = false); ModulePass *createAddressSanitizerModulePass(bool CompileKernel = false, bool Recover = false, bool UseGlobalsGC = true); // Insert MemorySanitizer instrumentation (detection of uninitialized reads) FunctionPass *createMemorySanitizerPass(int TrackOrigins = 0, bool Recover = false, bool EnableKmsan = false); FunctionPass *createHWAddressSanitizerPass(bool CompileKernel = false, bool Recover = false); // Insert ThreadSanitizer (race detection) instrumentation FunctionPass *createThreadSanitizerPass(); // Insert DataFlowSanitizer (dynamic data flow analysis) instrumentation ModulePass *createDataFlowSanitizerPass( const std::vector<std::string> &ABIListFiles = std::vector<std::string>(), void *(*getArgTLS)() = nullptr, void *(*getRetValTLS)() = nullptr); // Options for EfficiencySanitizer sub-tools. struct EfficiencySanitizerOptions { enum Type { ESAN_None = 0, ESAN_CacheFrag, ESAN_WorkingSet, } ToolType = ESAN_None; EfficiencySanitizerOptions() = default; }; // Insert EfficiencySanitizer instrumentation. ModulePass *createEfficiencySanitizerPass( const EfficiencySanitizerOptions &Options = EfficiencySanitizerOptions()); // Options for sanitizer coverage instrumentation. struct SanitizerCoverageOptions { enum Type { SCK_None = 0, SCK_Function, SCK_BB, SCK_Edge } CoverageType = SCK_None; bool IndirectCalls = false; bool TraceBB = false; bool TraceCmp = false; bool TraceDiv = false; bool TraceGep = false; bool Use8bitCounters = false; bool TracePC = false; bool TracePCGuard = false; bool Inline8bitCounters = false; bool PCTable = false; bool NoPrune = false; bool StackDepth = false; SanitizerCoverageOptions() = default; }; // Insert SanitizerCoverage instrumentation. ModulePass *createSanitizerCoverageModulePass( const SanitizerCoverageOptions &Options = SanitizerCoverageOptions()); /// Calculate what to divide by to scale counts. /// /// Given the maximum count, calculate a divisor that will scale all the /// weights to strictly less than std::numeric_limits<uint32_t>::max(). static inline uint64_t calculateCountScale(uint64_t MaxCount) { return MaxCount < std::numeric_limits<uint32_t>::max() ? 1 : MaxCount / std::numeric_limits<uint32_t>::max() + 1; } /// Scale an individual branch count. /// /// Scale a 64-bit weight down to 32-bits using \c Scale. /// static inline uint32_t scaleBranchCount(uint64_t Count, uint64_t Scale) { uint64_t Scaled = Count / Scale; assert(Scaled <= std::numeric_limits<uint32_t>::max() && "overflow 32-bits"); return Scaled; } } // end namespace llvm #endif // LLVM_TRANSFORMS_INSTRUMENTATION_H