//===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// @file /// This file contains the declarations for the subclasses of Constant, /// which represent the different flavors of constant values that live in LLVM. /// Note that Constants are immutable (once created they never change) and are /// fully shared by structural equivalence. This means that two structurally /// equivalent constants will always have the same address. Constants are /// created on demand as needed and never deleted: thus clients don't have to /// worry about the lifetime of the objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_CONSTANTS_H #define LLVM_IR_CONSTANTS_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/IR/Constant.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include <cassert> #include <cstddef> #include <cstdint> namespace llvm { class ArrayType; class IntegerType; class PointerType; class SequentialType; class StructType; class VectorType; template <class ConstantClass> struct ConstantAggrKeyType; /// Base class for constants with no operands. /// /// These constants have no operands; they represent their data directly. /// Since they can be in use by unrelated modules (and are never based on /// GlobalValues), it never makes sense to RAUW them. class ConstantData : public Constant { friend class Constant; Value *handleOperandChangeImpl(Value *From, Value *To) { llvm_unreachable("Constant data does not have operands!"); } protected: explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} void *operator new(size_t s) { return User::operator new(s, 0); } public: ConstantData(const ConstantData &) = delete; /// Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() >= ConstantDataFirstVal && V->getValueID() <= ConstantDataLastVal; } }; //===----------------------------------------------------------------------===// /// This is the shared class of boolean and integer constants. This class /// represents both boolean and integral constants. /// Class for constant integers. class ConstantInt final : public ConstantData { friend class Constant; APInt Val; ConstantInt(IntegerType *Ty, const APInt& V); void destroyConstantImpl(); public: ConstantInt(const ConstantInt &) = delete; static ConstantInt *getTrue(LLVMContext &Context); static ConstantInt *getFalse(LLVMContext &Context); static Constant *getTrue(Type *Ty); static Constant *getFalse(Type *Ty); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant *get(Type *Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified integer value for the specified /// type. If the type is wider than 64 bits, the value will be zero-extended /// to fit the type, unless isSigned is true, in which case the value will /// be interpreted as a 64-bit signed integer and sign-extended to fit /// the type. /// Get a ConstantInt for a specific value. static ConstantInt *get(IntegerType *Ty, uint64_t V, bool isSigned = false); /// Return a ConstantInt with the specified value for the specified type. The /// value V will be canonicalized to a an unsigned APInt. Accessing it with /// either getSExtValue() or getZExtValue() will yield a correctly sized and /// signed value for the type Ty. /// Get a ConstantInt for a specific signed value. static ConstantInt *getSigned(IntegerType *Ty, int64_t V); static Constant *getSigned(Type *Ty, int64_t V); /// Return a ConstantInt with the specified value and an implied Type. The /// type is the integer type that corresponds to the bit width of the value. static ConstantInt *get(LLVMContext &Context, const APInt &V); /// Return a ConstantInt constructed from the string strStart with the given /// radix. static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t radix); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantInt for the given value. static Constant *get(Type* Ty, const APInt& V); /// Return the constant as an APInt value reference. This allows clients to /// obtain a full-precision copy of the value. /// Return the constant's value. inline const APInt &getValue() const { return Val; } /// getBitWidth - Return the bitwidth of this constant. unsigned getBitWidth() const { return Val.getBitWidth(); } /// Return the constant as a 64-bit unsigned integer value after it /// has been zero extended as appropriate for the type of this constant. Note /// that this method can assert if the value does not fit in 64 bits. /// Return the zero extended value. inline uint64_t getZExtValue() const { return Val.getZExtValue(); } /// Return the constant as a 64-bit integer value after it has been sign /// extended as appropriate for the type of this constant. Note that /// this method can assert if the value does not fit in 64 bits. /// Return the sign extended value. inline int64_t getSExtValue() const { return Val.getSExtValue(); } /// A helper method that can be used to determine if the constant contained /// within is equal to a constant. This only works for very small values, /// because this is all that can be represented with all types. /// Determine if this constant's value is same as an unsigned char. bool equalsInt(uint64_t V) const { return Val == V; } /// getType - Specialize the getType() method to always return an IntegerType, /// which reduces the amount of casting needed in parts of the compiler. /// inline IntegerType *getType() const { return cast<IntegerType>(Value::getType()); } /// This static method returns true if the type Ty is big enough to /// represent the value V. This can be used to avoid having the get method /// assert when V is larger than Ty can represent. Note that there are two /// versions of this method, one for unsigned and one for signed integers. /// Although ConstantInt canonicalizes everything to an unsigned integer, /// the signed version avoids callers having to convert a signed quantity /// to the appropriate unsigned type before calling the method. /// @returns true if V is a valid value for type Ty /// Determine if the value is in range for the given type. static bool isValueValidForType(Type *Ty, uint64_t V); static bool isValueValidForType(Type *Ty, int64_t V); bool isNegative() const { return Val.isNegative(); } /// This is just a convenience method to make client code smaller for a /// common code. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). bool isZero() const { return Val.isNullValue(); } /// This is just a convenience method to make client code smaller for a /// common case. It also correctly performs the comparison without the /// potential for an assertion from getZExtValue(). /// Determine if the value is one. bool isOne() const { return Val.isOneValue(); } /// This function will return true iff every bit in this constant is set /// to true. /// @returns true iff this constant's bits are all set to true. /// Determine if the value is all ones. bool isMinusOne() const { return Val.isAllOnesValue(); } /// This function will return true iff this constant represents the largest /// value that may be represented by the constant's type. /// @returns true iff this is the largest value that may be represented /// by this type. /// Determine if the value is maximal. bool isMaxValue(bool isSigned) const { if (isSigned) return Val.isMaxSignedValue(); else return Val.isMaxValue(); } /// This function will return true iff this constant represents the smallest /// value that may be represented by this constant's type. /// @returns true if this is the smallest value that may be represented by /// this type. /// Determine if the value is minimal. bool isMinValue(bool isSigned) const { if (isSigned) return Val.isMinSignedValue(); else return Val.isMinValue(); } /// This function will return true iff this constant represents a value with /// active bits bigger than 64 bits or a value greater than the given uint64_t /// value. /// @returns true iff this constant is greater or equal to the given number. /// Determine if the value is greater or equal to the given number. bool uge(uint64_t Num) const { return Val.uge(Num); } /// getLimitedValue - If the value is smaller than the specified limit, /// return it, otherwise return the limit value. This causes the value /// to saturate to the limit. /// @returns the min of the value of the constant and the specified value /// Get the constant's value with a saturation limit uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { return Val.getLimitedValue(Limit); } /// Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == ConstantIntVal; } }; //===----------------------------------------------------------------------===// /// ConstantFP - Floating Point Values [float, double] /// class ConstantFP final : public ConstantData { friend class Constant; APFloat Val; ConstantFP(Type *Ty, const APFloat& V); void destroyConstantImpl(); public: ConstantFP(const ConstantFP &) = delete; /// Floating point negation must be implemented with f(x) = -0.0 - x. This /// method returns the negative zero constant for floating point or vector /// floating point types; for all other types, it returns the null value. static Constant *getZeroValueForNegation(Type *Ty); /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, /// for the specified value in the specified type. This should only be used /// for simple constant values like 2.0/1.0 etc, that are known-valid both as /// host double and as the target format. static Constant *get(Type* Ty, double V); /// If Ty is a vector type, return a Constant with a splat of the given /// value. Otherwise return a ConstantFP for the given value. static Constant *get(Type *Ty, const APFloat &V); static Constant *get(Type* Ty, StringRef Str); static ConstantFP *get(LLVMContext &Context, const APFloat &V); static Constant *getNaN(Type *Ty, bool Negative = false, uint64_t Payload = 0); static Constant *getQNaN(Type *Ty, bool Negative = false, APInt *Payload = nullptr); static Constant *getSNaN(Type *Ty, bool Negative = false, APInt *Payload = nullptr); static Constant *getNegativeZero(Type *Ty); static Constant *getInfinity(Type *Ty, bool Negative = false); /// Return true if Ty is big enough to represent V. static bool isValueValidForType(Type *Ty, const APFloat &V); inline const APFloat &getValueAPF() const { return Val; } /// Return true if the value is positive or negative zero. bool isZero() const { return Val.isZero(); } /// Return true if the sign bit is set. bool isNegative() const { return Val.isNegative(); } /// Return true if the value is infinity bool isInfinity() const { return Val.isInfinity(); } /// Return true if the value is a NaN. bool isNaN() const { return Val.isNaN(); } /// We don't rely on operator== working on double values, as it returns true /// for things that are clearly not equal, like -0.0 and 0.0. /// As such, this method can be used to do an exact bit-for-bit comparison of /// two floating point values. The version with a double operand is retained /// because it's so convenient to write isExactlyValue(2.0), but please use /// it only for simple constants. bool isExactlyValue(const APFloat &V) const; bool isExactlyValue(double