//===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the MCInstrAnalysis class which the MCTargetDescs can // derive from to give additional information to MC. // //===----------------------------------------------------------------------===// #ifndef LLVM_MC_MCINSTRANALYSIS_H #define LLVM_MC_MCINSTRANALYSIS_H #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include <cstdint> namespace llvm { class MCRegisterInfo; class Triple; class MCInstrAnalysis { protected: friend class Target; const MCInstrInfo *Info; public: MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {} virtual ~MCInstrAnalysis() = default; virtual bool isBranch(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isBranch(); } virtual bool isConditionalBranch(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isConditionalBranch(); } virtual bool isUnconditionalBranch(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isUnconditionalBranch(); } virtual bool isIndirectBranch(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isIndirectBranch(); } virtual bool isCall(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isCall(); } virtual bool isReturn(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isReturn(); } virtual bool isTerminator(const MCInst &Inst) const { return Info->get(Inst.getOpcode()).isTerminator(); } /// Returns true if at least one of the register writes performed by /// \param Inst implicitly clears the upper portion of all super-registers. /// /// Example: on X86-64, a write to EAX implicitly clears the upper half of /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit /// instruction implicitly clears the upper portion of the correspondent /// YMM register. /// /// This method also updates an APInt which is used as mask of register /// writes. There is one bit for every explicit/implicit write performed by /// the instruction. If a write implicitly clears its super-registers, then /// the corresponding bit is set (vic. the corresponding bit is cleared). /// /// The first bits in the APint are related to explicit writes. The remaining /// bits are related to implicit writes. The sequence of writes follows the /// machine operand sequence. For implicit writes, the sequence is defined by /// the MCInstrDesc. /// /// The assumption is that the bit-width of the APInt is correctly set by /// the caller. The default implementation conservatively assumes that none of /// the writes clears the upper portion of a super-register. virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, const MCInst &Inst, APInt &Writes) const; /// Returns true if MI is a dependency breaking zero-idiom for the given /// subtarget. /// /// Mask is used to identify input operands that have their dependency /// broken. Each bit of the mask is associated with a specific input operand. /// Bits associated with explicit input operands are laid out first in the /// mask; implicit operands come after explicit operands. /// /// Dependencies are broken only for operands that have their corresponding bit /// set. Operands that have their bit cleared, or that don't have a /// corresponding bit in the mask don't have their dependency broken. Note /// that Mask may not be big enough to describe all operands. The assumption /// for operands that don't have a correspondent bit in the mask is that those /// are still data dependent. /// /// The only exception to the rule is for when Mask has all zeroes. /// A zero mask means: dependencies are broken for all explicit register /// operands. virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, unsigned CPUID) const { return false; } /// Returns true if MI is a dependency breaking instruction for the /// subtarget associated with CPUID . /// /// The value computed by a dependency breaking instruction is not dependent /// on the inputs. An example of dependency breaking instruction on X86 is /// `XOR %eax, %eax`. /// /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask /// can be inspected to identify independent operands. /// /// Essentially, each bit of the mask corresponds to an input operand. /// Explicit operands are laid out first in the mask; implicit operands follow /// explicit operands. Bits are set for operands that are independent. /// /// Note that the number of bits in Mask may not be equivalent to the sum of /// explicit and implicit operands in MI. Operands that don't have a /// corresponding bit in Mask are assumed "not independente". /// /// The only exception is for when Mask is all zeroes. That means: explicit /// input operands of MI are independent. virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, unsigned CPUID) const { return isZeroIdiom(MI, Mask, CPUID); } /// Returns true if MI is a candidate for move elimination. /// /// Different subtargets may apply different constraints to optimizable /// register moves. For example, on most X86 subtargets, a candidate for move /// elimination cannot specify the same register for both source and /// destination. virtual bool isOptimizableRegisterMove(const MCInst &MI, unsigned CPUID) const { return false; } /// Given a branch instruction try to get the address the branch /// targets. Return true on success, and the address in Target. virtual bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, uint64_t &Target) const; /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries. virtual std::vector<std::pair<uint64_t, uint64_t>> findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, uint64_t GotPltSectionVA, const Triple &TargetTriple) const { return {}; } }; } // end namespace llvm #endif // LLVM_MC_MCINSTRANALYSIS_H