//===- llvm/Support/YAMLTraits.h --------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_SUPPORT_YAMLTRAITS_H #define LLVM_SUPPORT_YAMLTRAITS_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/AlignOf.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Regex.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/YAMLParser.h" #include "llvm/Support/raw_ostream.h" #include <cassert> #include <cctype> #include <cstddef> #include <cstdint> #include <iterator> #include <map> #include <memory> #include <new> #include <string> #include <system_error> #include <type_traits> #include <vector> namespace llvm { namespace yaml { enum class NodeKind : uint8_t { Scalar, Map, Sequence, }; struct EmptyContext {}; /// This class should be specialized by any type that needs to be converted /// to/from a YAML mapping. For example: /// /// struct MappingTraits<MyStruct> { /// static void mapping(IO &io, MyStruct &s) { /// io.mapRequired("name", s.name); /// io.mapRequired("size", s.size); /// io.mapOptional("age", s.age); /// } /// }; template<class T> struct MappingTraits { // Must provide: // static void mapping(IO &io, T &fields); // Optionally may provide: // static StringRef validate(IO &io, T &fields); // // The optional flow flag will cause generated YAML to use a flow mapping // (e.g. { a: 0, b: 1 }): // static const bool flow = true; }; /// This class is similar to MappingTraits<T> but allows you to pass in /// additional context for each map operation. For example: /// /// struct MappingContextTraits<MyStruct, MyContext> { /// static void mapping(IO &io, MyStruct &s, MyContext &c) { /// io.mapRequired("name", s.name); /// io.mapRequired("size", s.size); /// io.mapOptional("age", s.age); /// ++c.TimesMapped; /// } /// }; template <class T, class Context> struct MappingContextTraits { // Must provide: // static void mapping(IO &io, T &fields, Context &Ctx); // Optionally may provide: // static StringRef validate(IO &io, T &fields, Context &Ctx); // // The optional flow flag will cause generated YAML to use a flow mapping // (e.g. { a: 0, b: 1 }): // static const bool flow = true; }; /// This class should be specialized by any integral type that converts /// to/from a YAML scalar where there is a one-to-one mapping between /// in-memory values and a string in YAML. For example: /// /// struct ScalarEnumerationTraits<Colors> { /// static void enumeration(IO &io, Colors &value) { /// io.enumCase(value, "red", cRed); /// io.enumCase(value, "blue", cBlue); /// io.enumCase(value, "green", cGreen); /// } /// }; template<typename T> struct ScalarEnumerationTraits { // Must provide: // static void enumeration(IO &io, T &value); }; /// This class should be specialized by any integer type that is a union /// of bit values and the YAML representation is a flow sequence of /// strings. For example: /// /// struct ScalarBitSetTraits<MyFlags> { /// static void bitset(IO &io, MyFlags &value) { /// io.bitSetCase(value, "big", flagBig); /// io.bitSetCase(value, "flat", flagFlat); /// io.bitSetCase(value, "round", flagRound); /// } /// }; template<typename T> struct ScalarBitSetTraits { // Must provide: // static void bitset(IO &io, T &value); }; /// Describe which type of quotes should be used when quoting is necessary. /// Some non-printable characters need to be double-quoted, while some others /// are fine with simple-quoting, and some don't need any quoting. enum class QuotingType { None, Single, Double }; /// This class should be specialized by type that requires custom conversion /// to/from a yaml scalar. For example: /// /// template<> /// struct ScalarTraits<MyType> { /// static void output(const MyType &val, void*, llvm::raw_ostream &out) { /// // stream out custom formatting /// out << llvm::format("%x", val); /// } /// static StringRef input(StringRef scalar, void*, MyType &value) { /// // parse scalar and set `value` /// // return empty string on success, or error string /// return StringRef(); /// } /// static QuotingType mustQuote(StringRef) { return QuotingType::Single; } /// }; template<typename T> struct ScalarTraits { // Must provide: // // Function to write the value as a string: // static void output(const T &value, void *ctxt, llvm::raw_ostream &out); // // Function to convert a string to a value. Returns the empty // StringRef on success or an error string if string is malformed: // static StringRef input(StringRef scalar, void *ctxt, T &value); // // Function to determine if the value should be quoted. // static QuotingType mustQuote(StringRef); }; /// This class should be specialized by type that requires custom conversion /// to/from a YAML literal block scalar. For example: /// /// template <> /// struct BlockScalarTraits<MyType> { /// static void output(const MyType &Value, void*, llvm::raw_ostream &Out) /// { /// // stream out custom formatting /// Out << Value; /// } /// static StringRef input(StringRef Scalar, void*, MyType &Value) { /// // parse scalar and set `value` /// // return empty string on success, or error string /// return StringRef(); /// } /// }; template <typename T> struct BlockScalarTraits { // Must provide: // // Function to write the value as a string: // static void output(const T &Value, void *ctx, llvm::raw_ostream &Out); // // Function to convert a string to a value. Returns the empty // StringRef on success or an error string if string is malformed: // static StringRef input(StringRef Scalar, void *ctxt, T &Value); // // Optional: // static StringRef inputTag(T &Val, std::string Tag) // static void outputTag(const T &Val, raw_ostream &Out) }; /// This class should be specialized by type that requires custom conversion /// to/from a YAML scalar with optional tags. For example: /// /// template <> /// struct TaggedScalarTraits<MyType> { /// static void output(const MyType &Value, void*, llvm::raw_ostream /// &ScalarOut, llvm::raw_ostream &TagOut) /// { /// // stream out custom formatting including optional Tag /// Out << Value; /// } /// static StringRef input(StringRef Scalar, StringRef Tag, void*, MyType /// &Value) { /// // parse scalar and set `value` /// // return empty string on success, or error string /// return StringRef(); /// } /// static QuotingType mustQuote(const MyType &Value, StringRef) { /// return QuotingType::Single; /// } /// }; template <typename T> struct TaggedScalarTraits { // Must provide: // // Function to write the value and tag as strings: // static void output(const T &Value, void *ctx, llvm::raw_ostream &ScalarOut, // llvm::raw_ostream &TagOut); // // Function to convert a string to a value. Returns the empty // StringRef on success or an error string if string is malformed: // static StringRef input(StringRef Scalar, StringRef Tag, void *ctxt, T // &Value); // // Function to determine if the value should be quoted. // static QuotingType mustQuote(const T &Value, StringRef Scalar); }; /// This class should be specialized by any type that needs to be converted /// to/from a YAML sequence. For example: /// /// template<> /// struct SequenceTraits<MyContainer> { /// static size_t size(IO &io, MyContainer &seq) { /// return seq.size(); /// } /// static