V) const { bool ignored; APFloat FV(V); FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); return isExactlyValue(FV); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantFPVal; } }; //===----------------------------------------------------------------------===// /// All zero aggregate value /// class ConstantAggregateZero final : public ConstantData { friend class Constant; explicit ConstantAggregateZero(Type *Ty) : ConstantData(Ty, ConstantAggregateZeroVal) {} void destroyConstantImpl(); public: ConstantAggregateZero(const ConstantAggregateZero &) = delete; static ConstantAggregateZero *get(Type *Ty); /// If this CAZ has array or vector type, return a zero with the right element /// type. Constant *getSequentialElement() const; /// If this CAZ has struct type, return a zero with the right element type for /// the specified element. Constant *getStructElement(unsigned Elt) const; /// Return a zero of the right value for the specified GEP index if we can, /// otherwise return null (e.g. if C is a ConstantExpr). Constant *getElementValue(Constant *C) const; /// Return a zero of the right value for the specified GEP index. Constant *getElementValue(unsigned Idx) const; /// Return the number of elements in the array, vector, or struct. unsigned getNumElements() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: /// static bool classof(const Value *V) { return V->getValueID() == ConstantAggregateZeroVal; } }; /// Base class for aggregate constants (with operands). /// /// These constants are aggregates of other constants, which are stored as /// operands. /// /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a /// ConstantVector. /// /// \note Some subclasses of \a ConstantData are semantically aggregates -- /// such as \a ConstantDataArray -- but are not subclasses of this because they /// use operands. class ConstantAggregate : public Constant { protected: ConstantAggregate(CompositeType *T, ValueTy VT, ArrayRef<Constant *> V); public: /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() >= ConstantAggregateFirstVal && V->getValueID() <= ConstantAggregateLastVal; } }; template <> struct OperandTraits<ConstantAggregate> : public VariadicOperandTraits<ConstantAggregate> {}; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) //===----------------------------------------------------------------------===// /// ConstantArray - Constant Array Declarations /// class ConstantArray final : public ConstantAggregate { friend struct ConstantAggrKeyType<ConstantArray>; friend class Constant; ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To); public: // ConstantArray accessors static Constant *get(ArrayType *T, ArrayRef<Constant*> V); private: static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); public: /// Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. inline ArrayType *getType() const { return cast<ArrayType>(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantArrayVal; } }; //===----------------------------------------------------------------------===// // Constant Struct Declarations // class ConstantStruct final : public ConstantAggregate { friend struct ConstantAggrKeyType<ConstantStruct>; friend class Constant; ConstantStruct(StructType *T, ArrayRef<Constant *> Val); void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To); public: // ConstantStruct accessors static Constant *get(StructType *T, ArrayRef<Constant*> V); template <typename... Csts> static typename std::enable_if<are_base_of<Constant, Csts...>::value, Constant *>::type get(StructType *T, Csts *... Vs) { SmallVector<Constant *, 8> Values({Vs...}); return get(T, Values); } /// Return an anonymous struct that has the specified elements. /// If the struct is possibly empty, then you must specify a context. static Constant *getAnon(ArrayRef<Constant*> V, bool Packed = false) { return get(getTypeForElements(V, Packed), V); } static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant*> V, bool Packed = false) { return get(getTypeForElements(Ctx, V, Packed), V); } /// Return an anonymous struct type to use for a constant with the specified /// set of elements. The list must not be empty. static StructType *getTypeForElements(ArrayRef<Constant*> V, bool Packed = false); /// This version of the method allows an empty list. static StructType *getTypeForElements(LLVMContext &Ctx, ArrayRef<Constant*> V, bool Packed = false); /// Specialization - reduce amount of casting. inline StructType *getType() const { return cast<StructType>(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantStructVal; } }; //===----------------------------------------------------------------------===// /// Constant Vector Declarations /// class ConstantVector final : public ConstantAggregate { friend struct ConstantAggrKeyType<ConstantVector>; friend class Constant; ConstantVector(VectorType *T, ArrayRef<Constant *> Val); void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To); public: // ConstantVector accessors static Constant *get(ArrayRef<Constant*> V); private: static Constant *getImpl(ArrayRef<Constant *> V); public: /// Return a ConstantVector with the specified constant in each element. static Constant *getSplat(unsigned NumElts, Constant *Elt); /// Specialize the getType() method to always return a VectorType, /// which reduces the amount of casting needed in parts of the compiler. inline VectorType *getType() const { return cast<VectorType>(Value::getType()); } /// If this is a splat constant, meaning that all of