//===- CallSite.h - Abstract Call & Invoke instrs ---------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the CallSite class, which is a handy wrapper for code that // wants to treat Call, Invoke and CallBr instructions in a generic way. When // in non-mutation context (e.g. an analysis) ImmutableCallSite should be used. // Finally, when some degree of customization is necessary between these two // extremes, CallSiteBase<> can be supplied with fine-tuned parameters. // // NOTE: These classes are supposed to have "value semantics". So they should be // passed by value, not by reference; they should not be "new"ed or "delete"d. // They are efficiently copyable, assignable and constructable, with cost // equivalent to copying a pointer (notice that they have only a single data // member). The internal representation carries a flag which indicates which of // the three variants is enclosed. This allows for cheaper checks when various // accessors of CallSite are employed. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_CALLSITE_H #define LLVM_IR_CALLSITE_H #include "llvm/ADT/Optional.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/iterator_range.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include <cassert> #include <cstdint> #include <iterator> namespace llvm { namespace Intrinsic { enum ID : unsigned; } template <typename FunTy = const Function, typename BBTy = const BasicBlock, typename ValTy = const Value, typename UserTy = const User, typename UseTy = const Use, typename InstrTy = const Instruction, typename CallTy = const CallInst, typename InvokeTy = const InvokeInst, typename CallBrTy = const CallBrInst, typename IterTy = User::const_op_iterator> class CallSiteBase { protected: PointerIntPair<InstrTy *, 2, int> I; CallSiteBase() = default; CallSiteBase(CallTy *CI) : I(CI, 1) { assert(CI); } CallSiteBase(InvokeTy *II) : I(II, 0) { assert(II); } CallSiteBase(CallBrTy *CBI) : I(CBI, 2) { assert(CBI); } explicit CallSiteBase(ValTy *II) { *this = get(II); } private: /// This static method is like a constructor. It will create an appropriate /// call site for a Call, Invoke or CallBr instruction, but it can also create /// a null initialized CallSiteBase object for something which is NOT a call /// site. static CallSiteBase get(ValTy *V) { if (InstrTy *II = dyn_cast<InstrTy>(V)) { if (II->getOpcode() == Instruction::Call) return CallSiteBase(static_cast<CallTy*>(II)); if (II->getOpcode() == Instruction::Invoke) return CallSiteBase(static_cast<InvokeTy*>(II)); if (II->getOpcode() == Instruction::CallBr) return CallSiteBase(static_cast<CallBrTy *>(II)); } return CallSiteBase(); } public: /// Return true if a CallInst is enclosed. bool isCall() const { return I.getInt() == 1; } /// Return true if a InvokeInst is enclosed. !I.getInt() may also signify a /// NULL instruction pointer, so check that. bool isInvoke() const { return getInstruction() && I.getInt() == 0; } /// Return true if a CallBrInst is enclosed. bool isCallBr() const { return I.getInt() == 2; } InstrTy *getInstruction() const { return I.getPointer(); } InstrTy *operator->() const { return I.getPointer(); } explicit operator bool() const { return I.getPointer(); } /// Get the basic block containing the call site. BBTy* getParent() const { return getInstruction()->getParent(); } /// Return the pointer to function that is being called. ValTy *getCalledValue() const { assert(getInstruction() && "Not a call, invoke or callbr instruction!"); return *getCallee(); } /// Return the function being called if this is a direct call, otherwise /// return null (if it's an indirect call). FunTy *getCalledFunction() const { return dyn_cast<FunTy>(getCalledValue()); } /// Return true if the callsite is an indirect call. bool isIndirectCall() const { const Value *V = getCalledValue(); if (!V) return false; if (isa<FunTy>(V) || isa<Constant>(V)) return false; if (const CallBase *CB = dyn_cast<CallBase>(getInstruction())) if (CB->isInlineAsm()) return false; return true; } /// Set the callee to the specified value. Unlike the function of the same /// name on CallBase, does not modify the type! void setCalledFunction(Value *V) { assert(getInstruction() && "Not