MyType& element(IO &, MyContainer &seq, size_t index) { /// if ( index >= seq.size() ) /// seq.resize(index+1); /// return seq[index]; /// } /// }; template<typename T, typename EnableIf = void> struct SequenceTraits { // Must provide: // static size_t size(IO &io, T &seq); // static T::value_type& element(IO &io, T &seq, size_t index); // // The following is option and will cause generated YAML to use // a flow sequence (e.g. [a,b,c]). // static const bool flow = true; }; /// This class should be specialized by any type for which vectors of that /// type need to be converted to/from a YAML sequence. template<typename T, typename EnableIf = void> struct SequenceElementTraits { // Must provide: // static const bool flow; }; /// This class should be specialized by any type that needs to be converted /// to/from a list of YAML documents. template<typename T> struct DocumentListTraits { // Must provide: // static size_t size(IO &io, T &seq); // static T::value_type& element(IO &io, T &seq, size_t index); }; /// This class should be specialized by any type that needs to be converted /// to/from a YAML mapping in the case where the names of the keys are not known /// in advance, e.g. a string map. template <typename T> struct CustomMappingTraits { // static void inputOne(IO &io, StringRef key, T &elem); // static void output(IO &io, T &elem); }; /// This class should be specialized by any type that can be represented as /// a scalar, map, or sequence, decided dynamically. For example: /// /// typedef std::unique_ptr<MyBase> MyPoly; /// /// template<> /// struct PolymorphicTraits<MyPoly> { /// static NodeKind getKind(const MyPoly &poly) { /// return poly->getKind(); /// } /// static MyScalar& getAsScalar(MyPoly &poly) { /// if (!poly || !isa<MyScalar>(poly)) /// poly.reset(new MyScalar()); /// return *cast<MyScalar>(poly.get()); /// } /// // ... /// }; template <typename T> struct PolymorphicTraits { // Must provide: // static NodeKind getKind(const T &poly); // static scalar_type &getAsScalar(T &poly); // static map_type &getAsMap(T &poly); // static sequence_type &getAsSequence(T &poly); }; // Only used for better diagnostics of missing traits template <typename T> struct MissingTrait; // Test if ScalarEnumerationTraits<T> is defined on type T. template <class T> struct has_ScalarEnumerationTraits { using Signature_enumeration = void (*)(class IO&, T&); template <typename U> static char test(SameType<Signature_enumeration, &U::enumeration>*); template <typename U> static double test(...); static bool const value = (sizeof(test<ScalarEnumerationTraits<T>>(nullptr)) == 1); }; // Test if ScalarBitSetTraits<T> is defined on type T. template <class T> struct has_ScalarBitSetTraits { using Signature_bitset = void (*)(class IO&, T&); template <typename U> static char test(SameType<Signature_bitset, &U::bitset>*); template <typename U> static double test(...); static bool const value = (sizeof(test<ScalarBitSetTraits<T>>(nullptr)) == 1); }; // Test if ScalarTraits<T> is defined on type T. template <class T> struct has_ScalarTraits { using Signature_input = StringRef (*)(StringRef, void*, T&); using Signature_output = void (*)(const T&, void*, raw_ostream&); using Signature_mustQuote = QuotingType (*)(StringRef); template <typename U> static char test(SameType<Signature_input, &U::input> *, SameType<Signature_output, &U::output> *, SameType<Signature_mustQuote, &U::mustQuote> *); template <typename U> static double test(...); static bool const value = (sizeof(test<ScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1); }; // Test if BlockScalarTraits<T> is defined on type T. template <class T> struct has_BlockScalarTraits { using Signature_input = StringRef (*)(StringRef, void *, T &); using Signature_output = void (*)(const T &, void *, raw_ostream &); template <typename U> static char test(SameType<Signature_input, &U::input> *, SameType<Signature_output, &U::output> *); template <typename U> static double test(...); static bool const value = (sizeof(test<BlockScalarTraits<T>>(nullptr, nullptr)) == 1); }; // Test if TaggedScalarTraits<T> is defined on type T. template <class T> struct has_TaggedScalarTraits { using Signature_input = StringRef (*)(StringRef, StringRef, void *, T &); using Signature_output = void (*)(const T &, void *, raw_ostream &, raw_ostream &); using Signature_mustQuote = QuotingType (*)(const T &, StringRef); template <typename U> static char test(SameType<Signature_input, &U::input> *, SameType<Signature_output, &U::output> *, SameType<Signature_mustQuote, &U::mustQuote> *); template <typename U> static double test(...); static bool const value = (sizeof(test<TaggedScalarTraits<T>>(nullptr, nullptr, nullptr)) == 1); }; // Test if MappingContextTraits<T> is defined on type T. template <class T, class Context> struct has_MappingTraits { using Signature_mapping = void (*)(class IO &, T &, Context &); template <typename U> static char test(SameType<Signature_mapping, &U::mapping>*); template <typename U> static double test(...); static bool const value = (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1); }; // Test if MappingTraits<T> is defined on type T. template <class T> struct has_MappingTraits<T, EmptyContext> { using Signature_mapping = void (*)(class IO &, T &); template <typename U> static char test(SameType<Signature_mapping, &U::mapping> *); template <typename U> static double test(...); static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1); }; // Test if MappingContextTraits<T>::validate() is defined on type T. template <class T, class Context> struct has_MappingValidateTraits { using Signature_validate = StringRef (*)(class IO &, T &, Context &); template <typename U> static char test(SameType<Signature_validate, &U::validate>*); template <typename U> static double test(...); static bool const value = (sizeof(test<MappingContextTraits<T, Context>>(nullptr)) == 1); }; // Test if MappingTraits<T>::validate() is defined on type T. template <class T> struct has_MappingValidateTraits<T, EmptyContext> { using Signature_validate = StringRef (*)(class IO &, T &); template <typename U> static char test(SameType<Signature_validate, &U::validate> *); template <typename U> static double test(...); static bool const value = (sizeof(test<MappingTraits<T>>(nullptr)) == 1); }; // Test if SequenceTraits<T> is defined on type T. template <class T> struct has_SequenceMethodTraits { using Signature_size = size_t (*)(class IO&, T&); template <typename U> static char test(SameType<Signature_size, &U::size>*); template <typename U> static double test(...); static bool const value = (sizeof(test<SequenceTraits<T>>(nullptr)) == 1); }; // Test if CustomMappingTraits<T> is defined on type T. template <class T> struct has_CustomMappingTraits { using Signature_input = void (*)(IO &io, StringRef key, T &v); template <typename U> static char test(SameType<Signature_input, &U::inputOne>*); template <typename U> static double test(...); static bool const value = (sizeof(test<CustomMappingTraits<T>>(nullptr)) == 1); }; // has_FlowTraits<int> will cause an error with some compilers because // it subclasses int. Using this wrapper only instantiates the // real has_FlowTraits only if the template type is a class. template <typename T, bool Enabled = std::is_class<T>::value> class has_FlowTraits { public: static const bool value = false; }; // Some older gcc compilers don't support straight forward tests // for members, so test for ambiguity cause by the base and derived // classes both defining the member. template <class T> struct has_FlowTraits<T, true> { struct Fallback { bool flow; }; struct Derived : T, Fallback { }; template<typename C> static char (&f(SameType<bool Fallback::*, &C::flow>*))[1]; template<typename C> static char (&f(...))