the elements have the /// same value, return that value. Otherwise return NULL. Constant *getSplatValue() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantVectorVal; } }; //===----------------------------------------------------------------------===// /// A constant pointer value that points to null /// class ConstantPointerNull final : public ConstantData { friend class Constant; explicit ConstantPointerNull(PointerType *T) : ConstantData(T, Value::ConstantPointerNullVal) {} void destroyConstantImpl(); public: ConstantPointerNull(const ConstantPointerNull &) = delete; /// Static factory methods - Return objects of the specified value static ConstantPointerNull *get(PointerType *T); /// Specialize the getType() method to always return an PointerType, /// which reduces the amount of casting needed in parts of the compiler. inline PointerType *getType() const { return cast<PointerType>(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantPointerNullVal; } }; //===----------------------------------------------------------------------===// /// ConstantDataSequential - A vector or array constant whose element type is a /// simple 1/2/4/8-byte integer or float/double, and whose elements are just /// simple data values (i.e. ConstantInt/ConstantFP). This Constant node has no /// operands because it stores all of the elements of the constant as densely /// packed data, instead of as Value*'s. /// /// This is the common base class of ConstantDataArray and ConstantDataVector. /// class ConstantDataSequential : public ConstantData { friend class LLVMContextImpl; friend class Constant; /// A pointer to the bytes underlying this constant (which is owned by the /// uniquing StringMap). const char *DataElements; /// This forms a link list of ConstantDataSequential nodes that have /// the same value but different type. For example, 0,0,0,1 could be a 4 /// element array of i8, or a 1-element array of i32. They'll both end up in /// the same StringMap bucket, linked up. ConstantDataSequential *Next; void destroyConstantImpl(); protected: explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) : ConstantData(ty, VT), DataElements(Data), Next(nullptr) {} ~ConstantDataSequential() { delete Next; } static Constant *getImpl(StringRef Bytes, Type *Ty); public: ConstantDataSequential(const ConstantDataSequential &) = delete; /// Return true if a ConstantDataSequential can be formed with a vector or /// array of the specified element type. /// ConstantDataArray only works with normal float and int types that are /// stored densely in memory, not with things like i42 or x86_f80. static bool isElementTypeCompatible(Type *Ty); /// If this is a sequential container of integers (of any size), return the /// specified element in the low bits of a uint64_t. uint64_t getElementAsInteger(unsigned i) const; /// If this is a sequential container of integers (of any size), return the /// specified element as an APInt. APInt getElementAsAPInt(unsigned i) const; /// If this is a sequential container of floating point type, return the /// specified element as an APFloat. APFloat getElementAsAPFloat(unsigned i) const; /// If this is an sequential container of floats, return the specified element /// as a float. float getElementAsFloat(unsigned i) const; /// If this is an sequential container of doubles, return the specified /// element as a double. double getElementAsDouble(unsigned i) const; /// Return a Constant for a specified index's element. /// Note that this has to compute a new constant to return, so it isn't as /// efficient as getElementAsInteger/Float/Double. Constant *getElementAsConstant(unsigned i) const; /// Specialize the getType() method to always return a SequentialType, which /// reduces the amount of casting needed in parts of the compiler. inline SequentialType *getType() const { return cast<SequentialType>(Value::getType()); } /// Return the element type of the array/vector. Type *getElementType() const; /// Return the number of elements in the array or vector. unsigned getNumElements() const; /// Return the size (in bytes) of each element in the array/vector. /// The size of the elements is known to be a multiple of one byte. uint64_t getElementByteSize() const; /// This method returns true if this is an array of \p CharSize integers. bool isString(unsigned CharSize = 8) const; /// This method returns true if the array "isString", ends with a null byte, /// and does not contains any other null bytes. bool isCString() const; /// If this array is isString(), then this method returns the array as a /// StringRef. Otherwise, it asserts out. StringRef getAsString() const { assert(isString() && "Not a string"); return getRawDataValues(); } /// If this array is isCString(), then this method returns the array (without /// the trailing null byte) as a StringRef. Otherwise, it asserts out. StringRef getAsCString() const { assert(isCString() && "Isn't a C string"); StringRef Str = getAsString(); return Str.substr(0, Str.size()-1); } /// Return the raw, underlying, bytes of this data. Note that this is an /// extremely tricky thing to work with, as it exposes the host endianness of /// the data elements. StringRef getRawDataValues() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantDataArrayVal || V->getValueID() == ConstantDataVectorVal; } private: const char *getElementPointer(unsigned Elt) const; }; //===----------------------------------------------------------------------===// /// An array constant whose element type is a