a call, callbr, or invoke instruction!"); assert(cast<PointerType>(V->getType())->getElementType() == cast<CallBase>(getInstruction())->getFunctionType() && "New callee type does not match FunctionType on call"); *getCallee() = V; } /// Return the intrinsic ID of the intrinsic called by this CallSite, /// or Intrinsic::not_intrinsic if the called function is not an /// intrinsic, or if this CallSite is an indirect call. Intrinsic::ID getIntrinsicID() const { if (auto *F = getCalledFunction()) return F->getIntrinsicID(); // Don't use Intrinsic::not_intrinsic, as it will require pulling // Intrinsics.h into every header that uses CallSite. return static_cast<Intrinsic::ID>(0); } /// Determine whether the passed iterator points to the callee operand's Use. bool isCallee(Value::const_user_iterator UI) const { return isCallee(&UI.getUse()); } /// Determine whether this Use is the callee operand's Use. bool isCallee(const Use *U) const { return getCallee() == U; } /// Determine whether the passed iterator points to an argument operand. bool isArgOperand(Value::const_user_iterator UI) const { return isArgOperand(&UI.getUse()); } /// Determine whether the passed use points to an argument operand. bool isArgOperand(const Use *U) const { assert(getInstruction() == U->getUser()); return arg_begin() <= U && U < arg_end(); } /// Determine whether the passed iterator points to a bundle operand. bool isBundleOperand(Value::const_user_iterator UI) const { return isBundleOperand(&UI.getUse()); } /// Determine whether the passed use points to a bundle operand. bool isBundleOperand(const Use *U) const { assert(getInstruction() == U->getUser()); if (!hasOperandBundles()) return false; unsigned OperandNo = U - (*this)->op_begin(); return getBundleOperandsStartIndex() <= OperandNo && OperandNo < getBundleOperandsEndIndex(); } /// Determine whether the passed iterator points to a data operand. bool isDataOperand(Value::const_user_iterator UI) const { return isDataOperand(&UI.getUse()); } /// Determine whether the passed use points to a data operand. bool isDataOperand(const Use *U) const { return data_operands_begin() <= U && U < data_operands_end(); } ValTy *getArgument(unsigned ArgNo) const { assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!"); return *(arg_begin() + ArgNo); } void setArgument(unsigned ArgNo, Value* newVal) { assert(getInstruction() && "Not a call, invoke or callbr instruction!"); assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!"); getInstruction()->setOperand(ArgNo, newVal); } /// Given a value use iterator, returns the argument that corresponds to it. /// Iterator must actually correspond to an argument. unsigned getArgumentNo(Value::const_user_iterator I) const { return getArgumentNo(&I.getUse()); } /// Given a use for an argument, get the argument number that corresponds to /// it. unsigned getArgumentNo(const Use *U) const { assert(getInstruction() && "Not a call, invoke or callbr instruction!"); assert(isArgOperand(U) && "Argument # out of range!"); return U - arg_begin(); } /// The type of iterator to use when looping over actual arguments at this /// call site. using arg_iterator = IterTy; iterator_range<IterTy> args() const { return make_range(arg_begin(), arg_end()); } bool arg_empty() const { return arg_end() == arg_begin(); } unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); } /// Given a value use iterator, return the data operand corresponding to it. /// Iterator must actually correspond to a data operand. unsigned getDataOperandNo(Value::const_user_iterator UI) const { return getDataOperandNo(&UI.getUse()); } /// Given a use for a data operand, get the data operand number that /// corresponds to it. unsigned getDataOperandNo(const Use *U) const { assert(getInstruction() && "Not a call, invoke or callbr instruction!"); assert(isDataOperand(U) && "Data operand # out of range!"); return U - data_operands_begin(); } /// Type of iterator to use when looping over data operands at this call site /// (see below). using data_operand_iterator = IterTy; /// data_operands_begin/data_operands_end - Return iterators iterating over /// the call / invoke / callbr argument list and