//===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// This file provides a collection of function (or more generally, callable) /// type erasure utilities supplementing those provided by the standard library /// in `<function>`. /// /// It provides `unique_function`, which works like `std::function` but supports /// move-only callable objects. /// /// Future plans: /// - Add a `function` that provides const, volatile, and ref-qualified support, /// which doesn't work with `std::function`. /// - Provide support for specifying multiple signatures to type erase callable /// objects with an overload set, such as those produced by generic lambdas. /// - Expand to include a copyable utility that directly replaces std::function /// but brings the above improvements. /// /// Note that LLVM's utilities are greatly simplified by not supporting /// allocators. /// /// If the standard library ever begins to provide comparable facilities we can /// consider switching to those. /// //===----------------------------------------------------------------------===// #ifndef LLVM_ADT_FUNCTION_EXTRAS_H #define LLVM_ADT_FUNCTION_EXTRAS_H #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/Support/type_traits.h" #include <memory> namespace llvm { template <typename FunctionT> class unique_function; template <typename ReturnT, typename... ParamTs> class unique_function<ReturnT(ParamTs...)> { static constexpr size_t InlineStorageSize = sizeof(void *) * 3; // MSVC has a bug and ICEs if we give it a particular dependent value // expression as part of the `std::conditional` below. To work around this, // we build that into a template struct's constexpr bool. template <typename T> struct IsSizeLessThanThresholdT { static constexpr bool value = sizeof(T) <= (2 * sizeof(void *)); }; // Provide a type function to map parameters that won't observe extra copies // or moves and which are small enough to likely pass in register to values // and all other types to l-value reference types. We use this to compute the // types used in our erased call utility to minimize copies and moves unless // doing so would force things unnecessarily into memory. // // The heuristic used is related to common ABI register passing conventions. // It doesn't have to be exact though, and in one way it is more strict // because we want to still be able to observe either moves *or* copies. template <typename T> using AdjustedParamT = typename std::conditional< !std::is_reference<T>::value && llvm::is_trivially_copy_constructible<T>::value && llvm::is_trivially_move_constructible<T>::value && IsSizeLessThanThresholdT<T>::value, T, T &>::type; // The type of the erased function pointer we use as a callback to dispatch to // the stored callable when it is trivial to move and destroy. using CallPtrT = ReturnT (*)(void *CallableAddr, AdjustedParamT<ParamTs>... Params); using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr); using DestroyPtrT = void (*)(void *CallableAddr); /// A struct to hold a single trivial callback with sufficient alignment for /// our bitpacking. struct alignas(8) TrivialCallback { CallPtrT CallPtr; }; /// A struct we use to aggregate three callbacks when we need full set of /// operations. struct alignas(8) NonTrivialCallbacks { CallPtrT CallPtr; MovePtrT MovePtr; DestroyPtrT DestroyPtr; }; // Create a pointer union between either a pointer to a static trivial call // pointer in a struct or a pointer to a static struct of the call, move, and // destroy pointers. using CallbackPointerUnionT = PointerUnion<TrivialCallback *, NonTrivialCallbacks *>; // The main storage buffer. This will either have a pointer to out-of-line // storage or an inline buffer storing the callable. union StorageUnionT { // For out-of-line storage we keep a pointer to the underlying storage and // the size. This is enough to deallocate the memory. struct OutOfLineStorageT { void *StoragePtr; size_t Size; size_t Alignment; } OutOfLineStorage; static_assert( sizeof(OutOfLineStorageT) <= InlineStorageSize, "Should always use all of the out-of-line storage for inline storage!"); // For in-line storage, we just provide an aligned character buffer. We // provide three pointers worth of storage here. typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type InlineStorage; } StorageUnion; // A compressed pointer to either our dispatching callback or our table of // dispatching callbacks and the flag for whether the callable itself is // stored inline or not. PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag; bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); } bool isTrivialCallback() const { return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>(); } CallPtrT getTrivialCallback() const { return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr; } NonTrivialCallbacks *getNonTrivialCallbacks() const { return CallbackAndInlineFlag.getPointer() .template