simple 1/2/4/8-byte integer or /// float/double, and whose elements are just simple data values /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it /// stores all of the elements of the constant as densely packed data, instead /// of as Value*'s. class ConstantDataArray final : public ConstantDataSequential { friend class ConstantDataSequential; explicit ConstantDataArray(Type *ty, const char *Data) : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} public: ConstantDataArray(const ConstantDataArray &) = delete; /// get() constructor - Return a constant with array type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. template <typename ElementTy> static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { const char *Data = reinterpret_cast<const char *>(Elts.data()); return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), Type::getScalarTy<ElementTy>(Context)); } /// get() constructor - ArrayTy needs to be compatible with /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). template <typename ArrayTy> static Constant *get(LLVMContext &Context, ArrayTy &Elts) { return ConstantDataArray::get(Context, makeArrayRef(Elts)); } /// get() constructor - Return a constant with array type with an element /// count and element type matching the NumElements and ElementTy parameters /// passed in. Note that this can return a ConstantAggregateZero object. /// ElementTy needs to be one of i8/i16/i32/i64/float/double. Data is the /// buffer containing the elements. Be careful to make sure Data uses the /// right endianness, the buffer will be used as-is. static Constant *getRaw(StringRef Data, uint64_t NumElements, Type *ElementTy) { Type *Ty = ArrayType::get(ElementTy, NumElements); return getImpl(Data, Ty); } /// getFP() constructors - Return a constant with array type with an element /// count and element type of float with precision matching the number of /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, /// double for 64bits) Note that this can return a ConstantAggregateZero /// object. static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); /// This method constructs a CDS and initializes it with a text string. /// The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array (increasing the length of the string by /// one more than the StringRef would normally indicate. Pass AddNull=false /// to disable this behavior. static Constant *getString(LLVMContext &Context, StringRef Initializer, bool AddNull = true); /// Specialize the getType() method to always return an ArrayType, /// which reduces the amount of casting needed in parts of the compiler. inline ArrayType *getType() const { return cast<ArrayType>(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantDataArrayVal; } }; //===----------------------------------------------------------------------===// /// A vector constant whose element type is a simple 1/2/4/8-byte integer or /// float/double, and whose elements are just simple data values /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it /// stores all of the elements of the constant as densely packed data, instead /// of as Value*'s. class ConstantDataVector final : public ConstantDataSequential { friend class ConstantDataSequential; explicit ConstantDataVector(Type *ty, const char *Data) : ConstantDataSequential(ty, ConstantDataVectorVal, Data) {} public: ConstantDataVector(const ConstantDataVector &) = delete; /// get() constructors - Return a constant with vector type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); /// getFP() constructors - Return a constant with vector type with an element /// count and element type of float with the precision matching the number of /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits, /// double for 64bits) Note that this can return a ConstantAggregateZero /// object. static Constant *getFP(LLVMContext &Context, ArrayRef<uint16_t> Elts); static Constant *getFP(LLVMContext &Context, ArrayRef<uint32_t> Elts); static Constant *getFP(LLVMContext &Context, ArrayRef<uint64_t> Elts); /// Return a ConstantVector with the specified constant in each element. /// The specified constant has to be a of a compatible type (i8/i16/ /// i32/i64/float/double) and must be a ConstantFP or ConstantInt. static Constant *getSplat(unsigned NumElts, Constant *Elt); /// Returns true if this is a splat constant, meaning that all elements have /// the same value. bool isSplat() const; /// If this is a splat constant, meaning that all of the elements have the /// same value, return that value. Otherwise return NULL. Constant *getSplatValue() const; /// Specialize the getType() method to always return a VectorType, /// which reduces the amount of casting needed in parts of the compiler. inline VectorType *getType() const { return cast<VectorType>(Value::getType()); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantDataVectorVal; } }; //===----------------------------------------------------------------------===// /// A constant token which is empty /// class ConstantTokenNone final : public ConstantData { friend class Constant; explicit ConstantTokenNone(LLVMContext &Context) : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} void destroyConstantImpl(); public: ConstantTokenNone(const ConstantTokenNone &) = delete; /// Return the ConstantTokenNone. static ConstantTokenNone *get(LLVMContext &Context); /// Methods to support type inquiry through isa, cast, and dyn_cast. static bool classof(const Value *V) { return V->getValueID() == ConstantTokenNoneVal; } }; /// The