bundle operands. For invokes, /// this is the set of instruction operands except the invoke target and the /// two successor blocks; for calls this is the set of instruction operands /// except the call target; for callbrs the number of labels to skip must be /// determined first. IterTy data_operands_begin() const { assert(getInstruction() && "Not a call or invoke instruction!"); return cast<CallBase>(getInstruction())->data_operands_begin(); } IterTy data_operands_end() const { assert(getInstruction() && "Not a call or invoke instruction!"); return cast<CallBase>(getInstruction())->data_operands_end(); } iterator_range<IterTy> data_ops() const { return make_range(data_operands_begin(), data_operands_end()); } bool data_operands_empty() const { return data_operands_end() == data_operands_begin(); } unsigned data_operands_size() const { return std::distance(data_operands_begin(), data_operands_end()); } /// Return the type of the instruction that generated this call site. Type *getType() const { return (*this)->getType(); } /// Return the caller function for this call site. FunTy *getCaller() const { return (*this)->getParent()->getParent(); } /// Tests if this call site must be tail call optimized. Only a CallInst can /// be tail call optimized. bool isMustTailCall() const { return isCall() && cast<CallInst>(getInstruction())->isMustTailCall(); } /// Tests if this call site is marked as a tail call. bool isTailCall() const { return isCall() && cast<CallInst>(getInstruction())->isTailCall(); } #define CALLSITE_DELEGATE_GETTER(METHOD) \ InstrTy *II = getInstruction(); \ return isCall() ? cast<CallInst>(II)->METHOD \ : isCallBr() ? cast<CallBrInst>(II)->METHOD \ : cast<InvokeInst>(II)->METHOD #define CALLSITE_DELEGATE_SETTER(METHOD) \ InstrTy *II = getInstruction(); \ if (isCall()) \ cast<CallInst>(II)->METHOD; \ else if (isCallBr()) \ cast<CallBrInst>(II)->METHOD; \ else \ cast<InvokeInst>(II)->METHOD unsigned getNumArgOperands() const { CALLSITE_DELEGATE_GETTER(getNumArgOperands()); } ValTy *getArgOperand(unsigned i) const { CALLSITE_DELEGATE_GETTER(getArgOperand(i)); } ValTy *getReturnedArgOperand() const { CALLSITE_DELEGATE_GETTER(getReturnedArgOperand()); } bool isInlineAsm() const { return cast<CallBase>(getInstruction())->isInlineAsm(); } /// Get the calling convention of the call. CallingConv::ID getCallingConv() const { CALLSITE_DELEGATE_GETTER(getCallingConv()); } /// Set the calling convention of the call. void setCallingConv(CallingConv::ID CC) { CALLSITE_DELEGATE_SETTER(setCallingConv(CC)); } FunctionType *getFunctionType() const { CALLSITE_DELEGATE_GETTER(getFunctionType()); } void mutateFunctionType(FunctionType *Ty) const { CALLSITE_DELEGATE_SETTER(mutateFunctionType(Ty)); } /// Get the parameter attributes of the call. AttributeList getAttributes() const { CALLSITE_DELEGATE_GETTER(getAttributes()); } /// Set the parameter attributes of the call. void setAttributes(AttributeList PAL) { CALLSITE_DELEGATE_SETTER(setAttributes(PAL)); } void addAttribute(unsigned i, Attribute::AttrKind Kind) { CALLSITE_DELEGATE_SETTER(addAttribute(i, Kind)); } void addAttribute(unsigned i, Attribute Attr) { CALLSITE_DELEGATE_SETTER(addAttribute(i, Attr)); } void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { CALLSITE_DELEGATE_SETTER(addParamAttr(ArgNo, Kind)); } void removeAttribute(unsigned i, Attribute::AttrKind Kind) { CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind)); } void removeAttribute(unsigned i, StringRef Kind) { CALLSITE_DELEGATE_SETTER(removeAttribute(i, Kind)); } void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { CALLSITE_DELEGATE_SETTER(removeParamAttr(ArgNo, Kind)); } /// Return true if this function has the given attribute. bool hasFnAttr(Attribute::AttrKind Kind) const { CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind)); } /// Return true if this function has the given attribute. bool hasFnAttr(StringRef Kind) const { CALLSITE_DELEGATE_GETTER(hasFnAttr(Kind)); } /// Return true if this return value has the given attribute. bool hasRetAttr(Attribute::AttrKind Kind) const { CALLSITE_DELEGATE_GETTER(hasRetAttr(Kind)); } /// Return true if the call or the callee has the