//===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file Implements the ScheduleDAGInstrs class, which implements scheduling /// for a MachineInstr-based dependency graph. // //===----------------------------------------------------------------------===// #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/SparseMultiSet.h" #include "llvm/ADT/SparseSet.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSchedule.h" #include "llvm/MC/LaneBitmask.h" #include <cassert> #include <cstdint> #include <list> #include <utility> #include <vector> namespace llvm { class LiveIntervals; class MachineFrameInfo; class MachineFunction; class MachineInstr; class MachineLoopInfo; class MachineOperand; struct MCSchedClassDesc; class PressureDiffs; class PseudoSourceValue; class RegPressureTracker; class UndefValue; class Value; /// An individual mapping from virtual register number to SUnit. struct VReg2SUnit { unsigned VirtReg; LaneBitmask LaneMask; SUnit *SU; VReg2SUnit(unsigned VReg, LaneBitmask LaneMask, SUnit *SU) : VirtReg(VReg), LaneMask(LaneMask), SU(SU) {} unsigned getSparseSetIndex() const { return TargetRegisterInfo::virtReg2Index(VirtReg); } }; /// Mapping from virtual register to SUnit including an operand index. struct VReg2SUnitOperIdx : public VReg2SUnit { unsigned OperandIndex; VReg2SUnitOperIdx(unsigned VReg, LaneBitmask LaneMask, unsigned OperandIndex, SUnit *SU) : VReg2SUnit(VReg, LaneMask, SU), OperandIndex(OperandIndex) {} }; /// Record a physical register access. /// For non-data-dependent uses, OpIdx == -1. struct PhysRegSUOper { SUnit *SU; int OpIdx; unsigned Reg; PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {} unsigned getSparseSetIndex() const { return Reg; } }; /// Use a SparseMultiSet to track physical registers. Storage is only /// allocated once for the pass. It can be cleared in constant time and reused /// without any frees. using Reg2SUnitsMap = SparseMultiSet<PhysRegSUOper, identity<unsigned>, uint16_t>; /// Use SparseSet as a SparseMap by relying on the fact that it never /// compares ValueT's, only unsigned keys. This allows the set to be cleared /// between scheduling regions in constant time as long as ValueT does not /// require a destructor. using VReg2SUnitMap = SparseSet<VReg2SUnit, VirtReg2IndexFunctor>; /// Track local uses of virtual registers. These uses are gathered by the DAG /// builder and may be consulted by the scheduler to avoid iterating an entire /// vreg use list. using VReg2SUnitMultiMap = SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor>; using VReg2SUnitOperIdxMultiMap = SparseMultiSet<VReg2SUnitOperIdx, VirtReg2IndexFunctor>; using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>; struct UnderlyingObject : PointerIntPair<ValueType, 1, bool> { UnderlyingObject(ValueType V, bool MayAlias) : PointerIntPair<ValueType, 1, bool>(V, MayAlias) {} ValueType getValue() const { return getPointer(); } bool mayAlias() const { return getInt(); } }; using UnderlyingObjectsVector = SmallVector<UnderlyingObject, 4>; /// A ScheduleDAG for scheduling lists of MachineInstr. class ScheduleDAGInstrs : public ScheduleDAG { protected: const MachineLoopInfo *MLI; const MachineFrameInfo &MFI; /// TargetSchedModel provides an interface to the machine model. TargetSchedModel SchedModel; /// True if the DAG builder should remove kill flags (in preparation for /// rescheduling). bool RemoveKillFlags; /// The standard DAG builder does not normally include terminators as DAG /// nodes because it does not create the necessary dependencies to prevent /// reordering. A specialized scheduler can override /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate /// it has taken responsibility for scheduling the terminator correctly. bool CanHandleTerminators = false; /// Whether lane masks should get tracked. bool TrackLaneMasks = false; // State specific to the current scheduling region. // ------------------------------------------------ /// The block in which to insert instructions MachineBasicBlock *BB; /// The beginning of the range to be scheduled. MachineBasicBlock::iterator RegionBegin; /// The end of the range to be scheduled. MachineBasicBlock::iterator RegionEnd; /// Instructions in this region (distance(RegionBegin, RegionEnd)). unsigned NumRegionInstrs; /// After