[2]; static bool const value = sizeof(f<Derived>(nullptr)) == 2; }; // Test if SequenceTraits<T> is defined on type T template<typename T> struct has_SequenceTraits : public std::integral_constant<bool, has_SequenceMethodTraits<T>::value > { }; // Test if DocumentListTraits<T> is defined on type T template <class T> struct has_DocumentListTraits { using Signature_size = size_t (*)(class IO &, T &); template <typename U> static char test(SameType<Signature_size, &U::size>*); template <typename U> static double test(...); static bool const value = (sizeof(test<DocumentListTraits<T>>(nullptr))==1); }; template <class T> struct has_PolymorphicTraits { using Signature_getKind = NodeKind (*)(const T &); template <typename U> static char test(SameType<Signature_getKind, &U::getKind> *); template <typename U> static double test(...); static bool const value = (sizeof(test<PolymorphicTraits<T>>(nullptr)) == 1); }; inline bool isNumeric(StringRef S) { const static auto skipDigits = [](StringRef Input) { return Input.drop_front( std::min(Input.find_first_not_of("0123456789"), Input.size())); }; // Make S.front() and S.drop_front().front() (if S.front() is [+-]) calls // safe. if (S.empty() || S.equals("+") || S.equals("-")) return false; if (S.equals(".nan") || S.equals(".NaN") || S.equals(".NAN")) return true; // Infinity and decimal numbers can be prefixed with sign. StringRef Tail = (S.front() == '-' || S.front() == '+') ? S.drop_front() : S; // Check for infinity first, because checking for hex and oct numbers is more // expensive. if (Tail.equals(".inf") || Tail.equals(".Inf") || Tail.equals(".INF")) return true; // Section 10.3.2 Tag Resolution // YAML 1.2 Specification prohibits Base 8 and Base 16 numbers prefixed with // [-+], so S should be used instead of Tail. if (S.startswith("0o")) return S.size() > 2 && S.drop_front(2).find_first_not_of("01234567") == StringRef::npos; if (S.startswith("0x")) return S.size() > 2 && S.drop_front(2).find_first_not_of( "0123456789abcdefABCDEF") == StringRef::npos; // Parse float: [-+]? (\. [0-9]+ | [0-9]+ (\. [0-9]* )?) ([eE] [-+]? [0-9]+)? S = Tail; // Handle cases when the number starts with '.' and hence needs at least one // digit after dot (as opposed by number which has digits before the dot), but // doesn't have one. if (S.startswith(".") && (S.equals(".") || (S.size() > 1 && std::strchr("0123456789", S[1]) == nullptr))) return false; if (S.startswith("E") || S.startswith("e")) return false; enum ParseState { Default, FoundDot, FoundExponent, }; ParseState State = Default; S = skipDigits(S); // Accept decimal integer. if (S.empty()) return true; if (S.front() == '.') { State = FoundDot; S = S.drop_front(); } else if (S.front() == 'e' || S.front() == 'E') { State = FoundExponent; S = S.drop_front(); } else { return false; } if (State == FoundDot) { S = skipDigits(S); if (S.empty()) return true; if (S.front() == 'e' || S.front() == 'E') { State = FoundExponent; S = S.drop_front(); } else { return false; } } assert(State == FoundExponent && "Should have found exponent at this point."); if (S.empty()) return false; if (S.front() == '+' || S.front() == '-') { S = S.drop_front(); if (S.empty()) return false; } return skipDigits(S).empty(); } inline bool isNull(StringRef S) { return S.equals("null") || S.equals("Null") || S.equals("NULL") || S.equals("~"); } inline bool isBool(StringRef S) { return S.equals("true") || S.equals("True") || S.equals("TRUE") || S.equals("false") || S.equals("False") || S.equals("FALSE"); } // 5.1. Character Set // The allowed character range explicitly excludes the C0 control block #x0-#x1F // (except for TAB #x9, LF #xA, and CR #xD which are allowed), DEL #x7F, the C1 // control block #x80-#x9F (except for NEL #x85 which is allowed), the surrogate // block #xD800-#xDFFF, #xFFFE, and #xFFFF. inline QuotingType needsQuotes(StringRef S) { if (S.empty()) return QuotingType::Single; if (isspace(S.front()) || isspace(S.back())) return QuotingType::Single; if (isNull(S)) return QuotingType::Single; if (isBool(S)) return QuotingType::Single; if (isNumeric(S)) return QuotingType::Single; // 7.3.3 Plain Style // Plain scalars must not begin with most indicators, as this would cause // ambiguity with other YAML constructs. static constexpr char Indicators[] = R"(-?:\,[]{}#&*!|>'"%@`)"; if (S.find_first_of(Indicators) == 0) return QuotingType::Single; QuotingType MaxQuotingNeeded = QuotingType::None; for (unsigned char C : S) { // Alphanum is safe. if (isAlnum(C)) continue; switch (C) { // Safe scalar characters. case '_': case '-': case '^': case '.': case ',': case ' ': // TAB (0x9) is allowed in unquoted strings. case 0x9: continue; // LF(0xA) and CR(0xD) may delimit values and so require at least single // quotes. case 0xA: case 0xD: MaxQuotingNeeded = QuotingType::Single; continue; // DEL (0x7F) are excluded from the allowed character range. case 0x7F: return QuotingType::Double; // Forward slash is allowed to be unquoted, but we quote it anyway. We have // many tests that use FileCheck against YAML output, and this output often // contains paths. If we quote backslashes but not forward slashes then // paths will come out either quoted or unquoted depending on which platform // the test is run on, making FileCheck comparisons difficult. case '/': default: { // C0 control block (0x0 - 0x1F) is excluded from the allowed character // range. if (C <= 0x1F) return QuotingType::Double; // Always double quote UTF-8. if ((C & 0x80) != 0) return QuotingType::Double; // The character is not safe, at least simple quoting needed. MaxQuotingNeeded = QuotingType::Single; } } } return MaxQuotingNeeded; } template <typename T, typename Context> struct missingTraits : public std::integral_constant<bool, !has_ScalarEnumerationTraits<T>::value && !has_ScalarBitSetTraits<T>::value && !has_ScalarTraits<T>::value && !has_BlockScalarTraits<T>::value && !has_TaggedScalarTraits<T>::value && !has_MappingTraits<T, Context>::value && !has_SequenceTraits<T>::value && !has_CustomMappingTraits<T>::value && !has_DocumentListTraits<T>::value && !has_PolymorphicTraits<T>::value> {}; template <typename T, typename Context> struct validatedMappingTraits : public std::integral_constant< bool, has_MappingTraits<T, Context>::value && has_MappingValidateTraits<T, Context>::value> {}; template <typename T, typename Context> struct unvalidatedMappingTraits : public std::integral_constant< bool, has_MappingTraits<T, Context>::value && !has_MappingValidateTraits<T, Context>::value> {}; // Base class for Input and Output. class IO { public: IO(void *Ctxt = nullptr); virtual ~IO(); virtual bool outputting() = 0; virtual unsigned beginSequence() = 0; virtual bool preflightElement(unsigned, void *&) = 0; virtual void postflightElement(void*) = 0; virtual void endSequence() = 0; virtual bool canElideEmptySequence() = 0; virtual unsigned beginFlowSequence() = 0; virtual bool preflightFlowElement(unsigned, void *&) = 0; virtual void postflightFlowElement(void*) = 0; virtual void endFlowSequence() = 0; virtual bool mapTag(StringRef Tag, bool Default=false) = 0; virtual void beginMapping() = 0; virtual void endMapping() = 0; virtual bool preflightKey(const char*, bool, bool, bool &, void *&) = 0; virtual void postflightKey(void*) = 0; virtual std::vector<StringRef> keys() = 0; virtual void beginFlowMapping() = 0; virtual void endFlowMapping() = 0; virtual void beginEnumScalar() = 0; virtual bool matchEnumScalar(const char*, bool) = 0; virtual bool matchEnumFallback() = 0; virtual void endEnumScalar() = 0; virtual bool beginBitSetScalar(bool &) = 0; virtual bool bitSetMatch(const char*, bool) = 0; virtual void endBitSetScalar() = 0; virtual void scalarString(StringRef &, QuotingType) = 0; virtual void blockScalarString(StringRef &) = 0; virtual void scalarTag(std::string &) = 0; virtual NodeKind getNodeKind() = 0; virtual void setError(const Twine &) = 0; template <typename T> void enumCase(T &Val, const char* Str, const T ConstVal) { if ( matchEnumScalar(Str, outputting() && Val == ConstVal) ) { Val = ConstVal; } } // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF template <typename T> void enumCase(T &Val, const char* Str, const uint32_t ConstVal) { if ( matchEnumScalar(Str, outputting() && Val == static_cast<T>(ConstVal)) ) { Val = ConstVal; } } template <typename FBT, typename T> void enumFallback(T &Val) { if (matchEnumFallback()) { EmptyContext Context; // FIXME: Force integral conversion to allow strong typedefs to convert. FBT Res = static_cast<typename FBT::BaseType>(Val); yamlize(*this, Res, true, Context); Val = static_cast<T>(static_cast<typename FBT::BaseType>(Res)); } } template <typename T> void bitSetCase(T &Val, const char* Str, const T ConstVal) { if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) { Val = static_cast<T>(Val | ConstVal); } } // allow anonymous enum values to be used with LLVM_YAML_STRONG_TYPEDEF template <typename T> void bitSetCase(T &Val, const char* Str, const uint32_t ConstVal) { if ( bitSetMatch(Str, outputting() && (Val & ConstVal) == ConstVal) ) { Val = static_cast<T>(Val | ConstVal); } } template <typename T> void maskedBitSetCase(T &Val, const char *Str, T ConstVal, T Mask) { if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal)) Val = Val | ConstVal; } template <typename T> void maskedBitSetCase(T &Val, const char *Str, uint32_t ConstVal, uint32_t Mask) { if (bitSetMatch(Str, outputting() && (Val & Mask) == ConstVal)) Val = Val | ConstVal; } void *getContext(); void setContext(void *); template <typename T> void mapRequired(const char *Key, T &Val) { EmptyContext Ctx; this->processKey(Key, Val, true, Ctx); } template <typename T, typename Context> void mapRequired(const char *Key, T &Val, Context &Ctx) { this->processKey(Key, Val, true, Ctx); } template <typename T> void mapOptional(const char *Key, T &Val) { EmptyContext Ctx; mapOptionalWithContext(Key, Val, Ctx); } template <typename T> void mapOptional(const char *Key, T &Val, const T &Default) { EmptyContext Ctx; mapOptionalWithContext(Key, Val, Default, Ctx); } template <typename T, typename Context> typename std::enable_if<has_SequenceTraits<T>::value, void>::type mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) { // omit key/value instead of outputting empty sequence if (this->canElideEmptySequence() && !(Val.begin() != Val.end())) return; this->processKey(Key, Val, false, Ctx); } template <typename T, typename Context> void mapOptionalWithContext(const char *Key, Optional<T> &Val, Context &Ctx) { this->processKeyWithDefault(Key, Val, Optional<T>(), /*Required=*/false, Ctx); } template <typename T, typename Context> typename std::enable_if<!has_SequenceTraits<T>::value, void>::type mapOptionalWithContext(const char *Key, T &Val, Context &Ctx) { this->processKey(Key, Val, false, Ctx); } template <typename T, typename Context> void mapOptionalWithContext(const char *Key, T &Val, const T &Default, Context &Ctx) { this->processKeyWithDefault(Key, Val, Default, false, Ctx); } private: template <typename T, typename Context> void processKeyWithDefault(const char *Key, Optional<T> &Val, const Optional<T> &DefaultValue, bool Required, Context &Ctx) { assert(DefaultValue.hasValue() == false && "Optional<T> shouldn't have a value!"); void *SaveInfo; bool UseDefault = true; const bool sameAsDefault = outputting() && !Val.hasValue(); if (!outputting() && !Val.hasValue()) Val = T(); if (Val.hasValue() && this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo)) { yamlize(*this, Val.getValue(), Required, Ctx); this->postflightKey(SaveInfo); } else { if (UseDefault) Val = DefaultValue; } } template <typename T, typename Context> void processKeyWithDefault(const char *Key, T &Val, const T &DefaultValue, bool Required, Context &Ctx) { void *SaveInfo; bool UseDefault; const bool sameAsDefault = outputting() && Val == DefaultValue; if ( this->preflightKey(Key, Required, sameAsDefault, UseDefault, SaveInfo) ) { yamlize(*this, Val, Required, Ctx); this->postflightKey(SaveInfo); } else { if ( UseDefault ) Val = DefaultValue; } } template <typename T, typename Context> void processKey(const char *Key, T &Val, bool Required, Context &Ctx) { void *SaveInfo; bool UseDefault; if ( this->preflightKey(Key, Required, false, UseDefault, SaveInfo) ) { yamlize(*this, Val, Required, Ctx); this->postflightKey(SaveInfo); } } private: void *Ctxt; }; namespace detail { template <typename T, typename Context> void doMapping(IO &io, T &Val, Context &Ctx) { MappingContextTraits<T, Context>::mapping(io, Val, Ctx); } template <typename T> void doMapping(IO &io, T &Val, EmptyContext &Ctx) { MappingTraits<T>::mapping(io, Val); } } // end namespace detail template <typename T> typename std::enable_if<has_ScalarEnumerationTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { io.beginEnumScalar(); ScalarEnumerationTraits<T>::enumeration(io, Val); io.endEnumScalar(); } template <typename T> typename std::enable_if<has_ScalarBitSetTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { bool DoClear; if ( io.beginBitSetScalar(DoClear) ) { if ( DoClear ) Val = static_cast<T>(0); ScalarBitSetTraits<T>::bitset(io, Val); io.endBitSetScalar(); } } template <typename T> typename std::enable_if<has_ScalarTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { if ( io.outputting() ) { std::string Storage; raw_string_ostream Buffer(Storage); ScalarTraits<T>::output(Val, io.getContext(), Buffer); StringRef Str = Buffer.str(); io.scalarString(Str, ScalarTraits<T>::mustQuote(Str)); } else { StringRef Str; io.scalarString(Str, ScalarTraits<T>::mustQuote(Str)); StringRef Result = ScalarTraits<T>::input(Str, io.getContext(), Val); if ( !Result.empty() ) { io.setError(Twine(Result)); } } } template <typename T> typename std::enable_if<has_BlockScalarTraits<T>::value, void>::type yamlize(IO &YamlIO, T &Val, bool, EmptyContext &Ctx) { if (YamlIO.outputting()) { std::string Storage; raw_string_ostream Buffer(Storage); BlockScalarTraits<T>::output(Val, YamlIO.getContext(), Buffer); StringRef Str = Buffer.str(); YamlIO.blockScalarString(Str); } else { StringRef Str; YamlIO.blockScalarString(Str); StringRef Result = BlockScalarTraits<T>::input(Str, YamlIO.getContext(), Val); if (!Result.empty()) YamlIO.setError(Twine(Result)); } } template <typename T> typename std::enable_if<has_TaggedScalarTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { if (io.outputting()) { std::string ScalarStorage, TagStorage; raw_string_ostream ScalarBuffer(ScalarStorage), TagBuffer(TagStorage); TaggedScalarTraits<T>::output(Val, io.getContext(), ScalarBuffer, TagBuffer); io.scalarTag(TagBuffer.str()); StringRef ScalarStr = ScalarBuffer.str(); io.scalarString(ScalarStr, TaggedScalarTraits<T>::mustQuote(Val, ScalarStr)); } else { std::string Tag; io.scalarTag(Tag); StringRef Str; io.scalarString(Str, QuotingType::None); StringRef Result = TaggedScalarTraits<T>::input(Str, Tag, io.getContext(), Val); if (!Result.empty()) { io.setError(Twine(Result)); } } } template <typename T, typename Context> typename std::enable_if<validatedMappingTraits<T, Context>::value, void>::type yamlize(IO &io, T &Val, bool, Context &Ctx) { if (has_FlowTraits<MappingTraits<T>>::value) io.beginFlowMapping(); else io.beginMapping(); if (io.outputting()) { StringRef Err = MappingTraits<T>::validate(io, Val); if (!Err.empty()) { errs() << Err << "\n"; assert(Err.empty() && "invalid struct trying to be written as yaml"); } } detail::doMapping(io, Val, Ctx); if (!io.outputting()) { StringRef Err = MappingTraits<T>::validate(io, Val); if (!Err.empty()) io.setError(Err); } if (has_FlowTraits<MappingTraits<T>>::value) io.endFlowMapping(); else io.endMapping(); } template <typename T, typename Context> typename std::enable_if<unvalidatedMappingTraits<T, Context>::value, void>::type yamlize(IO &io, T &Val, bool, Context &Ctx) { if (has_FlowTraits<MappingTraits<T>>::value) { io.beginFlowMapping(); detail::doMapping(io, Val, Ctx); io.endFlowMapping(); } else { io.beginMapping(); detail::doMapping(io, Val, Ctx); io.endMapping(); } } template <typename T> typename std::enable_if<has_CustomMappingTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { if ( io.outputting() ) { io.beginMapping(); CustomMappingTraits<T>::output(io, Val); io.endMapping(); } else { io.beginMapping(); for (StringRef key : io.keys()) CustomMappingTraits<T>::inputOne(io, key, Val); io.endMapping(); } } template <typename T> typename std::enable_if<has_PolymorphicTraits<T>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { switch (io.outputting() ? PolymorphicTraits<T>::getKind(Val) : io.getNodeKind()) { case NodeKind::Scalar: return yamlize(io, PolymorphicTraits<T>::getAsScalar(Val), true, Ctx); case NodeKind::Map: return yamlize(io, PolymorphicTraits<T>::getAsMap(Val), true, Ctx); case NodeKind::Sequence: return yamlize(io, PolymorphicTraits<T>::getAsSequence(Val), true, Ctx); } } template <typename T> typename std::enable_if<missingTraits<T, EmptyContext>::value, void>::type yamlize(IO &io, T &Val, bool, EmptyContext &Ctx) { char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)]; } template <typename T, typename Context> typename std::enable_if<has_SequenceTraits<T>::value, void>::type yamlize(IO &io, T &Seq, bool, Context &Ctx) { if ( has_FlowTraits< SequenceTraits<T>>::value ) { unsigned incnt = io.beginFlowSequence(); unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt; for(unsigned i=0; i < count; ++i) { void *SaveInfo; if ( io.preflightFlowElement(i, SaveInfo) ) { yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx); io.postflightFlowElement(SaveInfo); } } io.endFlowSequence(); } else { unsigned incnt = io.beginSequence(); unsigned count = io.outputting() ? SequenceTraits<T>::size(io, Seq) : incnt; for(unsigned i=0; i < count; ++i) { void *SaveInfo; if ( io.preflightElement(i, SaveInfo) ) { yamlize(io, SequenceTraits<T>::element(io, Seq, i), true, Ctx); io.postflightElement(SaveInfo); } } io.endSequence(); } } template<> struct ScalarTraits<bool> { static void output(const bool &, void* , raw_ostream &); static StringRef input(StringRef, void *, bool &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<StringRef> { static void output(const StringRef &, void *, raw_ostream &); static StringRef input(StringRef, void *, StringRef &); static QuotingType mustQuote(StringRef S) { return needsQuotes(S); } }; template<> struct ScalarTraits<std::string> { static void output(const std::string &, void *, raw_ostream &); static StringRef input(StringRef, void *, std::string &); static QuotingType mustQuote(StringRef S) { return needsQuotes(S); } }; template<> struct ScalarTraits<uint8_t> { static void output(const uint8_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, uint8_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<uint16_t> { static void output(const uint16_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, uint16_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<uint32_t> { static void output(const uint32_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, uint32_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<uint64_t> { static void output(const uint64_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, uint64_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<int8_t> { static void output(const int8_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, int8_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<int16_t> { static void output(const int16_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, int16_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<int32_t> { static void output(const int32_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, int32_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<int64_t> { static void output(const int64_t &, void *, raw_ostream &); static StringRef input(StringRef, void *, int64_t &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<float> { static void output(const float &, void *, raw_ostream &); static StringRef input(StringRef, void *, float &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<double> { static void output(const double &, void *, raw_ostream &); static StringRef input(StringRef, void *, double &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; // For endian types, we just use the existing ScalarTraits for the underlying // type. This way endian aware types are supported whenever a ScalarTraits // is defined for the underlying type. template <typename value_type, support::endianness endian, size_t alignment> struct ScalarTraits<support::detail::packed_endian_specific_integral< value_type, endian, alignment>> { using endian_type = support::detail::packed_endian_specific_integral<value_type, endian, alignment>; static void output(const