given attribute. bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { CALLSITE_DELEGATE_GETTER(paramHasAttr(ArgNo, Kind)); } Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const { CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind)); } Attribute getAttribute(unsigned i, StringRef Kind) const { CALLSITE_DELEGATE_GETTER(getAttribute(i, Kind)); } /// Return true if the data operand at index \p i directly or indirectly has /// the attribute \p A. /// /// Normal call, invoke or callbr arguments have per operand attributes, as /// specified in the attribute set attached to this instruction, while operand /// bundle operands may have some attributes implied by the type of its /// containing operand bundle. bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const { CALLSITE_DELEGATE_GETTER(dataOperandHasImpliedAttr(i, Kind)); } /// Extract the alignment of the return value. unsigned getRetAlignment() const { CALLSITE_DELEGATE_GETTER(getRetAlignment()); } /// Extract the alignment for a call or parameter (0=unknown). unsigned getParamAlignment(unsigned ArgNo) const { CALLSITE_DELEGATE_GETTER(getParamAlignment(ArgNo)); } /// Extract the number of dereferenceable bytes for a call or parameter /// (0=unknown). uint64_t getDereferenceableBytes(unsigned i) const { CALLSITE_DELEGATE_GETTER(getDereferenceableBytes(i)); } /// Extract the number of dereferenceable_or_null bytes for a call or /// parameter (0=unknown). uint64_t getDereferenceableOrNullBytes(unsigned i) const { CALLSITE_DELEGATE_GETTER(getDereferenceableOrNullBytes(i)); } /// Determine if the return value is marked with NoAlias attribute. bool returnDoesNotAlias() const { CALLSITE_DELEGATE_GETTER(returnDoesNotAlias()); } /// Return true if the call should not be treated as a call to a builtin. bool isNoBuiltin() const { CALLSITE_DELEGATE_GETTER(isNoBuiltin()); } /// Return true if the call requires strict floating point semantics. bool isStrictFP() const { CALLSITE_DELEGATE_GETTER(isStrictFP()); } /// Return true if the call should not be inlined. bool isNoInline() const { CALLSITE_DELEGATE_GETTER(isNoInline()); } void setIsNoInline(bool Value = true) { CALLSITE_DELEGATE_SETTER(setIsNoInline(Value)); } /// Determine if the call does not access memory. bool doesNotAccessMemory() const { CALLSITE_DELEGATE_GETTER(doesNotAccessMemory()); } void setDoesNotAccessMemory() { CALLSITE_DELEGATE_SETTER(setDoesNotAccessMemory()); } /// Determine if the call does not access or only reads memory. bool onlyReadsMemory() const { CALLSITE_DELEGATE_GETTER(onlyReadsMemory()); } void setOnlyReadsMemory() { CALLSITE_DELEGATE_SETTER(setOnlyReadsMemory()); } /// Determine if the call does not access or only writes memory. bool doesNotReadMemory() const { CALLSITE_DELEGATE_GETTER(doesNotReadMemory()); } void setDoesNotReadMemory() { CALLSITE_DELEGATE_SETTER(setDoesNotReadMemory()); } /// Determine if the call can access memmory only using pointers based /// on its arguments. bool onlyAccessesArgMemory() const { CALLSITE_DELEGATE_GETTER(onlyAccessesArgMemory()); } void setOnlyAccessesArgMemory() { CALLSITE_DELEGATE_SETTER(setOnlyAccessesArgMemory()); } /// Determine if the function may only access memory that is /// inaccessible from the IR. bool onlyAccessesInaccessibleMemory() const { CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemory()); } void setOnlyAccessesInaccessibleMemory() { CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemory()); } /// Determine if the function may only access memory that is /// either inaccessible from the IR or pointed to by its arguments. bool onlyAccessesInaccessibleMemOrArgMem() const { CALLSITE_DELEGATE_GETTER(onlyAccessesInaccessibleMemOrArgMem()); } void setOnlyAccessesInaccessibleMemOrArgMem() { CALLSITE_DELEGATE_SETTER(setOnlyAccessesInaccessibleMemOrArgMem()); } /// Determine if the call cannot return. bool doesNotReturn() const { CALLSITE_DELEGATE_GETTER(doesNotReturn()); } void setDoesNotReturn() { CALLSITE_DELEGATE_SETTER(setDoesNotReturn()); } /// Determine if the call cannot unwind. bool doesNotThrow() const { CALLSITE_DELEGATE_GETTER(doesNotThrow()); } void setDoesNotThrow() { CALLSITE_DELEGATE_SETTER(setDoesNotThrow()); } /// Determine