calling BuildSchedGraph, each machine instruction in the current /// scheduling region is mapped to an SUnit. DenseMap<MachineInstr*, SUnit*> MISUnitMap; // State internal to DAG building. // ------------------------------- /// Defs, Uses - Remember where defs and uses of each register are as we /// iterate upward through the instructions. This is allocated here instead /// of inside BuildSchedGraph to avoid the need for it to be initialized and /// destructed for each block. Reg2SUnitsMap Defs; Reg2SUnitsMap Uses; /// Tracks the last instruction(s) in this region defining each virtual /// register. There may be multiple current definitions for a register with /// disjunct lanemasks. VReg2SUnitMultiMap CurrentVRegDefs; /// Tracks the last instructions in this region using each virtual register. VReg2SUnitOperIdxMultiMap CurrentVRegUses; AliasAnalysis *AAForDep = nullptr; /// Remember a generic side-effecting instruction as we proceed. /// No other SU ever gets scheduled around it (except in the special /// case of a huge region that gets reduced). SUnit *BarrierChain = nullptr; public: /// A list of SUnits, used in Value2SUsMap, during DAG construction. /// Note: to gain speed it might be worth investigating an optimized /// implementation of this data structure, such as a singly linked list /// with a memory pool (SmallVector was tried but slow and SparseSet is not /// applicable). using SUList = std::list<SUnit *>; protected: /// A map from ValueType to SUList, used during DAG construction, as /// a means of remembering which SUs depend on which memory locations. class Value2SUsMap; /// Reduces maps in FIFO order, by N SUs. This is better than turning /// every Nth memory SU into BarrierChain in buildSchedGraph(), since /// it avoids unnecessary edges between seen SUs above the new BarrierChain, /// and those below it. void reduceHugeMemNodeMaps(Value2SUsMap &stores, Value2SUsMap &loads, unsigned N); /// Adds a chain edge between SUa and SUb, but only if both /// AliasAnalysis and Target fail to deny the dependency. void addChainDependency(SUnit *SUa, SUnit *SUb, unsigned Latency = 0); /// Adds dependencies as needed from all SUs in list to SU. void addChainDependencies(SUnit *SU, SUList &SUs, unsigned Latency) { for (SUnit *Entry : SUs) addChainDependency(SU, Entry, Latency); } /// Adds dependencies as needed from all SUs in map, to SU. void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap); /// Adds dependencies as needed to SU, from all SUs mapped to V. void addChainDependencies(SUnit *SU, Value2SUsMap &Val2SUsMap, ValueType V); /// Adds barrier chain edges from all SUs in map, and then clear the map. /// This is equivalent to insertBarrierChain(), but optimized for the common /// case where the new BarrierChain (a global memory object) has a higher /// NodeNum than all SUs in map. It is assumed BarrierChain has been set /// before calling this. void addBarrierChain(Value2SUsMap &map); /// Inserts a barrier chain in a huge region, far below current SU. /// Adds barrier chain edges from all SUs in map with higher NodeNums than /// this new BarrierChain, and remove them from map. It is assumed /// BarrierChain has been set before calling this. void insertBarrierChain(Value2SUsMap &map); /// For an unanalyzable memory access, this Value is used in maps. UndefValue *UnknownValue; using DbgValueVector = std::vector<std::pair<MachineInstr *, MachineInstr *>>; /// Remember instruction that precedes DBG_VALUE. /// These are generated by buildSchedGraph but persist so they can be /// referenced when emitting the final schedule. DbgValueVector DbgValues; MachineInstr *FirstDbgValue = nullptr; /// Set of live physical registers for updating kill flags. LivePhysRegs LiveRegs; public: explicit ScheduleDAGInstrs(MachineFunction &mf, const MachineLoopInfo *mli, bool RemoveKillFlags = false); ~ScheduleDAGInstrs() override = default; /// Gets the machine model for instruction scheduling. const TargetSchedModel *getSchedModel() const { return &SchedModel; } /// Resolves and cache a resolved scheduling class for an SUnit. const MCSchedClassDesc *getSchedClass(SUnit *SU) const { if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr()); return SU->SchedClass; } /// Returns an iterator to the top of the current scheduling