endian_type &E, void *Ctx, raw_ostream &Stream) { ScalarTraits<value_type>::output(static_cast<value_type>(E), Ctx, Stream); } static StringRef input(StringRef Str, void *Ctx, endian_type &E) { value_type V; auto R = ScalarTraits<value_type>::input(Str, Ctx, V); E = static_cast<endian_type>(V); return R; } static QuotingType mustQuote(StringRef Str) { return ScalarTraits<value_type>::mustQuote(Str); } }; // Utility for use within MappingTraits<>::mapping() method // to [de]normalize an object for use with YAML conversion. template <typename TNorm, typename TFinal> struct MappingNormalization { MappingNormalization(IO &i_o, TFinal &Obj) : io(i_o), BufPtr(nullptr), Result(Obj) { if ( io.outputting() ) { BufPtr = new (&Buffer) TNorm(io, Obj); } else { BufPtr = new (&Buffer) TNorm(io); } } ~MappingNormalization() { if ( ! io.outputting() ) { Result = BufPtr->denormalize(io); } BufPtr->~TNorm(); } TNorm* operator->() { return BufPtr; } private: using Storage = AlignedCharArrayUnion<TNorm>; Storage Buffer; IO &io; TNorm *BufPtr; TFinal &Result; }; // Utility for use within MappingTraits<>::mapping() method // to [de]normalize an object for use with YAML conversion. template <typename TNorm, typename TFinal> struct MappingNormalizationHeap { MappingNormalizationHeap(IO &i_o, TFinal &Obj, BumpPtrAllocator *allocator) : io(i_o), Result(Obj) { if ( io.outputting() ) { BufPtr = new (&Buffer) TNorm(io, Obj); } else if (allocator) { BufPtr = allocator->Allocate<TNorm>(); new (BufPtr) TNorm(io); } else { BufPtr = new TNorm(io); } } ~MappingNormalizationHeap() { if ( io.outputting() ) { BufPtr->~TNorm(); } else { Result = BufPtr->denormalize(io); } } TNorm* operator->() { return BufPtr; } private: using Storage = AlignedCharArrayUnion<TNorm>; Storage Buffer; IO &io; TNorm *BufPtr = nullptr; TFinal &Result; }; /// /// The Input class is used to parse a yaml document into in-memory structs /// and vectors. /// /// It works by using YAMLParser to do a syntax parse of the entire yaml /// document, then the Input class builds a graph of HNodes which wraps /// each yaml Node. The extra layer is buffering. The low level yaml /// parser only lets you look at each node once. The buffering layer lets /// you search and interate multiple times. This is necessary because /// the mapRequired() method calls may not be in the same order /// as the keys in the document. /// class Input : public IO { public: // Construct a yaml Input object from a StringRef and optional // user-data. The DiagHandler can be specified to provide // alternative error reporting. Input(StringRef InputContent, void *Ctxt = nullptr, SourceMgr::DiagHandlerTy DiagHandler = nullptr, void *DiagHandlerCtxt = nullptr); Input(MemoryBufferRef Input, void *Ctxt = nullptr, SourceMgr::DiagHandlerTy DiagHandler = nullptr, void *DiagHandlerCtxt = nullptr); ~Input() override; // Check if there was an syntax or semantic error during parsing. std::error_code error(); private: bool outputting() override; bool mapTag(StringRef, bool) override; void beginMapping() override; void endMapping() override; bool preflightKey(const char *, bool, bool, bool &, void *&) override; void postflightKey(void *) override; std::vector<StringRef> keys() override; void beginFlowMapping() override; void endFlowMapping() override; unsigned beginSequence() override; void endSequence() override; bool preflightElement(unsigned index, void *&) override; void postflightElement(void *) override; unsigned beginFlowSequence() override; bool preflightFlowElement(unsigned , void *&) override; void postflightFlowElement(void *) override; void endFlowSequence() override; void beginEnumScalar() override; bool matchEnumScalar(const char*, bool) override; bool matchEnumFallback() override; void endEnumScalar() override; bool beginBitSetScalar(bool &) override; bool bitSetMatch(const char *, bool ) override; void endBitSetScalar() override; void scalarString(StringRef &, QuotingType) override; void blockScalarString(StringRef &) override; void scalarTag(std::string &) override; NodeKind getNodeKind() override; void setError(const Twine &message) override; bool canElideEmptySequence() override; class HNode { virtual void anchor(); public: HNode(Node *n) : _node(n) { } virtual ~HNode() = default; static bool classof(const HNode *) { return true; } Node *_node; }; class EmptyHNode : public HNode { void anchor() override; public: EmptyHNode(Node *n) : HNode(n) { } static bool classof(const HNode *n) { return NullNode::classof(n->_node); } static bool classof(const EmptyHNode *) { return true; } }; class ScalarHNode : public HNode { void anchor() override; public: ScalarHNode(Node *n, StringRef s) : HNode(n), _value(s) { } StringRef value() const { return _value; } static bool classof(const HNode *n) { return ScalarNode::classof(n->_node) || BlockScalarNode::classof(n->_node); } static bool classof(const ScalarHNode *) { return true; } protected: StringRef _value; }; class MapHNode : public HNode { void anchor() override; public: MapHNode(Node *n) : HNode(n) { } static bool classof(const HNode *n) { return MappingNode::classof(n->_node); } static bool classof(const MapHNode *) { return true; } using NameToNode = StringMap<std::unique_ptr<HNode>>; NameToNode Mapping; SmallVector<std::string, 6> ValidKeys; }; class SequenceHNode : public HNode { void anchor() override; public: SequenceHNode(Node *n) : HNode(n) { } static bool classof(const HNode *n) { return SequenceNode::classof(n->_node); } static bool classof(const SequenceHNode *) { return true; } std::vector<std::unique_ptr<HNode>> Entries; }; std::unique_ptr<Input::HNode> createHNodes(Node *node); void setError(HNode *hnode, const Twine &message); void setError(Node *node, const Twine &message); public: // These are only used by operator>>. They could be private // if those templated things could be made friends. bool setCurrentDocument(); bool nextDocument(); /// Returns the current node that's being parsed by the YAML Parser. const Node *getCurrentNode() const; private: SourceMgr SrcMgr; // must be before Strm std::unique_ptr<llvm::yaml::Stream> Strm; std::unique_ptr<HNode> TopNode; std::error_code EC; BumpPtrAllocator StringAllocator; document_iterator DocIterator; std::vector<bool> BitValuesUsed; HNode *CurrentNode = nullptr; bool ScalarMatchFound; }; /// /// The Output class is used to generate a yaml document from in-memory structs /// and vectors. /// class Output : public IO { public: Output(raw_ostream &, void *Ctxt = nullptr, int WrapColumn = 70); ~Output() override; /// Set whether or not to output optional values which are equal /// to the default value. By default, when outputting if you attempt /// to write a value that is equal to the default, the value gets ignored. /// Sometimes, it is useful to be able to see these in the resulting YAML /// anyway. void setWriteDefaultValues(bool Write) { WriteDefaultValues = Write; } bool outputting() override; bool mapTag(StringRef, bool) override; void beginMapping() override; void endMapping() override; bool preflightKey(const char *key, bool, bool, bool &, void *&) override; void postflightKey(void *) override; std::vector<StringRef> keys() override; void beginFlowMapping() override; void endFlowMapping() override; unsigned beginSequence() override; void endSequence() override; bool preflightElement(unsigned, void *&) override; void postflightElement(void *) override; unsigned beginFlowSequence() override; bool preflightFlowElement(unsigned, void *&) override; void postflightFlowElement(void *) override; void endFlowSequence() override; void beginEnumScalar() override; bool matchEnumScalar(const char*, bool) override; bool matchEnumFallback() override; void endEnumScalar() override; bool beginBitSetScalar(bool &) override; bool bitSetMatch(const char *, bool ) override; void endBitSetScalar() override; void scalarString(StringRef &, QuotingType) override; void blockScalarString(StringRef &) override; void scalarTag(std::string &) override; NodeKind getNodeKind() override; void setError(const Twine &message) override; bool canElideEmptySequence() override; // These are only used by operator<<. They could be private // if that templated operator could be made a friend. void beginDocuments(); bool preflightDocument(unsigned); void postflightDocument(); void endDocuments(); private: void output(StringRef s); void outputUpToEndOfLine(StringRef s); void newLineCheck(); void outputNewLine(); void paddedKey(StringRef key); void flowKey(StringRef Key); enum InState { inSeqFirstElement, inSeqOtherElement, inFlowSeqFirstElement, inFlowSeqOtherElement, inMapFirstKey, inMapOtherKey, inFlowMapFirstKey, inFlowMapOtherKey }; static bool inSeqAnyElement(InState State); static bool inFlowSeqAnyElement(InState State); static bool inMapAnyKey(InState State); static bool inFlowMapAnyKey(InState State); raw_ostream &Out; int WrapColumn; SmallVector<InState, 8> StateStack; int Column = 0; int ColumnAtFlowStart = 0; int ColumnAtMapFlowStart = 0; bool NeedBitValueComma = false; bool NeedFlowSequenceComma = false; bool EnumerationMatchFound = false; bool NeedsNewLine = false; bool WriteDefaultValues = false; }; /// YAML I/O does conversion based on types. But often native data types /// are just a typedef of built in intergral types (e.g. int). But the C++ /// type matching system sees through the typedef and all the typedefed types /// look like a built in type. This will cause the generic YAML I/O conversion /// to be used. To provide better control over the YAML conversion, you can /// use this macro instead of typedef. It will create a class with one field /// and automatic conversion operators to and from the base type. /// Based on BOOST_STRONG_TYPEDEF #define LLVM_YAML_STRONG_TYPEDEF(_base, _type) \ struct _type { \ _type() = default; \ _type(const _base v) : value(v) {} \ _type(const _type &v) = default; \ _type &operator=(const _type &rhs) = default; \ _type &operator=(const _base &rhs) { value = rhs; return *this; } \ operator const _base & () const { return value; } \ bool operator==(const _type &rhs) const { return value == rhs.value; } \ bool operator==(const _base &rhs) const { return value == rhs; } \ bool operator<(const _type &rhs) const { return value < rhs.value; } \ _base value; \ using BaseType = _base; \ }; /// /// Use these types instead of uintXX_t in any mapping to have /// its yaml output formatted as hexadecimal. /// LLVM_YAML_STRONG_TYPEDEF(uint8_t, Hex8) LLVM_YAML_STRONG_TYPEDEF(uint16_t, Hex16) LLVM_YAML_STRONG_TYPEDEF(uint32_t, Hex32) LLVM_YAML_STRONG_TYPEDEF(uint64_t, Hex64) template<> struct ScalarTraits<Hex8> { static void output(const Hex8 &, void *, raw_ostream &); static StringRef input(StringRef, void *, Hex8 &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<Hex16> { static void output(const Hex16 &, void *, raw_ostream &); static StringRef input(StringRef, void *, Hex16 &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<Hex32> { static void output(const Hex32 &, void *, raw_ostream &); static StringRef input(StringRef, void *, Hex32 &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; template<> struct ScalarTraits<Hex64> { static void output(const Hex64 &, void *, raw_ostream &); static StringRef input(StringRef, void *, Hex64 &); static QuotingType mustQuote(StringRef) { return QuotingType::None; } }; // Define non-member operator>> so that Input can stream in a document list. template <typename T> inline typename std::enable_if<has_DocumentListTraits<T>::value, Input &>::type operator>>(Input &yin, T &docList) { int i = 0; EmptyContext Ctx; while ( yin.setCurrentDocument() ) { yamlize(yin, DocumentListTraits<T>::element(yin, docList, i), true, Ctx); if ( yin.error() ) return yin; yin.nextDocument(); ++i; } return yin; } // Define non-member operator>> so that Input can stream in a map as a document. template <typename T> inline typename std::enable_if<has_MappingTraits<T, EmptyContext>::value, Input &>::type operator>>(Input &yin, T &docMap) { EmptyContext Ctx; yin.setCurrentDocument(); yamlize(yin, docMap, true, Ctx); return yin; } // Define non-member operator>> so that Input can stream in a sequence as // a document. template <typename T> inline typename std::enable_if<has_SequenceTraits<T>::value, Input &>::type operator>>(Input &yin, T &docSeq) { EmptyContext Ctx; if (yin.setCurrentDocument()) yamlize(yin, docSeq, true, Ctx); return yin; } // Define non-member operator>> so that Input can stream in a block scalar. template <typename T> inline typename std::enable_if<has_BlockScalarTraits<T>::value, Input &>::type operator>>(Input &In, T &Val) { EmptyContext Ctx; if (In.setCurrentDocument()) yamlize(In, Val, true, Ctx); return In; } // Define non-member operator>> so that Input can stream in a string map. template <typename T> inline typename std::enable_if<has_CustomMappingTraits<T>::value, Input &>::type operator>>(Input &In, T &Val) { EmptyContext Ctx; if (In.setCurrentDocument()) yamlize(In, Val, true, Ctx); return In; } // Define non-member operator>> so that Input can stream in a polymorphic type. template <typename T> inline typename std::enable_if<has_PolymorphicTraits<T>::value, Input &>::type operator>>(Input &In, T &Val) { EmptyContext Ctx; if (In.setCurrentDocument()) yamlize(In, Val, true, Ctx); return In; } // Provide better error message about types missing a trait specialization template <typename T> inline typename std::enable_if<missingTraits<T, EmptyContext>::value, Input &>::type operator>>(Input &yin, T &docSeq) { char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)]; return yin; } // Define non-member operator<< so that Output can stream out document list. template <typename T> inline typename std::enable_if<has_DocumentListTraits<T>::value, Output &>::type operator<<(Output &yout, T &docList) { EmptyContext Ctx; yout.beginDocuments(); const size_t count = DocumentListTraits<T>::size(yout, docList); for(size_t i=0; i < count; ++i) { if ( yout.preflightDocument(i) ) { yamlize(yout, DocumentListTraits<T>::element(yout, docList, i), true, Ctx); yout.postflightDocument(); } } yout.endDocuments(); return yout; } // Define non-member operator<< so that Output can stream out a map. template <typename T> inline typename