if the call can be duplicated. bool cannotDuplicate() const { CALLSITE_DELEGATE_GETTER(cannotDuplicate()); } void setCannotDuplicate() { CALLSITE_DELEGATE_SETTER(setCannotDuplicate()); } /// Determine if the call is convergent. bool isConvergent() const { CALLSITE_DELEGATE_GETTER(isConvergent()); } void setConvergent() { CALLSITE_DELEGATE_SETTER(setConvergent()); } void setNotConvergent() { CALLSITE_DELEGATE_SETTER(setNotConvergent()); } unsigned getNumOperandBundles() const { CALLSITE_DELEGATE_GETTER(getNumOperandBundles()); } bool hasOperandBundles() const { CALLSITE_DELEGATE_GETTER(hasOperandBundles()); } unsigned getBundleOperandsStartIndex() const { CALLSITE_DELEGATE_GETTER(getBundleOperandsStartIndex()); } unsigned getBundleOperandsEndIndex() const { CALLSITE_DELEGATE_GETTER(getBundleOperandsEndIndex()); } unsigned getNumTotalBundleOperands() const { CALLSITE_DELEGATE_GETTER(getNumTotalBundleOperands()); } OperandBundleUse getOperandBundleAt(unsigned Index) const { CALLSITE_DELEGATE_GETTER(getOperandBundleAt(Index)); } Optional<OperandBundleUse> getOperandBundle(StringRef Name) const { CALLSITE_DELEGATE_GETTER(getOperandBundle(Name)); } Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const { CALLSITE_DELEGATE_GETTER(getOperandBundle(ID)); } unsigned countOperandBundlesOfType(uint32_t ID) const { CALLSITE_DELEGATE_GETTER(countOperandBundlesOfType(ID)); } bool isBundleOperand(unsigned Idx) const { CALLSITE_DELEGATE_GETTER(isBundleOperand(Idx)); } IterTy arg_begin() const { CALLSITE_DELEGATE_GETTER(arg_begin()); } IterTy arg_end() const { CALLSITE_DELEGATE_GETTER(arg_end()); } #undef CALLSITE_DELEGATE_GETTER #undef CALLSITE_DELEGATE_SETTER void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const { // Since this is actually a getter that "looks like" a setter, don't use the // above macros to avoid confusion. cast<CallBase>(getInstruction())->getOperandBundlesAsDefs(Defs); } /// Determine whether this data operand is not captured. bool doesNotCapture(unsigned OpNo) const { return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture); } /// Determine whether this argument is passed by value. bool isByValArgument(unsigned ArgNo) const { return paramHasAttr(ArgNo, Attribute::ByVal); } /// Determine whether this argument is passed in an alloca. bool isInAllocaArgument(unsigned ArgNo) const { return paramHasAttr(ArgNo, Attribute::InAlloca); } /// Determine whether this argument is passed by value or in an alloca. bool isByValOrInAllocaArgument(unsigned ArgNo) const { return paramHasAttr(ArgNo, Attribute::ByVal) || paramHasAttr(ArgNo, Attribute::InAlloca); } /// Determine if there are is an inalloca argument. Only the last argument can /// have the inalloca attribute. bool hasInAllocaArgument() const { return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca); } bool doesNotAccessMemory(unsigned OpNo) const { return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone); } bool onlyReadsMemory(unsigned OpNo) const { return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) || dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone); } bool doesNotReadMemory(unsigned OpNo) const { return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) || dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone); } /// Return true if the return value is known to be not null. /// This may be because it has the nonnull attribute, or because at least /// one byte is dereferenceable and the pointer is in addrspace(0). bool isReturnNonNull() const { if (hasRetAttr(Attribute::NonNull)) return true; else if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace())) return true; return false; } /// Returns true if this CallSite passes the given Value* as an argument to /// the called function. bool hasArgument(const Value *Arg) const { for (arg_iterator AI = this->arg_begin(), E = this->arg_end(); AI != E; ++AI) if (AI->get() == Arg) return true; return false; } private: IterTy getCallee() const { return cast<CallBase>(getInstruction())->op_end() - 1; } }; class CallSite : public CallSiteBase<Function, BasicBlock, Value, User, Use, Instruction, CallInst, InvokeInst, CallBrInst, User::op_iterator> { public: CallSite() = default; CallSite(CallSiteBase B) : CallSiteBase(B) {} CallSite(CallInst *CI) : CallSiteBase(CI) {} CallSite(InvokeInst *II) : CallSiteBase(II) {} CallSite(CallBrInst *CBI) : CallSiteBase(CBI) {} explicit CallSite(Instruction *II) : CallSiteBase(II) {} explicit CallSite(Value *V) : CallSiteBase(V) {} bool operator==(const CallSite &CS) const { return I == CS.I; } bool operator!