region. MachineBasicBlock::iterator begin() const { return RegionBegin; } /// Returns an iterator to the bottom of the current scheduling region. MachineBasicBlock::iterator end() const { return RegionEnd; } /// Creates a new SUnit and return a ptr to it. SUnit *newSUnit(MachineInstr *MI); /// Returns an existing SUnit for this MI, or nullptr. SUnit *getSUnit(MachineInstr *MI) const; /// If this method returns true, handling of the scheduling regions /// themselves (in case of a scheduling boundary in MBB) will be done /// beginning with the topmost region of MBB. virtual bool doMBBSchedRegionsTopDown() const { return false; } /// Prepares to perform scheduling in the given block. virtual void startBlock(MachineBasicBlock *BB); /// Cleans up after scheduling in the given block. virtual void finishBlock(); /// Initialize the DAG and common scheduler state for a new /// scheduling region. This does not actually create the DAG, only clears /// it. The scheduling driver may call BuildSchedGraph multiple times per /// scheduling region. virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned regioninstrs); /// Called when the scheduler has finished scheduling the current region. virtual void exitRegion(); /// Builds SUnits for the current region. /// If \p RPTracker is non-null, compute register pressure as a side effect. /// The DAG builder is an efficient place to do it because it already visits /// operands. void buildSchedGraph(AliasAnalysis *AA, RegPressureTracker *RPTracker = nullptr, PressureDiffs *PDiffs = nullptr, LiveIntervals *LIS = nullptr, bool TrackLaneMasks = false); /// Adds dependencies from instructions in the current list of /// instructions being scheduled to scheduling barrier. We want to make sure /// instructions which define registers that are either used by the /// terminator or are live-out are properly scheduled. This is especially /// important when the definition latency of the return value(s) are too /// high to be hidden by the branch or when the liveout registers used by /// instructions in the fallthrough block. void addSchedBarrierDeps(); /// Orders nodes according to selected style. /// /// Typically, a scheduling algorithm will implement schedule() without /// overriding enterRegion() or exitRegion(). virtual void schedule() = 0; /// Allow targets to perform final scheduling actions at the level of the /// whole MachineFunction. By default does nothing. virtual void finalizeSchedule() {} void dumpNode(const SUnit &SU) const override; void dump() const override; /// Returns a label for a DAG node that points to an instruction. std::string getGraphNodeLabel(const SUnit *SU) const override; /// Returns a label for the region of code covered by the DAG. std::string getDAGName() const override; /// Fixes register kill flags that scheduling has made invalid. void fixupKills(MachineBasicBlock &MBB); protected: void initSUnits(); void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); void addPhysRegDeps(SUnit *SU, unsigned OperIdx); void addVRegDefDeps(SUnit *SU, unsigned OperIdx); void addVRegUseDeps(SUnit *SU, unsigned OperIdx); /// Initializes register live-range state for updating kills. /// PostRA helper for rewriting kill flags. void startBlockForKills(MachineBasicBlock *BB); /// Toggles a register operand kill flag. /// /// Other adjustments may be made to the instruction if necessary. Return /// true if the operand has been deleted, false if not. void toggleKillFlag(MachineInstr &MI, MachineOperand &MO); /// Returns a mask for which lanes get read/written by the given (register) /// machine operand. LaneBitmask getLaneMaskForMO(const MachineOperand &MO) const; }; /// Creates a new SUnit and return a ptr to it. inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { #ifndef NDEBUG const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; #endif SUnits.emplace_back(MI, (unsigned)SUnits.size()); assert((Addr == nullptr || Addr == &SUnits[0]) && "SUnits std::vector reallocated on the fly!"); return &SUnits.back(); } /// Returns an existing SUnit for this MI, or nullptr. inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI); if (I == MISUnitMap.end()) return nullptr; return I->second; } } // end namespace llvm #endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H