std::enable_if<has_MappingTraits<T, EmptyContext>::value, Output &>::type operator<<(Output &yout, T &map) { EmptyContext Ctx; yout.beginDocuments(); if ( yout.preflightDocument(0) ) { yamlize(yout, map, true, Ctx); yout.postflightDocument(); } yout.endDocuments(); return yout; } // Define non-member operator<< so that Output can stream out a sequence. template <typename T> inline typename std::enable_if<has_SequenceTraits<T>::value, Output &>::type operator<<(Output &yout, T &seq) { EmptyContext Ctx; yout.beginDocuments(); if ( yout.preflightDocument(0) ) { yamlize(yout, seq, true, Ctx); yout.postflightDocument(); } yout.endDocuments(); return yout; } // Define non-member operator<< so that Output can stream out a block scalar. template <typename T> inline typename std::enable_if<has_BlockScalarTraits<T>::value, Output &>::type operator<<(Output &Out, T &Val) { EmptyContext Ctx; Out.beginDocuments(); if (Out.preflightDocument(0)) { yamlize(Out, Val, true, Ctx); Out.postflightDocument(); } Out.endDocuments(); return Out; } // Define non-member operator<< so that Output can stream out a string map. template <typename T> inline typename std::enable_if<has_CustomMappingTraits<T>::value, Output &>::type operator<<(Output &Out, T &Val) { EmptyContext Ctx; Out.beginDocuments(); if (Out.preflightDocument(0)) { yamlize(Out, Val, true, Ctx); Out.postflightDocument(); } Out.endDocuments(); return Out; } // Define non-member operator<< so that Output can stream out a polymorphic // type. template <typename T> inline typename std::enable_if<has_PolymorphicTraits<T>::value, Output &>::type operator<<(Output &Out, T &Val) { EmptyContext Ctx; Out.beginDocuments(); if (Out.preflightDocument(0)) { // FIXME: The parser does not support explicit documents terminated with a // plain scalar; the end-marker is included as part of the scalar token. assert(PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar && "plain scalar documents are not supported"); yamlize(Out, Val, true, Ctx); Out.postflightDocument(); } Out.endDocuments(); return Out; } // Provide better error message about types missing a trait specialization template <typename T> inline typename std::enable_if<missingTraits<T, EmptyContext>::value, Output &>::type operator<<(Output &yout, T &seq) { char missing_yaml_trait_for_type[sizeof(MissingTrait<T>)]; return yout; } template <bool B> struct IsFlowSequenceBase {}; template <> struct IsFlowSequenceBase<true> { static const bool flow = true; }; template <typename T, bool Flow> struct SequenceTraitsImpl : IsFlowSequenceBase<Flow> { private: using type = typename T::value_type; public: static size_t size(IO &io, T &seq) { return seq.size(); } static type &element(IO &io, T &seq, size_t index) { if (index >= seq.size()) seq.resize(index + 1); return seq[index]; } }; // Simple helper to check an expression can be used as a bool-valued template // argument. template <bool> struct CheckIsBool { static const bool value = true; }; // If T has SequenceElementTraits, then vector<T> and SmallVector<T, N> have // SequenceTraits that do the obvious thing. template <typename T> struct SequenceTraits<std::vector<T>, typename std::enable_if<CheckIsBool< SequenceElementTraits<T>::flow>::value>::type> : SequenceTraitsImpl<std::vector<T>, SequenceElementTraits<T>::flow> {}; template <typename T, unsigned N> struct SequenceTraits<SmallVector<T, N>, typename std::enable_if<CheckIsBool< SequenceElementTraits<T>::flow>::value>::type> : SequenceTraitsImpl<SmallVector<T, N>, SequenceElementTraits<T>::flow> {}; // Sequences of fundamental types use flow formatting. template <typename T> struct SequenceElementTraits< T, typename std::enable_if<std::is_fundamental<T>::value>::type> { static const bool flow = true; }; // Sequences of strings use block formatting. template<> struct SequenceElementTraits<std::string> { static const bool flow = false; }; template<> struct SequenceElementTraits<StringRef> { static const bool flow = false; }; template<> struct SequenceElementTraits<std::pair<std::string, std::string>> { static const bool flow = false; }; /// Implementation of CustomMappingTraits for std::map<std::string, T>. template <typename T> struct StdMapStringCustomMappingTraitsImpl { using map_type = std::map<std::string, T>; static void inputOne(IO &io, StringRef key, map_type &v) { io.mapRequired(key.str().c_str(), v[key]); } static void output(IO &io, map_type &v) { for (auto &p : v) io.mapRequired(p.first.c_str(), p.second); } }; } // end namespace yaml } // end namespace llvm #define LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(TYPE, FLOW) \ namespace llvm { \ namespace yaml { \ static_assert( \ !std::is_fundamental<TYPE>::value && \ !std::is_same<TYPE, std::string>::value && \ !std::is_same<TYPE, llvm::StringRef>::value, \ "only use LLVM_YAML_IS_SEQUENCE_VECTOR for types you control"); \ template <> struct SequenceElementTraits<TYPE> { \ static const bool flow = FLOW; \ }; \ } \ } /// Utility for declaring that a std::vector of a particular type /// should be considered a YAML sequence. #define LLVM_YAML_IS_SEQUENCE_VECTOR(type) \ LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, false) /// Utility for declaring that a std::vector of a particular type /// should be considered a YAML flow sequence. #define LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(type) \ LLVM_YAML_IS_SEQUENCE_VECTOR_IMPL(type, true) #define LLVM_YAML_DECLARE_MAPPING_TRAITS(Type) \ namespace llvm { \ namespace yaml { \ template <> struct MappingTraits<Type> { \ static void mapping(IO &IO, Type &Obj); \ }; \ } \ } #define LLVM_YAML_DECLARE_ENUM_TRAITS(Type) \ namespace llvm { \ namespace yaml { \ template <> struct ScalarEnumerationTraits<Type> { \ static void enumeration(IO &io, Type &Value); \ }; \ } \ } #define LLVM_YAML_DECLARE_BITSET_TRAITS(Type) \ namespace llvm { \ namespace yaml { \ template <> struct ScalarBitSetTraits<Type> { \ static void bitset(IO &IO, Type &Options); \ }; \ } \ } #define LLVM_YAML_DECLARE_SCALAR_TRAITS(Type, MustQuote) \ namespace llvm { \ namespace yaml { \ template <> struct ScalarTraits<Type> { \ static void output(const Type &Value, void *ctx, raw_ostream &Out); \ static StringRef input(StringRef Scalar, void *ctxt, Type &Value); \ static QuotingType mustQuote(StringRef) { return MustQuote; } \ }; \ } \ } /// Utility for declaring that a std::vector of a particular type /// should be considered a YAML document list. #define LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(_type) \ namespace llvm { \ namespace yaml { \ template <unsigned N> \ struct DocumentListTraits<SmallVector<_type, N>> \ : public SequenceTraitsImpl<SmallVector<_type, N>, false> {}; \ template <> \ struct DocumentListTraits<std::vector<_type>> \ : public SequenceTraitsImpl<std::vector<_type>, false> {}; \ } \ } /// Utility for declaring that std::map<std::string, _type> should be considered /// a YAML map. #define LLVM_YAML_IS_STRING_MAP(_type) \ namespace llvm { \ namespace yaml { \ template <> \ struct CustomMappingTraits<std::map<std::string, _type>> \ : public StdMapStringCustomMappingTraitsImpl<_type> {}; \ } \ } #endif // LLVM_SUPPORT_YAMLTRAITS_H