=(const CallSite &CS) const { return I != CS.I; } bool operator<(const CallSite &CS) const { return getInstruction() < CS.getInstruction(); } private: friend struct DenseMapInfo<CallSite>; User::op_iterator getCallee() const; }; /// AbstractCallSite /// /// An abstract call site is a wrapper that allows to treat direct, /// indirect, and callback calls the same. If an abstract call site /// represents a direct or indirect call site it behaves like a stripped /// down version of a normal call site object. The abstract call site can /// also represent a callback call, thus the fact that the initially /// called function (=broker) may invoke a third one (=callback callee). /// In this case, the abstract call site hides the middle man, hence the /// broker function. The result is a representation of the callback call, /// inside the broker, but in the context of the original call to the broker. /// /// There are up to three functions involved when we talk about callback call /// sites. The caller (1), which invokes the broker function. The broker /// function (2), that will invoke the callee zero or more times. And finally /// the callee (3), which is the target of the callback call. /// /// The abstract call site will handle the mapping from parameters to arguments /// depending on the semantic of the broker function. However, it is important /// to note that the mapping is often partial. Thus, some arguments of the /// call/invoke instruction are mapped to parameters of the callee while others /// are not. class AbstractCallSite { public: /// The encoding of a callback with regards to the underlying instruction. struct CallbackInfo { /// For direct/indirect calls the parameter encoding is empty. If it is not, /// the abstract call site represents a callback. In that case, the first /// element of the encoding vector represents which argument of the call /// site CS is the callback callee. The remaining elements map parameters /// (identified by their position) to the arguments that will be passed /// through (also identified by position but in the call site instruction). /// /// NOTE that we use LLVM argument numbers (starting at 0) and not /// clang/soruce argument numbers (starting at 1). The -1 entries represent /// unknown values that are passed to the callee. using ParameterEncodingTy = SmallVector<int, 0>; ParameterEncodingTy ParameterEncoding; }; private: /// The underlying call site: /// caller -> callee, if this is a direct or indirect call site /// caller -> broker function, if this is a callback call site CallSite CS; /// The encoding of a callback with regards to the underlying instruction. CallbackInfo CI; public: /// Sole constructor for abstract call sites (ACS). /// /// An abstract call site can only be constructed through a llvm::Use because /// each operand (=use) of an instruction could potentially be a different /// abstract call site. Furthermore, even if the value of the llvm::Use is the /// same, and the user is as well, the abstract call sites might not be. /// /// If a use is not associated with an abstract call site the constructed ACS /// will evaluate to false if converted to a boolean. /// /// If the use is the callee use of a call or invoke instruction, the /// constructed abstract call site will behave as a llvm::CallSite would. /// /// If the use is not a callee use of a call or invoke instruction, the /// callback metadata is used to determine the argument <-> parameter mapping /// as well as the callee of the abstract call site. AbstractCallSite(const Use *U); /// Conversion operator to conveniently check for a valid/initialized ACS. explicit operator bool() const { return (bool)CS; } /// Return the underlying instruction. Instruction *getInstruction() const { return