//===- Intrinsics.td - Defines all LLVM intrinsics ---------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines properties of all LLVM intrinsics. // //===----------------------------------------------------------------------===// include "llvm/CodeGen/ValueTypes.td" include "llvm/CodeGen/SDNodeProperties.td" //===----------------------------------------------------------------------===// // Properties we keep track of for intrinsics. //===----------------------------------------------------------------------===// class IntrinsicProperty; // Intr*Mem - Memory properties. If no property is set, the worst case // is assumed (it may read and write any memory it can get access to and it may // have other side effects). // IntrNoMem - The intrinsic does not access memory or have any other side // effects. It may be CSE'd deleted if dead, etc. def IntrNoMem : IntrinsicProperty; // IntrReadMem - This intrinsic only reads from memory. It does not write to // memory and has no other side effects. Therefore, it cannot be moved across // potentially aliasing stores. However, it can be reordered otherwise and can // be deleted if dead. def IntrReadMem : IntrinsicProperty; // IntrWriteMem - This intrinsic only writes to memory, but does not read from // memory, and has no other side effects. This means dead stores before calls // to this intrinsics may be removed. def IntrWriteMem : IntrinsicProperty; // IntrArgMemOnly - This intrinsic only accesses memory that its pointer-typed // argument(s) points to, but may access an unspecified amount. Other than // reads from and (possibly volatile) writes to memory, it has no side effects. def IntrArgMemOnly : IntrinsicProperty; // IntrInaccessibleMemOnly -- This intrinsic only accesses memory that is not // accessible by the module being compiled. This is a weaker form of IntrNoMem. def IntrInaccessibleMemOnly : IntrinsicProperty; // IntrInaccessibleMemOrArgMemOnly -- This intrinsic only accesses memory that // its pointer-typed arguments point to or memory that is not accessible // by the module being compiled. This is a weaker form of IntrArgMemOnly. def IntrInaccessibleMemOrArgMemOnly : IntrinsicProperty; // Commutative - This intrinsic is commutative: X op Y == Y op X. def Commutative : IntrinsicProperty; // Throws - This intrinsic can throw. def Throws : IntrinsicProperty; // NoCapture - The specified argument pointer is not captured by the intrinsic. class NoCapture<int argNo> : IntrinsicProperty { int ArgNo = argNo; } // Returned - The specified argument is always the return value of the // intrinsic. class Returned<int argNo> : IntrinsicProperty { int ArgNo = argNo; } // ReadOnly - The specified argument pointer is not written to through the // pointer by the intrinsic. class ReadOnly<int argNo> : IntrinsicProperty { int ArgNo = argNo; } // WriteOnly - The intrinsic does not read memory through the specified // argument pointer. class WriteOnly<int argNo> : IntrinsicProperty { int ArgNo = argNo; } // ReadNone - The specified argument pointer is not dereferenced by the // intrinsic. class ReadNone<int argNo> : IntrinsicProperty { int ArgNo = argNo; } def IntrNoReturn : IntrinsicProperty; // IntrCold - Calls to this intrinsic are cold. // Parallels the cold attribute on LLVM IR functions. def IntrCold : IntrinsicProperty; // IntrNoduplicate - Calls to this intrinsic cannot be duplicated. // Parallels the noduplicate attribute on LLVM IR functions. def IntrNoDuplicate : IntrinsicProperty; // IntrConvergent - Calls to this intrinsic are convergent and may not be made // control-dependent on any additional values. // Parallels the convergent attribute on LLVM IR functions. def IntrConvergent : IntrinsicProperty; // This property indicates that the intrinsic is safe to speculate. def IntrSpeculatable : IntrinsicProperty; // This property can be used to override the 'has no other side effects' // language of the IntrNoMem, IntrReadMem, IntrWriteMem, and IntrArgMemOnly // intrinsic properties. By default, intrinsics are assumed to have side // effects, so this property is only necessary if you have defined one of // the memory properties listed above. // For this property, 'side effects' has the same meaning as 'side effects' // defined by the hasSideEffects property of the TableGen Instruction class. def IntrHasSideEffects : IntrinsicProperty; //===----------------------------------------------------------------------===// // Types used by intrinsics. //===----------------------------------------------------------------------===// class LLVMType<ValueType vt> { ValueType VT = vt; int isAny = 0; } class LLVMQualPointerType<LLVMType elty, int addrspace> : LLVMType<iPTR>{ LLVMType ElTy = elty; int AddrSpace = addrspace; } class LLVMPointerType<LLVMType elty> : LLVMQualPointerType<elty, 0>; class LLVMAnyPointerType<LLVMType elty> : LLVMType<iPTRAny>{ LLVMType ElTy = elty; let isAny = 1; } // Match the type of another intrinsic parameter. Number is an index into the // list of overloaded types for the intrinsic, excluding all the fixed types. // The Number value must refer to a previously listed type. For example: // Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_anyfloat_ty, LLVMMatchType<0>]> // has