address of a basic block. /// class BlockAddress final : public Constant { friend class Constant; BlockAddress(Function *F, BasicBlock *BB); void *operator new(size_t s) { return User::operator new(s, 2); } void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To); public: /// Return a BlockAddress for the specified function and basic block. static BlockAddress *get(Function *F, BasicBlock *BB); /// Return a BlockAddress for the specified basic block. The basic /// block must be embedded into a function. static BlockAddress *get(BasicBlock *BB); /// Lookup an existing \c BlockAddress constant for the given BasicBlock. /// /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. static BlockAddress *lookup(const BasicBlock *BB); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); Function *getFunction() const { return (Function*)Op<0>().get(); } BasicBlock *getBasicBlock() const { return (BasicBlock*)Op<1>().get(); } /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == BlockAddressVal; } }; template <> struct OperandTraits<BlockAddress> : public FixedNumOperandTraits<BlockAddress, 2> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) //===----------------------------------------------------------------------===// /// A constant value that is initialized with an expression using /// other constant values. /// /// This class uses the standard Instruction opcodes to define the various /// constant expressions. The Opcode field for the ConstantExpr class is /// maintained in the Value::SubclassData field. class ConstantExpr : public Constant { friend struct ConstantExprKeyType; friend class Constant; void destroyConstantImpl(); Value *handleOperandChangeImpl(Value *From, Value *To); protected: ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) : Constant(ty, ConstantExprVal, Ops, NumOps) { // Operation type (an Instruction opcode) is stored as the SubclassData. setValueSubclassData(Opcode); } public: // Static methods to construct a ConstantExpr of different kinds. Note that // these methods may return a object that is not an instance of the // ConstantExpr class, because they will attempt to fold the constant // expression into something simpler if possible. /// getAlignOf constant expr - computes the alignment of a type in a target /// independent way (Note: the return type is an i64). static Constant *getAlignOf(Type *Ty); /// getSizeOf constant expr - computes the (alloc) size of a type (in /// address-units, not bits) in a target independent way (Note: the return /// type is an i64). /// static Constant *getSizeOf(Type *Ty); /// getOffsetOf constant expr - computes the offset of a struct field in a /// target independent way (Note: the return type is an i64). /// static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, /// which supports any aggregate type, and any Constant index. /// static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); static Constant *getNeg(Constant *C, bool HasNUW = false, bool HasNSW =false); static Constant *getFNeg(Constant *C); static Constant *getNot(Constant *C); static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getFAdd(Constant *C1, Constant *C2); static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getFSub(Constant *C1, Constant *C2); static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getFMul(Constant *C1, Constant *C2); static Constant *getUDiv(Constant *C1, Constant *C2, bool isExact = false); static Constant *getSDiv(Constant *C1, Constant *C2, bool isExact = false); static Constant *getFDiv(Constant *C1, Constant *C2); static Constant *getURem(Constant *C1, Constant *C2); static Constant *getSRem(Constant *C1, Constant *C2); static Constant *getFRem(Constant *C1, Constant *C2); static Constant *getAnd(Constant *C1, Constant *C2); static Constant *getOr(Constant *C1, Constant *C2); static Constant *getXor(Constant *C1, Constant *C2); static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false, bool HasNSW = false); static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getPtrToInt(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getIntToPtr(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getBitCast(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getAddrSpaceCast(Constant *C, Type *Ty, bool OnlyIfReduced = false); static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } static Constant *getNSWAdd(Constant *C1, Constant *C2) { return getAdd(C1, C2, false, true); } static Constant *getNUWAdd(Constant *C1, Constant *C2) { return getAdd(C1, C2, true, false); } static Constant *getNSWSub(Constant *C1, Constant *C2) { return getSub(C1, C2, false, true); } static Constant *getNUWSub(Constant *C1, Constant *C2) { return getSub(C1, C2, true, false); } static Constant *getNSWMul(Constant *C1, Constant *C2) { return getMul(C1, C2, false, true); } static Constant *getNUWMul(Constant *C1, Constant *C2) { return getMul(C1, C2, true, false); } static Constant *getNSWShl(Constant *C1, Constant *C2) { return getShl(C1, C2, false, true); } static Constant *getNUWShl(Constant *C1, Constant *C2) { return getShl(C1, C2, true, false); } static Constant *getExactSDiv(Constant *C1, Constant *C2) { return getSDiv(C1, C2, true); } static Constant *getExactUDiv(Constant *C1, Constant *C2) { return getUDiv(C1, C2, true); } static Constant *getExactAShr(Constant *C1, Constant *C2) { return getAShr(C1, C2, true); } static Constant *getExactLShr(Constant *C1, Constant *C2) { return getLShr(C1, C2, true); } /// Return