CS.getInstruction(); } /// Return the call site abstraction for the underlying instruction. CallSite getCallSite() const { return CS; } /// Return true if this ACS represents a direct call. bool isDirectCall() const { return !isCallbackCall() && !CS.isIndirectCall(); } /// Return true if this ACS represents an indirect call. bool isIndirectCall() const { return !isCallbackCall() && CS.isIndirectCall(); } /// Return true if this ACS represents a callback call. bool isCallbackCall() const { // For a callback call site the callee is ALWAYS stored first in the // transitive values vector. Thus, a non-empty vector indicates a callback. return !CI.ParameterEncoding.empty(); } /// Return true if @p UI is the use that defines the callee of this ACS. bool isCallee(Value::const_user_iterator UI) const { return isCallee(&UI.getUse()); } /// Return true if @p U is the use that defines the callee of this ACS. bool isCallee(const Use *U) const { if (isDirectCall()) return CS.isCallee(U); assert(!CI.ParameterEncoding.empty() && "Callback without parameter encoding!"); return (int)CS.getArgumentNo(U) == CI.ParameterEncoding[0]; } /// Return the number of parameters of the callee. unsigned getNumArgOperands() const { if (isDirectCall()) return CS.getNumArgOperands(); // Subtract 1 for the callee encoding. return CI.ParameterEncoding.size() - 1; } /// Return the operand index of the underlying instruction associated with @p /// Arg. int getCallArgOperandNo(Argument &Arg) const { return getCallArgOperandNo(Arg.getArgNo()); } /// Return the operand index of the underlying instruction associated with /// the function parameter number @p ArgNo or -1 if there is none. int getCallArgOperandNo(unsigned ArgNo) const { if (isDirectCall()) return ArgNo; // Add 1 for the callee encoding. return CI.ParameterEncoding[ArgNo + 1]; } /// Return the operand of the underlying instruction associated with @p Arg. Value *getCallArgOperand(Argument &Arg) const { return getCallArgOperand(Arg.getArgNo()); } /// Return the operand of the underlying instruction associated with the /// function parameter number @p ArgNo or nullptr if there is none. Value *getCallArgOperand(unsigned ArgNo) const { if (isDirectCall()) return CS.getArgOperand(ArgNo); // Add 1 for the callee encoding. return CI.ParameterEncoding[ArgNo + 1] >= 0 ? CS.getArgOperand(CI.ParameterEncoding[ArgNo + 1]) : nullptr; } /// Return the operand index of the underlying instruction associated with the /// callee of this ACS. Only valid for callback calls! int getCallArgOperandNoForCallee() const { assert(isCallbackCall()); assert(CI.ParameterEncoding.size() && CI.ParameterEncoding[0] > 0); return CI.ParameterEncoding[0]; } /// Return the pointer to function that is being called. Value *getCalledValue() const { if (isDirectCall()) return CS.getCalledValue(); return CS.getArgOperand(getCallArgOperandNoForCallee()); } /// Return the function being called if this is a direct call, otherwise /// return null (if it's an indirect call). Function *getCalledFunction() const { Value *V = getCalledValue(); return V ? dyn_cast<Function>(V->stripPointerCasts()) : nullptr; } }; template <> struct DenseMapInfo<CallSite> { using BaseInfo = DenseMapInfo<decltype(CallSite::I)>; static CallSite getEmptyKey() { CallSite CS; CS.I = BaseInfo::getEmptyKey(); return CS; } static CallSite getTombstoneKey() { CallSite CS; CS.I = BaseInfo::getTombstoneKey(); return CS; } static unsigned getHashValue(const CallSite &CS) { return BaseInfo::getHashValue(CS.I); } static bool isEqual(const CallSite &LHS, const CallSite &RHS) { return LHS == RHS; } }; /// Establish a view to a call site for examination. class ImmutableCallSite : public CallSiteBase<> { public: ImmutableCallSite() = default; ImmutableCallSite(const CallInst *CI) : CallSiteBase(CI) {} ImmutableCallSite(const InvokeInst *II) : CallSiteBase(II) {} ImmutableCallSite(const CallBrInst *CBI) : CallSiteBase(CBI) {} explicit ImmutableCallSite(const Instruction *II) : CallSiteBase(II) {} explicit ImmutableCallSite(const Value *V) : CallSiteBase(V) {} ImmutableCallSite(CallSite CS) : CallSiteBase(CS.getInstruction()) {} }; } // end namespace llvm #endif // LLVM_IR_CALLSITE_H