two overloaded types, the 2nd and 3rd arguments. LLVMMatchType<0> // refers to the first overloaded type, which is the 2nd argument. class LLVMMatchType<int num> : LLVMType<OtherVT>{ int Number = num; } // Match the type of another intrinsic parameter that is expected to be based on // an integral type (i.e. either iN or <N x iM>), but change the scalar size to // be twice as wide or half as wide as the other type. This is only useful when // the intrinsic is overloaded, so the matched type should be declared as iAny. class LLVMExtendedType<int num> : LLVMMatchType<num>; class LLVMTruncatedType<int num> : LLVMMatchType<num>; // Match the scalar/vector of another intrinsic parameter but with a different // element type. Either both are scalars or both are vectors with the same // number of elements. class LLVMScalarOrSameVectorWidth<int idx, LLVMType elty> : LLVMMatchType<idx> { ValueType ElTy = elty.VT; } class LLVMPointerTo<int num> : LLVMMatchType<num>; class LLVMPointerToElt<int num> : LLVMMatchType<num>; class LLVMVectorOfAnyPointersToElt<int num> : LLVMMatchType<num>; // Match the type of another intrinsic parameter that is expected to be a // vector type, but change the element count to be half as many class LLVMHalfElementsVectorType<int num> : LLVMMatchType<num>; def llvm_void_ty : LLVMType<isVoid>; let isAny = 1 in { def llvm_any_ty : LLVMType<Any>; def llvm_anyint_ty : LLVMType<iAny>; def llvm_anyfloat_ty : LLVMType<fAny>; def llvm_anyvector_ty : LLVMType<vAny>; } def llvm_i1_ty : LLVMType<i1>; def llvm_i8_ty : LLVMType<i8>; def llvm_i16_ty : LLVMType<i16>; def llvm_i32_ty : LLVMType<i32>; def llvm_i64_ty : LLVMType<i64>; def llvm_half_ty : LLVMType<f16>; def llvm_float_ty : LLVMType<f32>; def llvm_double_ty : LLVMType<f64>; def llvm_f80_ty : LLVMType<f80>; def llvm_f128_ty : LLVMType<f128>; def llvm_ppcf128_ty : LLVMType<ppcf128>; def llvm_ptr_ty : LLVMPointerType<llvm_i8_ty>; // i8* def llvm_ptrptr_ty : LLVMPointerType<llvm_ptr_ty>; // i8** def llvm_anyptr_ty : LLVMAnyPointerType<llvm_i8_ty>; // (space)i8* def llvm_empty_ty : LLVMType<OtherVT>; // { } def llvm_descriptor_ty : LLVMPointerType<llvm_empty_ty>; // { }* def llvm_metadata_ty : LLVMType<MetadataVT>; // !{...} def llvm_token_ty : LLVMType<token>; // token def llvm_x86mmx_ty : LLVMType<x86mmx>; def llvm_ptrx86mmx_ty : LLVMPointerType<llvm_x86mmx_ty>; // <1 x i64>* def llvm_v2i1_ty : LLVMType<v2i1>; // 2 x i1 def llvm_v4i1_ty : LLVMType<v4i1>; // 4 x i1 def llvm_v8i1_ty : LLVMType<v8i1>; // 8 x i1 def llvm_v16i1_ty : LLVMType<v16i1>; // 16 x i1 def llvm_v32i1_ty : LLVMType<v32i1>; // 32 x i1 def llvm_v64i1_ty : LLVMType<v64i1>; // 64 x i1 def llvm_v512i1_ty : LLVMType<v512i1>; // 512 x i1 def llvm_v1024i1_ty : LLVMType<v1024i1>; //1024 x i1 def llvm_v1i8_ty : LLVMType<v1i8>; // 1 x i8 def llvm_v2i8_ty : LLVMType<v2i8>; // 2 x i8 def llvm_v4i8_ty : LLVMType<v4i8>; // 4 x i8 def llvm_v8i8_ty : LLVMType<v8i8>; // 8 x i8 def llvm_v16i8_ty : LLVMType<v16i8>; // 16 x i8 def llvm_v32i8_ty : LLVMType<v32i8>; // 32 x i8 def llvm_v64i8_ty : LLVMType<v64i8>; // 64 x i8 def llvm_v128i8_ty : LLVMType<v128i8>; //128 x i8 def llvm_v256i8_ty : LLVMType<v256i8>; //256 x i8 def llvm_v1i16_ty : LLVMType<v1i16>; // 1 x i16 def llvm_v2i16_ty : LLVMType<v2i16>; // 2 x i16 def llvm_v4i16_ty : LLVMType<v4i16>; // 4 x i16 def llvm_v8i16_ty : LLVMType<v8i16>; // 8 x i16 def llvm_v16i16_ty : LLVMType<v16i16>; // 16 x i16 def llvm_v32i16_ty : LLVMType<v32i16>; // 32 x i16 def llvm_v64i16_ty : LLVMType<v64i16>; // 64 x i16 def llvm_v128i16_ty : LLVMType<v128i16>; //128 x i16 def llvm_v1i32_ty : LLVMType<v1i32>; // 1 x i32 def llvm_v2i32_ty : LLVMType<v2i32>; // 2 x i32 def llvm_v4i32_ty : LLVMType<v4i32>; // 4 x i32 def llvm_v8i32_ty : LLVMType<v8i32>; // 8 x i32 def llvm_v16i32_ty : LLVMType<v16i32>; // 16 x i32 def llvm_v32i32_ty : LLVMType<v32i32>; // 32 x i32 def llvm_v64i32_ty : LLVMType<v64i32>; // 64 x i32 def llvm_v1i64_ty : LLVMType<v1i64>; // 1 x i64 def llvm_v2i64_ty : LLVMType<v2i64>; // 2 x i64 def llvm_v4i64_ty : LLVMType<v4i64>; // 4 x i64 def llvm_v8i64_ty : LLVMType<v8i64>; // 8 x i64 def llvm_v16i64_ty : LLVMType<v16i64>; // 16 x i64 def llvm_v32i64_ty : LLVMType<v32i64>; // 32 x i64 def llvm_v1i128_ty : LLVMType<v1i128>; // 1 x i128 def llvm_v2f16_ty : LLVMType<v2f16>; // 2 x half (__fp16) def llvm_v4f16_ty : LLVMType<v4f16>; // 4 x half (__fp16) def llvm_v8f16_ty : LLVMType<v8f16>; // 8 x half (__fp16) def llvm_v1f32_ty : LLVMType<v1f32>; // 1 x float def llvm_v2f32_ty : LLVMType<v2f32>; // 2 x float def llvm_v4f32_ty : LLVMType<v4f32>; // 4 x float def llvm_v8f32_ty : LLVMType<v8f32>; // 8 x float def llvm_v16f32_ty : LLVMType<v16f32>; // 16 x float def llvm_v1f64_ty : LLVMType<v1f64>; // 1 x double def llvm_v2f64_ty : LLVMType<v2f64>; // 2 x double def llvm_v4f64_ty : LLVMType<v4f64>; // 4 x double def llvm_v8f64_ty : LLVMType<v8f64>; // 8 x double def llvm_vararg_ty : LLVMType<isVoid>; // this means vararg here //===----------------------------------------------------------------------===// // Intrinsic Definitions. //===----------------------------------------------------------------------===// // Intrinsic