the identity constant for a binary opcode. /// The identity constant C is defined as X op C = X and C op X = X for every /// X when the binary operation is commutative. If the binop is not /// commutative, callers can acquire the operand 1 identity constant by /// setting AllowRHSConstant to true. For example, any shift has a zero /// identity constant for operand 1: X shift 0 = X. /// Return nullptr if the operator does not have an identity constant. static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, bool AllowRHSConstant = false); /// Return the absorbing element for the given binary /// operation, i.e. a constant C such that X op C = C and C op X = C for /// every X. For example, this returns zero for integer multiplication. /// It returns null if the operator doesn't have an absorbing element. static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); /// Transparently provide more efficient getOperand methods. DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); /// Convenience function for getting a Cast operation. /// /// \param ops The opcode for the conversion /// \param C The constant to be converted /// \param Ty The type to which the constant is converted /// \param OnlyIfReduced see \a getWithOperands() docs. static Constant *getCast(unsigned ops, Constant *C, Type *Ty, bool OnlyIfReduced = false); // Create a ZExt or BitCast cast constant expression static Constant *getZExtOrBitCast( Constant *C, ///< The constant to zext or bitcast Type *Ty ///< The type to zext or bitcast C to ); // Create a SExt or BitCast cast constant expression static Constant *getSExtOrBitCast( Constant *C, ///< The constant to sext or bitcast Type *Ty ///< The type to sext or bitcast C to ); // Create a Trunc or BitCast cast constant expression static Constant *getTruncOrBitCast( Constant *C, ///< The constant to trunc or bitcast Type *Ty ///< The type to trunc or bitcast C to ); /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant /// expression. static Constant *getPointerCast( Constant *C, ///< The pointer value to be casted (operand 0) Type *Ty ///< The type to which cast should be made ); /// Create a BitCast or AddrSpaceCast for a pointer type depending on /// the address space. static Constant *getPointerBitCastOrAddrSpaceCast( Constant *C, ///< The constant to addrspacecast or bitcast Type *Ty ///< The type to bitcast or addrspacecast C to ); /// Create a ZExt, Bitcast or Trunc for integer -> integer casts static Constant *getIntegerCast( Constant *C, ///< The integer constant to be casted Type *Ty, ///< The integer type to cast to bool isSigned ///< Whether C should be treated as signed or not ); /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts static Constant *getFPCast( Constant *C, ///< The integer constant to be casted Type *Ty ///< The integer type to cast to ); /// Return true if this is a convert constant expression bool isCast() const; /// Return true if this is a compare constant expression bool isCompare() const; /// Return true if this is an insertvalue or extractvalue expression, /// and the getIndices() method may be used. bool hasIndices() const; /// Return true if this is a getelementptr expression and all /// the index operands are compile-time known integers within the /// corresponding notional static array extents. Note that this is /// not equivalant to, a subset of, or a superset of the "inbounds" /// property. bool isGEPWithNoNotionalOverIndexing() const; /// Select constant expr /// /// \param OnlyIfReducedTy see \a getWithOperands() docs. static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, Type *OnlyIfReducedTy = nullptr); /// get - Return a unary operator constant expression, /// folding if possible. /// /// \param OnlyIfReducedTy see \a getWithOperands() docs. static Constant *get(unsigned Opcode, Constant *C1, unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); /// get - Return a binary or shift operator constant expression, /// folding if possible. /// /// \param OnlyIfReducedTy see \a getWithOperands() docs. static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); /// Return an ICmp or FCmp comparison operator constant expression. /// /// \param OnlyIfReduced see \a getWithOperands() docs. static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, bool OnlyIfReduced = false); /// get* - Return some common constants without having to /// specify the full Instruction::OPCODE identifier. /// static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced = false); static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, bool OnlyIfReduced = false); /// Getelementptr form. Value* is only accepted for convenience; /// all elements must be Constants. /// /// \param InRangeIndex the inrange index if present or None. /// \param OnlyIfReducedTy see \a getWithOperands() docs. static Constant *getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList, bool InBounds = false, Optional<unsigned> InRangeIndex = None, Type *OnlyIfReducedTy = nullptr) { return getGetElementPtr( Ty, C, makeArrayRef((Value * const *)IdxList.data(), IdxList.size()), InBounds, InRangeIndex, OnlyIfReducedTy); } static Constant *getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false, Optional<unsigned> InRangeIndex = None, Type *OnlyIfReducedTy = nullptr) { // This form of the function only exists to avoid ambiguous overload // warnings about whether to convert Idx to ArrayRef<Constant *> or // ArrayRef<Value *>. return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, OnlyIfReducedTy); } static