get<NonTrivialCallbacks *>(); } void *getInlineStorage() { return &StorageUnion.InlineStorage; } void *getOutOfLineStorage() { return StorageUnion.OutOfLineStorage.StoragePtr; } size_t getOutOfLineStorageSize() const { return StorageUnion.OutOfLineStorage.Size; } size_t getOutOfLineStorageAlignment() const { return StorageUnion.OutOfLineStorage.Alignment; } void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) { StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment}; } template <typename CallableT> static ReturnT CallImpl(void *CallableAddr, AdjustedParamT<ParamTs>... Params) { return (*reinterpret_cast<CallableT *>(CallableAddr))( std::forward<ParamTs>(Params)...); } template <typename CallableT> static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept { new (LHSCallableAddr) CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr))); } template <typename CallableT> static void DestroyImpl(void *CallableAddr) noexcept { reinterpret_cast<CallableT *>(CallableAddr)->~CallableT(); } public: unique_function() = default; unique_function(std::nullptr_t /*null_callable*/) {} ~unique_function() { if (!CallbackAndInlineFlag.getPointer()) return; // Cache this value so we don't re-check it after type-erased operations. bool IsInlineStorage = isInlineStorage(); if (!isTrivialCallback()) getNonTrivialCallbacks()->DestroyPtr( IsInlineStorage ? getInlineStorage() : getOutOfLineStorage()); if (!IsInlineStorage) deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(), getOutOfLineStorageAlignment()); } unique_function(unique_function &&RHS) noexcept { // Copy the callback and inline flag. CallbackAndInlineFlag = RHS.CallbackAndInlineFlag; // If the RHS is empty, just copying the above is sufficient. if (!RHS) return; if (!isInlineStorage()) { // The out-of-line case is easiest to move. StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage; } else if (isTrivialCallback()) { // Move is trivial, just memcpy the bytes across. memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize); } else { // Non-trivial move, so dispatch to a type-erased implementation. getNonTrivialCallbacks()->MovePtr(getInlineStorage(), RHS.getInlineStorage()); } // Clear the old callback and inline flag to get back to as-if-null. RHS.CallbackAndInlineFlag = {}; #ifndef NDEBUG // In debug builds, we also scribble across the rest of the storage. memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize); #endif } unique_function &operator=(unique_function &&RHS) noexcept { if (this == &RHS) return *this; // Because we don't try to provide any exception safety guarantees we can // implement move assignment very simply by first destroying the current // object and then move-constructing over top of it. this->~unique_function(); new (this) unique_function(std::move(RHS)); return *this; } template <typename CallableT> unique_function(CallableT Callable) { bool IsInlineStorage = true; void *CallableAddr = getInlineStorage(); if (sizeof(CallableT) > InlineStorageSize || alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) { IsInlineStorage = false; // Allocate out-of-line storage. FIXME: Use an explicit alignment // parameter in C++17 mode. auto Size = sizeof(CallableT); auto Alignment = alignof(CallableT); CallableAddr = allocate_buffer(Size, Alignment); setOutOfLineStorage(CallableAddr, Size, Alignment); } // Now move into the storage. new (CallableAddr) CallableT(std::move(Callable)); // See if we can create a trivial callback. We need the callable to be // trivially moved and trivially destroyed so that we don't have to store // type erased callbacks for those operations. // // FIXME: We should use constexpr if here and below to avoid instantiating // the non-trivial static objects when unnecessary. While the linker should // remove them, it is still wasteful. if (llvm::is_trivially_move_constructible<CallableT>::value && std::is_trivially_destructible<CallableT>::value) { // We need to create a nicely aligned object. We use a static variable // for this because it is a trivial struct. static TrivialCallback Callback = { &CallImpl<CallableT> }; CallbackAndInlineFlag = {&Callback, IsInlineStorage}; return; } // Otherwise, we need to point at an object that contains all the different // type erased behaviors needed. Create a static instance of the struct type // here and then use a pointer to that. static NonTrivialCallbacks Callbacks = { &CallImpl<CallableT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>}; CallbackAndInlineFlag = {&Callbacks, IsInlineStorage}; } ReturnT operator()(ParamTs... Params) { void *CallableAddr = isInlineStorage() ? getInlineStorage() : getOutOfLineStorage(); return (isTrivialCallback() ? getTrivialCallback() : getNonTrivialCallbacks()->CallPtr)(CallableAddr, Params...); } explicit operator bool() const { return (bool)CallbackAndInlineFlag.getPointer(); } }; } // end namespace llvm #endif // LLVM_ADT_FUNCTION_H