class - This is used to define one LLVM intrinsic. The name of the // intrinsic definition should start with "int_", then match the LLVM intrinsic // name with the "llvm." prefix removed, and all "."s turned into "_"s. For // example, llvm.bswap.i16 -> int_bswap_i16. // // * RetTypes is a list containing the return types expected for the // intrinsic. // * ParamTypes is a list containing the parameter types expected for the // intrinsic. // * Properties can be set to describe the behavior of the intrinsic. // class Intrinsic<list<LLVMType> ret_types, list<LLVMType> param_types = [], list<IntrinsicProperty> intr_properties = [], string name = "", list<SDNodeProperty> sd_properties = []> : SDPatternOperator { string LLVMName = name; string TargetPrefix = ""; // Set to a prefix for target-specific intrinsics. list<LLVMType> RetTypes = ret_types; list<LLVMType> ParamTypes = param_types; list<IntrinsicProperty> IntrProperties = intr_properties; let Properties = sd_properties; bit isTarget = 0; } /// GCCBuiltin - If this intrinsic exactly corresponds to a GCC builtin, this /// specifies the name of the builtin. This provides automatic CBE and CFE /// support. class GCCBuiltin<string name> { string GCCBuiltinName = name; } class MSBuiltin<string name> { string MSBuiltinName = name; } //===--------------- Variable Argument Handling Intrinsics ----------------===// // def int_vastart : Intrinsic<[], [llvm_ptr_ty], [], "llvm.va_start">; def int_vacopy : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty], [], "llvm.va_copy">; def int_vaend : Intrinsic<[], [llvm_ptr_ty], [], "llvm.va_end">; //===------------------- Garbage Collection Intrinsics --------------------===// // def int_gcroot : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptr_ty]>; def int_gcread : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_ptrptr_ty], [IntrReadMem, IntrArgMemOnly]>; def int_gcwrite : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty, llvm_ptrptr_ty], [IntrArgMemOnly, NoCapture<1>, NoCapture<2>]>; //===------------------- ObjC ARC runtime Intrinsics --------------------===// // // Note these are to support the Objective-C ARC optimizer which wants to // eliminate retain and releases where possible. def int_objc_autorelease : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_autoreleasePoolPop : Intrinsic<[], [llvm_ptr_ty]>; def int_objc_autoreleasePoolPush : Intrinsic<[llvm_ptr_ty], []>; def int_objc_autoreleaseReturnValue : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_copyWeak : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptrptr_ty]>; def int_objc_destroyWeak : Intrinsic<[], [llvm_ptrptr_ty]>; def int_objc_initWeak : Intrinsic<[llvm_ptr_ty], [llvm_ptrptr_ty, llvm_ptr_ty]>; def int_objc_loadWeak : Intrinsic<[llvm_ptr_ty], [llvm_ptrptr_ty]>; def int_objc_loadWeakRetained : Intrinsic<[llvm_ptr_ty], [llvm_ptrptr_ty]>; def int_objc_moveWeak : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptrptr_ty]>; def int_objc_release : Intrinsic<[], [llvm_ptr_ty]>; def int_objc_retain : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_retainAutorelease : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_retainAutoreleaseReturnValue : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_retainAutoreleasedReturnValue : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_retainBlock : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_storeStrong : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptr_ty]>; def int_objc_storeWeak : Intrinsic<[llvm_ptr_ty], [llvm_ptrptr_ty, llvm_ptr_ty]>; def int_objc_clang_arc_use : Intrinsic<[], [llvm_vararg_ty]>; def int_objc_unsafeClaimAutoreleasedReturnValue : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_retainedObject : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_unretainedObject : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_unretainedPointer : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_retain_autorelease : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty]>; def int_objc_sync_enter : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>; def int_objc_sync_exit : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>; def int_objc_arc_annotation_topdown_bbstart : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptrptr_ty]>; def int_objc_arc_annotation_topdown_bbend : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptrptr_ty]>; def int_objc_arc_annotation_bottomup_bbstart : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptrptr_ty]>; def int_objc_arc_annotation_bottomup_bbend : Intrinsic<[], [llvm_ptrptr_ty, llvm_ptrptr_ty]>; //===--------------------- Code Generator Intrinsics ----------------------===// // def int_returnaddress : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], [IntrNoMem]>; def int_addressofreturnaddress : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>; def int_frameaddress : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], [IntrNoMem]>; def int_sponentry : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>; def int_read_register : Intrinsic<[llvm_anyint_ty], [llvm_metadata_ty], [IntrReadMem], "llvm.read_register">; def int_write_register : Intrinsic<[], [llvm_metadata_ty, llvm_anyint_ty], [], "llvm.write_register">; // Gets the address of the local variable area. This is typically a copy of the // stack, frame, or base pointer depending on the type of prologue. def int_localaddress : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>; // Escapes local variables to allow access from other functions. def int_localescape : Intrinsic<[], [llvm_vararg_ty]>; // Given a function and the localaddress of a parent frame, returns a pointer // to an escaped allocation indicated by the index. def int_localrecover : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty], [IntrNoMem]>; // Given the frame pointer passed into an SEH filter function, returns a // pointer to the local variable area suitable for use with llvm.localrecover. def int_eh_recoverfp : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_ptr_ty], [IntrNoMem]>; // Note: we treat stacksave/stackrestore as writemem because we don't otherwise // model their dependencies on allocas. def int_stacksave : Intrinsic<[llvm_ptr_ty]>, GCCBuiltin<"__builtin_stack_save">; def int_stackrestore : Intrinsic<[], [llvm_ptr_ty]>, GCCBuiltin<"__builtin_stack_restore">; def int_get_dynamic_area_offset : Intrinsic<[llvm_anyint_ty]>; def int_thread_pointer : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>, GCCBuiltin<"__builtin_thread_pointer">; // IntrInaccessibleMemOrArgMemOnly is a little more pessimistic than strictly // necessary for prefetch, however it does conveniently prevent the prefetch // from being reordered overly much with respect to nearby access to the same // memory while not impeding optimization. def int_prefetch : Intrinsic<[], [ llvm_ptr_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty ], [ IntrInaccessibleMemOrArgMemOnly, ReadOnly<0>, NoCapture<0> ]>; def int_pcmarker : Intrinsic<[], [llvm_i32_ty]>; def int_readcyclecounter : Intrinsic<[llvm_i64_ty]>; // The assume intrinsic is marked as arbitrarily writing so that proper // control dependencies will be maintained. def int_assume : Intrinsic<[], [llvm_i1_ty], []>; // Stack Protector Intrinsic - The stackprotector intrinsic writes the stack // guard to the correct place on the stack frame. def int_stackprotector : Intrinsic<[], [llvm_ptr_ty, llvm_ptrptr_ty], []>; def int_stackguard : Intrinsic<[llvm_ptr_ty], [], []>; // A counter increment for instrumentation based profiling. def int_instrprof_increment : Intrinsic<[], [llvm_ptr_ty, llvm_i64_ty, llvm_i32_ty, llvm_i32_ty], []>; // A counter increment with step for instrumentation based profiling. def int_instrprof_increment_step : Intrinsic<[], [llvm_ptr_ty, llvm_i64_ty, llvm_i32_ty, llvm_i32_ty, llvm_i64_ty], []>; // A call to profile runtime for value profiling of target expressions // through instrumentation based profiling. def int_instrprof_value_profile : Intrinsic<[], [llvm_ptr_ty, llvm_i64_ty, llvm_i64_ty, llvm_i32_ty, llvm_i32_ty], []>; //===------------------- Standard C Library Intrinsics --------------------===// // def int_memcpy : Intrinsic<[], [llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty, llvm_i1_ty], [IntrArgMemOnly, NoCapture<0>, NoCapture<1>, WriteOnly<0>, ReadOnly<1>]>; def int_memmove : Intrinsic<[], [llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty, llvm_i1_ty], [IntrArgMemOnly, NoCapture<0>, NoCapture<1>, ReadOnly<1>]>; def int_memset : Intrinsic<[], [llvm_anyptr_ty, llvm_i8_ty, llvm_anyint_ty, llvm_i1_ty], [IntrArgMemOnly, NoCapture<0>, WriteOnly<0>]>; // FIXME: Add version of these floating point intrinsics which allow non-default // rounding modes and FP exception handling. let IntrProperties = [IntrNoMem, IntrSpeculatable] in { def int_fma : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>]>; def int_fmuladd : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>]>; // These functions do not read memory, but are sensitive to the // rounding mode. LLVM purposely does not model changes to the FP // environment so they can be treated as readnone. def int_sqrt : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_powi : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, llvm_i32_ty]>; def int_sin : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_cos : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_pow : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>]>; def int_log : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_log10: Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_log2 : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_exp : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_exp2 : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_fabs : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_copysign : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>]>; def int_floor : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_ceil : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_trunc : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_rint : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_nearbyint : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_round : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>; def int_canonicalize : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>], [IntrNoMem]>; } def int_minnum : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable, Commutative] >; def int_maxnum : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable, Commutative] >; def int_minimum : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable, Commutative] >; def int_maximum : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable, Commutative] >; // NOTE: these are internal interfaces. def int_setjmp : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>; def int_longjmp : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [IntrNoReturn]>; def int_sigsetjmp : Intrinsic<[llvm_i32_ty] , [llvm_ptr_ty, llvm_i32_ty]>; def int_siglongjmp : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [IntrNoReturn]>; // Internal interface for object size checking def int_objectsize : Intrinsic<[llvm_anyint_ty], [llvm_anyptr_ty, llvm_i1_ty, llvm_i1_ty, llvm_i1_ty], [IntrNoMem, IntrSpeculatable]>, GCCBuiltin<"__builtin_object_size">; //===--------------- Constrained Floating Point Intrinsics ----------------===// // let IntrProperties = [IntrInaccessibleMemOnly] in { def int_experimental_constrained_fadd : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_fsub : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_fmul : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_fdiv : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_frem : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_fma : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; // These intrinsics are sensitive to the rounding mode so we need constrained // versions of each of them. When strict rounding and exception control are // not required the non-constrained versions of these intrinsics should be // used. def int_experimental_constrained_sqrt : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_powi : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_i32_ty, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_sin : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_cos : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_pow : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_log : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_log10: Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_log2 : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_exp : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_exp2 : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_rint : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_nearbyint : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_maxnum : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_minnum : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_ceil : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_floor : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_round : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; def int_experimental_constrained_trunc : Intrinsic<[ llvm_anyfloat_ty ], [ LLVMMatchType<0>, llvm_metadata_ty, llvm_metadata_ty ]>; } // FIXME: Add intrinsics for fcmp, fptrunc, fpext, fptoui and fptosi. // FIXME: Add intrinsics for fabs and copysign? //===------------------------- Expect Intrinsics --------------------------===// // def int_expect : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem]>; //===-------------------- Bit Manipulation Intrinsics ---------------------===// // // None of these intrinsics accesses memory at all. let IntrProperties = [IntrNoMem, IntrSpeculatable] in { def int_bswap: Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>; def int_ctpop: Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>; def int_ctlz : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_i1_ty]>; def int_cttz : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_i1_ty]>; def int_bitreverse : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>; def int_fshl : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>]>; def int_fshr : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>]>; } //===------------------------ Debugger Intrinsics -------------------------===// // // None of these intrinsics accesses memory at all...but that doesn't // mean the optimizers can change them aggressively. Special handling // needed in a few places. These synthetic intrinsics have no // side-effects and just mark information about their operands. let IntrProperties = [IntrNoMem, IntrSpeculatable] in { def int_dbg_declare : Intrinsic<[], [llvm_metadata_ty, llvm_metadata_ty, llvm_metadata_ty]>; def int_dbg_value : Intrinsic<[], [llvm_metadata_ty, llvm_metadata_ty, llvm_metadata_ty]>; def int_dbg_addr : Intrinsic<[], [llvm_metadata_ty, llvm_metadata_ty, llvm_metadata_ty]>; def int_dbg_label : Intrinsic<[], [llvm_metadata_ty]>; } //===------------------ Exception Handling Intrinsics----------------------===// // // The result of eh.typeid.for depends on the enclosing function, but inside a // given function it is 'const' and may be CSE'd etc. def int_eh_typeid_for : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty], [IntrNoMem]>; def int_eh_return_i32 : Intrinsic<[], [llvm_i32_ty, llvm_ptr_ty]>; def int_eh_return_i64 : Intrinsic<[], [llvm_i64_ty, llvm_ptr_ty]>; // eh.exceptionpointer returns the pointer to the exception caught by // the given `catchpad`. def int_eh_exceptionpointer : Intrinsic<[llvm_anyptr_ty], [llvm_token_ty], [IntrNoMem]>; // Gets the exception code from a catchpad token. Only used on some platforms. def int_eh_exceptioncode : Intrinsic<[llvm_i32_ty], [llvm_token_ty], [IntrNoMem]>; // __builtin_unwind_init is an undocumented GCC intrinsic that causes all // callee-saved registers to be saved and restored (regardless of whether they // are used) in the calling function. It is used by libgcc_eh. def int_eh_unwind_init: Intrinsic<[]>, GCCBuiltin<"__builtin_unwind_init">; def int_eh_dwarf_cfa : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty]>; let IntrProperties = [IntrNoMem] in { def int_eh_sjlj_lsda : Intrinsic<[llvm_ptr_ty]>; def int_eh_sjlj_callsite : Intrinsic<[], [llvm_i32_ty]>; } def int_eh_sjlj_functioncontext : Intrinsic<[], [llvm_ptr_ty]>; def int_eh_sjlj_setjmp : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>; def int_eh_sjlj_longjmp : Intrinsic<[], [llvm_ptr_ty], [IntrNoReturn]>; def int_eh_sjlj_setup_dispatch : Intrinsic<[], []>; //===---------------- Generic Variable Attribute Intrinsics----------------===// // def int_var_annotation : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty], [], "llvm.var.annotation">; def int_ptr_annotation : Intrinsic<[LLVMAnyPointerType<llvm_anyint_ty>], [LLVMMatchType<0>, llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty], [], "llvm.ptr.annotation">; def int_annotation : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty], [], "llvm.annotation">; // Annotates the current program point with metadata strings which are emitted // as CodeView debug info records. This is expensive, as it disables inlining // and is modelled as having side effects. def int_codeview_annotation : Intrinsic<[], [llvm_metadata_ty], [IntrInaccessibleMemOnly, IntrNoDuplicate], "llvm.codeview.annotation">; //===------------------------ Trampoline Intrinsics -----------------------===// // def int_init_trampoline : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty, llvm_ptr_ty], [IntrArgMemOnly, NoCapture<0>]>, GCCBuiltin<"__builtin_init_trampoline">; def int_adjust_trampoline : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty], [IntrReadMem, IntrArgMemOnly]>, GCCBuiltin<"__builtin_adjust_trampoline">; //===------------------------ Overflow Intrinsics -------------------------===// // // Expose the carry flag from add operations on two integrals. def int_sadd_with_overflow : Intrinsic<[llvm_anyint_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; def int_uadd_with_overflow : Intrinsic<[llvm_anyint_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; def int_ssub_with_overflow : Intrinsic<[llvm_anyint_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; def int_usub_with_overflow : Intrinsic<[llvm_anyint_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; def int_smul_with_overflow : Intrinsic<[llvm_anyint_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; def int_umul_with_overflow : Intrinsic<[llvm_anyint_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; //===------------------------- Saturation Arithmetic Intrinsics ---------------------===// // def int_sadd_sat : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable, Commutative]>; def int_uadd_sat : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable, Commutative]>; def int_ssub_sat : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; def int_usub_sat : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>], [IntrNoMem, IntrSpeculatable]>; //===------------------------- Fixed Point Arithmetic Intrinsics ---------------------===// // def int_smul_fix : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>, llvm_i32_ty], [IntrNoMem, IntrSpeculatable, Commutative]>; def int_umul_fix : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, LLVMMatchType<0>, llvm_i32_ty], [IntrNoMem, IntrSpeculatable, Commutative]>; //===------------------------- Memory Use Markers -------------------------===// // def int_lifetime_start : Intrinsic<[], [llvm_i64_ty, llvm_anyptr_ty], [IntrArgMemOnly, NoCapture<1>]>; def int_lifetime_end : Intrinsic<[], [llvm_i64_ty, llvm_anyptr_ty], [IntrArgMemOnly, NoCapture<1>]>; def int_invariant_start : Intrinsic<[llvm_descriptor_ty], [llvm_i64_ty, llvm_anyptr_ty], [IntrArgMemOnly, NoCapture<1>]>; def int_invariant_end : Intrinsic<[], [llvm_descriptor_ty, llvm_i64_ty, llvm_anyptr_ty], [IntrArgMemOnly, NoCapture<2>]>; // launder.invariant.group can't be marked with 'readnone' (IntrNoMem), // because it would cause CSE of two barriers with the same argument. // Inaccessiblememonly says that the barrier doesn't read the argument, // but it changes state not accessible to this module. This way // we can DSE through the barrier because it doesn't read the value // after store. Although the barrier doesn't modify any memory it // can't be marked as readonly, because it would be possible to // CSE 2 barriers with store in between. // The argument also can't be marked with 'returned' attribute, because // it would remove barrier. // Note that it is still experimental, which