Constant *getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList, bool InBounds = false, Optional<unsigned> InRangeIndex = None, Type *OnlyIfReducedTy = nullptr); /// Create an "inbounds" getelementptr. See the documentation for the /// "inbounds" flag in LangRef.html for details. static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList) { return getGetElementPtr(Ty, C, IdxList, true); } static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, Constant *Idx) { // This form of the function only exists to avoid ambiguous overload // warnings about whether to convert Idx to ArrayRef<Constant *> or // ArrayRef<Value *>. return getGetElementPtr(Ty, C, Idx, true); } static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList) { return getGetElementPtr(Ty, C, IdxList, true); } static Constant *getExtractElement(Constant *Vec, Constant *Idx, Type *OnlyIfReducedTy = nullptr); static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, Type *OnlyIfReducedTy = nullptr); static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask, Type *OnlyIfReducedTy = nullptr); static Constant *getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs, Type *OnlyIfReducedTy = nullptr); static Constant *getInsertValue(Constant *Agg, Constant *Val, ArrayRef<unsigned> Idxs, Type *OnlyIfReducedTy = nullptr); /// Return the opcode at the root of this constant expression unsigned getOpcode() const { return getSubclassDataFromValue(); } /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or /// FCMP constant expression. unsigned getPredicate() const; /// Assert that this is an insertvalue or exactvalue /// expression and return the list of indices. ArrayRef<unsigned> getIndices() const; /// Return a string representation for an opcode. const char *getOpcodeName() const; /// Return a constant expression identical to this one, but with the specified /// operand set to the specified value. Constant *getWithOperandReplaced(unsigned OpNo, Constant *Op) const; /// This returns the current constant expression with the operands replaced /// with the specified values. The specified array must have the same number /// of operands as our current one. Constant *getWithOperands(ArrayRef<Constant*> Ops) const { return getWithOperands(Ops, getType()); } /// Get the current expression with the operands replaced. /// /// Return the current constant expression with the operands replaced with \c /// Ops and the type with \c Ty. The new operands must have the same number /// as the current ones. /// /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something /// gets constant-folded, the type changes, or the expression is otherwise /// canonicalized. This parameter should almost always be \c false. Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, bool OnlyIfReduced = false, Type *SrcTy = nullptr) const; /// Returns an Instruction which implements the same operation as this /// ConstantExpr. The instruction is not linked to any basic block. /// /// A better approach to this could be to have a constructor for Instruction /// which would take a ConstantExpr parameter, but that would have spread /// implementation details of ConstantExpr outside of Constants.cpp, which /// would make it harder to remove ConstantExprs altogether. Instruction *getAsInstruction(); /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == ConstantExprVal; } private: // Shadow Value::setValueSubclassData with a private forwarding method so that // subclasses cannot accidentally use it. void setValueSubclassData(unsigned short D) { Value::setValueSubclassData(D); } }; template <> struct OperandTraits<ConstantExpr> : public VariadicOperandTraits<ConstantExpr, 1> { }; DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) //===----------------------------------------------------------------------===// /// 'undef' values are things that do not have specified contents. /// These are used for a variety of purposes, including global variable /// initializers and operands to instructions. 'undef' values can occur with /// any first-class type. /// /// Undef values aren't exactly constants; if they have multiple uses, they /// can appear to have different bit patterns at each use. See /// LangRef.html#undefvalues for details. /// class UndefValue final : public ConstantData { friend class Constant; explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} void destroyConstantImpl(); public: UndefValue(const UndefValue &) = delete; /// Static factory methods - Return an 'undef' object of the specified type. static UndefValue *get(Type *T); /// If this Undef has array or vector type, return a undef with the right /// element type. UndefValue *getSequentialElement() const; /// If this undef has struct type, return a undef with the right element type /// for the specified element. UndefValue *getStructElement(unsigned Elt) const; /// Return an undef of the right value for the specified GEP index if we can, /// otherwise return null (e.g. if C is a ConstantExpr). UndefValue *getElementValue(Constant *C) const; /// Return an undef of the right value for the specified GEP index. UndefValue *getElementValue(unsigned Idx) const; /// Return the number of elements in the array, vector, or struct. unsigned getNumElements() const; /// Methods for support type inquiry through isa, cast, and dyn_cast: static bool classof(const Value *V) { return V->getValueID() == UndefValueVal; } }; } // end namespace llvm #endif // LLVM_IR_CONSTANTS_H