means that its semantics // might change in the future. def int_launder_invariant_group : Intrinsic<[llvm_anyptr_ty], [LLVMMatchType<0>], [IntrInaccessibleMemOnly, IntrSpeculatable]>; def int_strip_invariant_group : Intrinsic<[llvm_anyptr_ty], [LLVMMatchType<0>], [IntrSpeculatable, IntrNoMem]>; //===------------------------ Stackmap Intrinsics -------------------------===// // def int_experimental_stackmap : Intrinsic<[], [llvm_i64_ty, llvm_i32_ty, llvm_vararg_ty], [Throws]>; def int_experimental_patchpoint_void : Intrinsic<[], [llvm_i64_ty, llvm_i32_ty, llvm_ptr_ty, llvm_i32_ty, llvm_vararg_ty], [Throws]>; def int_experimental_patchpoint_i64 : Intrinsic<[llvm_i64_ty], [llvm_i64_ty, llvm_i32_ty, llvm_ptr_ty, llvm_i32_ty, llvm_vararg_ty], [Throws]>; //===------------------------ Garbage Collection Intrinsics ---------------===// // These are documented in docs/Statepoint.rst def int_experimental_gc_statepoint : Intrinsic<[llvm_token_ty], [llvm_i64_ty, llvm_i32_ty, llvm_anyptr_ty, llvm_i32_ty, llvm_i32_ty, llvm_vararg_ty], [Throws]>; def int_experimental_gc_result : Intrinsic<[llvm_any_ty], [llvm_token_ty], [IntrReadMem]>; def int_experimental_gc_relocate : Intrinsic<[llvm_any_ty], [llvm_token_ty, llvm_i32_ty, llvm_i32_ty], [IntrReadMem]>; //===------------------------ Coroutine Intrinsics ---------------===// // These are documented in docs/Coroutines.rst // Coroutine Structure Intrinsics. def int_coro_id : Intrinsic<[llvm_token_ty], [llvm_i32_ty, llvm_ptr_ty, llvm_ptr_ty, llvm_ptr_ty], [IntrArgMemOnly, IntrReadMem, ReadNone<1>, ReadOnly<2>, NoCapture<2>]>; def int_coro_alloc : Intrinsic<[llvm_i1_ty], [llvm_token_ty], []>; def int_coro_begin : Intrinsic<[llvm_ptr_ty], [llvm_token_ty, llvm_ptr_ty], [WriteOnly<1>]>; def int_coro_free : Intrinsic<[llvm_ptr_ty], [llvm_token_ty, llvm_ptr_ty], [IntrReadMem, IntrArgMemOnly, ReadOnly<1>, NoCapture<1>]>; def int_coro_end : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_i1_ty], []>; def int_coro_frame : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>; def int_coro_noop : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>; def int_coro_size : Intrinsic<[llvm_anyint_ty], [], [IntrNoMem]>; def int_coro_save : Intrinsic<[llvm_token_ty], [llvm_ptr_ty], []>; def int_coro_suspend : Intrinsic<[llvm_i8_ty], [llvm_token_ty, llvm_i1_ty], []>; def int_coro_param : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_ptr_ty], [IntrNoMem, ReadNone<0>, ReadNone<1>]>; // Coroutine Manipulation Intrinsics. def int_coro_resume : Intrinsic<[], [llvm_ptr_ty], [Throws]>; def int_coro_destroy : Intrinsic<[], [llvm_ptr_ty], [Throws]>; def int_coro_done : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty], [IntrArgMemOnly, ReadOnly<0>, NoCapture<0>]>; def int_coro_promise : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_i32_ty, llvm_i1_ty], [IntrNoMem, NoCapture<0>]>; // Coroutine Lowering Intrinsics. Used internally by coroutine passes. def int_coro_subfn_addr : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_i8_ty], [IntrReadMem, IntrArgMemOnly, ReadOnly<0>, NoCapture<0>]>; ///===-------------------------- Other Intrinsics --------------------------===// // def int_flt_rounds : Intrinsic<[llvm_i32_ty]>, GCCBuiltin<"__builtin_flt_rounds">; def int_trap : Intrinsic<[], [], [IntrNoReturn, IntrCold]>, GCCBuiltin<"__builtin_trap">; def int_debugtrap : Intrinsic<[]>, GCCBuiltin<"__builtin_debugtrap">; // Support for dynamic deoptimization (or de-specialization) def int_experimental_deoptimize : Intrinsic<[llvm_any_ty], [llvm_vararg_ty], [Throws]>; // Support for speculative runtime guards def int_experimental_guard : Intrinsic<[], [llvm_i1_ty, llvm_vararg_ty], [Throws]>; // Supports widenable conditions for guards represented as explicit branches. def int_experimental_widenable_condition : Intrinsic<[llvm_i1_ty], [], [IntrInaccessibleMemOnly]>; // NOP: calls/invokes to this intrinsic are removed by codegen def int_donothing : Intrinsic<[], [], [IntrNoMem]>; // This instruction has no actual effect, though it is treated by the optimizer // has having opaque side effects. This may be inserted into loops to ensure // that they are not removed even if they turn out to be empty, for languages // which specify that infinite loops must be preserved. def int_sideeffect : Intrinsic<[], [], [IntrInaccessibleMemOnly]>; // Intrisics to support half precision floating point format let IntrProperties = [IntrNoMem] in { def int_convert_to_fp16 : Intrinsic<[llvm_i16_ty], [llvm_anyfloat_ty]>; def int_convert_from_fp16 : Intrinsic<[llvm_anyfloat_ty], [llvm_i16_ty]>; } // Clear cache intrinsic, default to ignore (ie. emit nothing) // maps to void __clear_cache() on supporting platforms def int_clear_cache : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty], [], "llvm.clear_cache">; // Intrinsic to detect whether its argument is a constant. def int_is_constant : Intrinsic<[llvm_i1_ty], [llvm_any_ty], [IntrNoMem], "llvm.is.constant">; //===-------------------------- Masked Intrinsics -------------------------===// // def int_masked_store : Intrinsic<[], [llvm_anyvector_ty, LLVMAnyPointerType<LLVMMatchType<0>>, llvm_i32_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [IntrArgMemOnly]>; def int_masked_load : Intrinsic<[llvm_anyvector_ty], [LLVMAnyPointerType<LLVMMatchType<0>>, llvm_i32_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>, LLVMMatchType<0>], [IntrReadMem, IntrArgMemOnly]>; def int_masked_gather: Intrinsic<[llvm_anyvector_ty], [LLVMVectorOfAnyPointersToElt<0>, llvm_i32_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>, LLVMMatchType<0>], [IntrReadMem]>; def int_masked_scatter: Intrinsic<[], [llvm_anyvector_ty, LLVMVectorOfAnyPointersToElt<0>, llvm_i32_ty, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>]>; def int_masked_expandload: Intrinsic<[llvm_anyvector_ty], [LLVMPointerToElt<0>, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>, LLVMMatchType<0>], [IntrReadMem]>; def int_masked_compressstore: Intrinsic<[], [llvm_anyvector_ty, LLVMPointerToElt<0>, LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>], [IntrArgMemOnly]>; // Test whether a pointer is associated with a type metadata identifier. def int_type_test : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_metadata_ty], [IntrNoMem]>; // Safely loads a function pointer from a virtual table pointer using type metadata. def int_type_checked_load : Intrinsic<[llvm_ptr_ty, llvm_i1_ty], [llvm_ptr_ty, llvm_i32_ty, llvm_metadata_ty], [IntrNoMem]>; // Create a branch funnel that implements an indirect call to a limited set of // callees. This needs to be a musttail call. def int_icall_branch_funnel : Intrinsic<[], [llvm_vararg_ty], []>; def int_load_relative: Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_anyint_ty], [IntrReadMem, IntrArgMemOnly]>; def int_hwasan_check_memaccess : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty], [IntrInaccessibleMemOnly]>; // Xray intrinsics //===----------------------------------------------------------------------===// // Custom event logging for x-ray. // Takes a pointer to a string and the length of the string. def int_xray_customevent : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [NoCapture<0>, ReadOnly<0>, IntrWriteMem]>; // Typed event logging for x-ray. // Takes a numeric type tag, a pointer to a string and the length of the string. def int_xray_typedevent : Intrinsic<[], [llvm_i16_ty, llvm_ptr_ty, llvm_i32_ty], [NoCapture<1>, ReadOnly<1>, IntrWriteMem]>; //===----------------------------------------------------------------------===// //===------ Memory intrinsics with element-wise atomicity guarantees ------===// // // @llvm.memcpy.element.unordered.atomic.*(dest, src, length, elementsize) def int_memcpy_element_unordered_atomic : Intrinsic<[], [ llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty, llvm_i32_ty ], [ IntrArgMemOnly, NoCapture<0>, NoCapture<1>, WriteOnly<0>, ReadOnly<1> ]>; // @llvm.memmove.element.unordered.atomic.*(dest, src, length, elementsize) def int_memmove_element_unordered_atomic : Intrinsic<[], [ llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty, llvm_i32_ty ], [ IntrArgMemOnly, NoCapture<0>, NoCapture<1>, WriteOnly<0>, ReadOnly<1> ]>; // @llvm.memset.element.unordered.atomic.*(dest, value, length, elementsize) def int_memset_element_unordered_atomic : Intrinsic<[], [ llvm_anyptr_ty, llvm_i8_ty, llvm_anyint_ty, llvm_i32_ty ], [ IntrArgMemOnly, NoCapture<0>, WriteOnly<0> ]>; //===------------------------ Reduction Intrinsics ------------------------===// // def int_experimental_vector_reduce_fadd : Intrinsic<[llvm_anyfloat_ty], [llvm_anyfloat_ty, llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_fmul : Intrinsic<[llvm_anyfloat_ty], [llvm_anyfloat_ty, llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_add : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_mul : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_and : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_or : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_xor : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_smax : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_smin : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_umax : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_umin : Intrinsic<[llvm_anyint_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_fmax : Intrinsic<[llvm_anyfloat_ty], [llvm_anyvector_ty], [IntrNoMem]>; def int_experimental_vector_reduce_fmin : Intrinsic<[llvm_anyfloat_ty], [llvm_anyvector_ty], [IntrNoMem]>; //===----- Intrinsics that are used to provide predicate information -----===// def int_ssa_copy : Intrinsic<[llvm_any_ty], [LLVMMatchType<0>], [IntrNoMem, Returned<0>]>; //===----------------------------------------------------------------------===// // Target-specific intrinsics //===----------------------------------------------------------------------===// include "llvm/IR/IntrinsicsPowerPC.td" include "llvm/IR/IntrinsicsX86.td" include "llvm/IR/IntrinsicsARM.td" include "llvm/IR/IntrinsicsAArch64.td" include "llvm/IR/IntrinsicsXCore.td" include "llvm/IR/IntrinsicsHexagon.td" include "llvm/IR/IntrinsicsNVVM.td" include "llvm/IR/IntrinsicsMips.td" include "llvm/IR/IntrinsicsAMDGPU.td" include "llvm/IR/IntrinsicsBPF.td" include "llvm/IR/IntrinsicsSystemZ.td" include "llvm/IR/IntrinsicsWebAssembly.td" include "llvm/IR/IntrinsicsRISCV.td"