// Copyright 2010 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package zip import ( "bufio" "encoding/binary" "errors" "fmt" "hash" "hash/crc32" "io" "os" "time" ) var ( ErrFormat = errors.New("zip: not a valid zip file") ErrAlgorithm = errors.New("zip: unsupported compression algorithm") ErrChecksum = errors.New("zip: checksum error") ) type Reader struct { r io.ReaderAt File []*File Comment string decompressors map[uint16]Decompressor } type ReadCloser struct { f *os.File Reader } type File struct { FileHeader zip *Reader zipr io.ReaderAt zipsize int64 headerOffset int64 } func (f *File) hasDataDescriptor() bool { return f.Flags&0x8 != 0 } // OpenReader will open the Zip file specified by name and return a ReadCloser. func OpenReader(name string) (*ReadCloser, error) { f, err := os.Open(name) if err != nil { return nil, err } fi, err := f.Stat() if err != nil { f.Close() return nil, err } r := new(ReadCloser) if err := r.init(f, fi.Size()); err != nil { f.Close() return nil, err } r.f = f return r, nil } // NewReader returns a new Reader reading from r, which is assumed to // have the given size in bytes. func NewReader(r io.ReaderAt, size int64) (*Reader, error) { if size < 0 { return nil, errors.New("zip: size cannot be negative") } zr := new(Reader) if err := zr.init(r, size); err != nil { return nil, err } return zr, nil } func (z *Reader) init(r io.ReaderAt, size int64) error { end, err := readDirectoryEnd(r, size) if err != nil { return err } if end.directoryRecords > uint64(size)/fileHeaderLen { return fmt.Errorf("archive/zip: TOC declares impossible %d files in %d byte zip", end.directoryRecords, size) } z.r = r z.File = make([]*File, 0, end.directoryRecords) z.Comment = end.comment rs := io.NewSectionReader(r, 0, size) if _, err = rs.Seek(int64(end.directoryOffset), io.SeekStart); err != nil { return err } buf := bufio.NewReader(rs) // The count of files inside a zip is truncated to fit in a uint16. // Gloss over this by reading headers until we encounter // a bad one, and then only report an ErrFormat or UnexpectedEOF if // the file count modulo 65536 is incorrect. for { f := &File{zip: z, zipr: r, zipsize: size} err = readDirectoryHeader(f, buf) if err == ErrFormat || err == io.ErrUnexpectedEOF { break } if err != nil { return err } z.File = append(z.File, f) } if uint16(len(z.File)) != uint16(end.directoryRecords) { // only compare 16 bits here // Return the readDirectoryHeader error if we read // the wrong number of directory entries. return err } return nil } // RegisterDecompressor registers or overrides a custom decompressor for a // specific method ID. If a decompressor for a given method is not found, // Reader will default to looking up the decompressor at the package level. func (z *Reader) RegisterDecompressor(method uint16, dcomp Decompressor) { if z.decompressors == nil { z.decompressors = make(map[uint16]Decompressor) } z.decompressors[method] = dcomp } func (z *Reader) decompressor(method uint16) Decompressor { dcomp := z.decompressors[method] if dcomp == nil { dcomp = decompressor(method) } return dcomp } // Close closes the Zip file, rendering it unusable for I/O. func (rc *ReadCloser) Close() error { return rc.f.Close() } // DataOffset returns the offset of the file's possibly-compressed // data, relative to the beginning of the zip file. // // Most callers should instead use Open, which transparently // decompresses data and verifies checksums. func (f *File) DataOffset() (offset int64, err error) { bodyOffset, err := f.findBodyOffset() if err != nil { return } return f.headerOffset + bodyOffset, nil } // Open returns a ReadCloser that provides access to the File's contents. // Multiple files may be read concurrently. func (f *File) Open() (io.ReadCloser, error) { bodyOffset, err := f.findBodyOffset() if err != nil { return nil, err } size := int64(f.CompressedSize64) r := io.NewSectionReader(f.zipr, f.headerOffset+bodyOffset, size) dcomp := f.zip.decompressor(f.Method) if dcomp == nil { return nil, ErrAlgorithm } var rc io.ReadCloser = dcomp(r) var desr io.Reader if f.hasDataDescriptor() { desr = io.NewSectionReader(f.zipr, f.headerOffset+bodyOffset+size, dataDescriptorLen) } rc = &checksumReader{ rc: rc, hash: crc32.NewIEEE(), f: f, desr: desr, } return rc, nil } type checksumReader struct { rc io.ReadCloser hash hash.Hash32 nread uint64 // number of bytes read so far f *File desr io.Reader // if non-nil, where to read the data descriptor err error // sticky error } func (r *checksumReader) Read(b []byte) (n int, err error) { if r.err != nil { return 0, r.err } n, err = r.rc.Read(b) r.hash.Write(b[:n]) r.nread += uint64(n) if err == nil { return } if err == io.EOF { if r.nread != r.f.UncompressedSize64 { return 0, io.ErrUnexpectedEOF } if r.desr != nil { if err1 := readDataDescriptor(r.desr, r.f); err1 != nil { if err1 == io.EOF { err = io.ErrUnexpectedEOF } else { err = err1 } } else if r.hash.Sum32() != r.f.CRC32 { err = ErrChecksum } } else { // If there's not a data descriptor, we still compare // the CRC32 of what we've read against the file header // or TOC's CRC32, if it seems like it was set. if r.f.CRC32 != 0 && r.hash.Sum32() != r.f.CRC32 { err = ErrChecksum } } } r.err = err return } func (r *checksumReader) Close() error { return r.rc.Close() } // findBodyOffset does the minimum work to verify the file has a header // and returns the file body offset. func (f *File) findBodyOffset() (int64, error) { var buf [fileHeaderLen]byte if _, err := f.zipr.ReadAt(buf[:], f.headerOffset); err != nil { return 0, err } b := readBuf(buf[:]) if sig := b.uint32(); sig != fileHeaderSignature { return 0, ErrFormat } b = b[22:] // skip over most of the header filenameLen := int(b.uint16()) extraLen := int(b.uint16()) return int64(fileHeaderLen + filenameLen + extraLen), nil } // readDirectoryHeader attempts to read a directory header from r. // It returns io.ErrUnexpectedEOF if it cannot read a complete header, // and ErrFormat if it doesn't find a valid header signature. func readDirectoryHeader(f *File, r io.Reader) error { var buf [directoryHeaderLen]byte if _, err := io.ReadFull(r, buf[:]); err != nil { return err } b := readBuf(buf[:]) if sig := b.uint32(); sig != directoryHeaderSignature { return ErrFormat } f.CreatorVersion = b.uint16() f.ReaderVersion = b.uint16() f.Flags = b.uint16() f.Method = b.uint16() f.ModifiedTime = b.uint16() f.ModifiedDate = b.uint16() f.CRC32 = b.uint32() f.CompressedSize = b.uint32() f.UncompressedSize = b.uint32() f.CompressedSize64 = uint64(f.CompressedSize) f.UncompressedSize64 = uint64(f.UncompressedSize) filenameLen := int(b.uint16()) extraLen := int(b.uint16()) commentLen := int(b.uint16()) b = b[4:] // skipped start disk number and internal attributes (2x uint16) f.ExternalAttrs = b.uint32() f.headerOffset = int64(b.uint32()) d := make([]byte, filenameLen+extraLen+commentLen) if _, err := io.ReadFull(r, d); err != nil { return err } f.Name = string(d[:filenameLen]) f.Extra = d[filenameLen : filenameLen+extraLen] f.Comment = string(d[filenameLen+extraLen:]) // Determine the character encoding. utf8Valid1, utf8Require1 := detectUTF8(f.Name) utf8Valid2, utf8Require2 := detectUTF8(f.Comment) switch { case !utf8Valid1 || !utf8Valid2: // Name and Comment definitely not UTF-8. f.NonUTF8 = true case !utf8Require1 && !utf8Require2: // Name and Comment use only single-byte runes that overlap with UTF-8. f.NonUTF8 = false default: // Might be UTF-8, might be some other encoding; preserve existing flag. // Some ZIP writers use UTF-8 encoding without setting the UTF-8 flag. // Since it is impossible to always distinguish valid UTF-8 from some // other encoding (e.g., GBK or Shift-JIS), we trust the flag. f.NonUTF8 = f.Flags&0x800 == 0 } needUSize := f.UncompressedSize == ^uint32(0) needCSize := f.CompressedSize == ^uint32(0) needHeaderOffset := f.headerOffset == int64(^uint32(0)) // Best effort to find what we need. // Other zip authors might not even follow the basic format, // and we'll just ignore the Extra content in that case. var modified time.Time parseExtras: for extra := readBuf(f.Extra); len(extra) >= 4; { // need at least tag and size fieldTag := extra.uint16() fieldSize := int(extra.uint16()) if len(extra) < fieldSize { break } fieldBuf := extra.sub(fieldSize) switch fieldTag { case zip64ExtraID: // update directory values from the zip64 extra block. // They should only be consulted if the sizes read earlier // are maxed out. // See golang.org/issue/13367. if needUSize { needUSize = false if len(fieldBuf) < 8 { return ErrFormat } f.UncompressedSize64 = fieldBuf.uint64() } if needCSize { needCSize = false if len(fieldBuf) < 8 { return ErrFormat } f.CompressedSize64 = fieldBuf.uint64() } if needHeaderOffset { needHeaderOffset = false if len(fieldBuf) < 8 { return ErrFormat } f.headerOffset = int64(fieldBuf.uint64()) } case ntfsExtraID: if len(fieldBuf) < 4 { continue parseExtras } fieldBuf.uint32() // reserved (ignored) for len(fieldBuf) >= 4 { // need at least tag and size attrTag := fieldBuf.uint16() attrSize := int(fieldBuf.uint16()) if len(fieldBuf) < attrSize { continue parseExtras } attrBuf := fieldBuf.sub(attrSize) if attrTag != 1 || attrSize != 24 { continue // Ignore irrelevant attributes } const ticksPerSecond = 1e7 // Windows timestamp resolution ts := int64(attrBuf.uint64()) // ModTime since Windows epoch secs := int64(ts / ticksPerSecond) nsecs := (1e9 / ticksPerSecond) * int64(ts%ticksPerSecond) epoch := time.Date(1601, time.January, 1, 0, 0, 0, 0, time.UTC) modified = time.Unix(epoch.Unix()+secs, nsecs) } case unixExtraID, infoZipUnixExtraID: if len(fieldBuf) < 8 { continue parseExtras } fieldBuf.uint32() // AcTime (ignored) ts := int64(fieldBuf.uint32()) // ModTime since Unix epoch modified = time.Unix(ts, 0) case extTimeExtraID: if len(fieldBuf) < 5 || fieldBuf.uint8()&1 == 0 { continue parseExtras } ts := int64(fieldBuf.uint32()) // ModTime since Unix epoch modified = time.Unix(ts, 0) } } msdosModified := msDosTimeToTime(f.ModifiedDate, f.ModifiedTime) f.Modified = msdosModified if !modified.IsZero() { f.Modified = modified.UTC() // If legacy MS-DOS timestamps are set, we can use the delta between // the legacy and extended versions to estimate timezone offset. // // A non-UTC timezone is always used (even if offset is zero). // Thus, FileHeader.Modified.Location() == time.UTC is useful for // determining whether extended timestamps are present. // This is necessary for users that need to do additional time // calculations when dealing with legacy ZIP formats. if f.ModifiedTime != 0 || f.ModifiedDate != 0 { f.Modified = modified.In(timeZone(msdosModified.Sub(modified))) } } // Assume that uncompressed size 2³²-1 could plausibly happen in // an old zip32 file that was sharding inputs into the largest chunks // possible (or is just malicious; search the web for 42.zip). // If needUSize is true still, it means we didn't see a zip64 extension. // As long as the compressed size is not also 2³²-1 (implausible) // and the header is not also 2³²-1 (equally implausible), // accept the uncompressed size 2³²-1 as valid. // If nothing else, this keeps archive/zip working with 42.zip. _ = needUSize if needCSize || needHeaderOffset { return ErrFormat } return nil } func readDataDescriptor(r io.Reader, f *File) error { var buf [dataDescriptorLen]byte // The spec says: "Although not originally assigned a // signature, the value 0x08074b50 has commonly been adopted // as a signature value for the data descriptor record. // Implementers should be aware that ZIP files may be // encountered with or without this signature marking data // descriptors and should account for either case when reading // ZIP files to ensure compatibility." // // dataDescriptorLen includes the size of the signature but // first read just those 4 bytes to see if it exists. if _, err := io.ReadFull(r, buf[:4]); err != nil { return err } off := 0 maybeSig := readBuf(buf[:4]) if maybeSig.uint32() != dataDescriptorSignature { // No data descriptor signature. Keep these four // bytes. off += 4 } if _, err := io.ReadFull(r, buf[off:12]); err != nil { return err } b := readBuf(buf[:12]) if b.uint32() != f.CRC32 { return ErrChecksum } // The two sizes that follow here can be either 32 bits or 64 bits // but the spec is not very clear on this and different // interpretations has been made causing incompatibilities. We // already have the sizes from the central directory so we can // just ignore these. return nil } func readDirectoryEnd(r io.ReaderAt, size int64) (dir *directoryEnd, err error) { // look for directoryEndSignature in the last 1k, then in the last 65k var buf []byte var directoryEndOffset int64 for i, bLen := range []int64{1024, 65 * 1024} { if bLen > size { bLen = size } buf = make([]byte, int(bLen)) if _, err := r.ReadAt(buf, size-bLen); err != nil && err != io.EOF { return nil, err } if p := findSignatureInBlock(buf); p >= 0 { buf = buf[p:] directoryEndOffset = size - bLen + int64(p) break } if i == 1 || bLen == size { return nil, ErrFormat } } // read header into struct b := readBuf(buf[4:]) // skip signature d := &directoryEnd{ diskNbr: uint32(b.uint16()), dirDiskNbr: uint32(b.uint16()), dirRecordsThisDisk: uint64(b.uint16()), directoryRecords: uint64(b.uint16()), directorySize: uint64(b.uint32()), directoryOffset: uint64(b.uint32()), commentLen: b.uint16(), } l := int(d.commentLen) if l > len(b) { return nil, errors.New("zip: invalid comment length") } d.comment = string(b[:l]) // These values mean that the file can be a zip64 file if d.directoryRecords == 0xffff || d.directorySize == 0xffff || d.directoryOffset == 0xffffffff { p, err := findDirectory64End(r, directoryEndOffset) if err == nil && p >= 0 { err = readDirectory64End(r, p, d) } if err != nil { return nil, err } } // Make sure directoryOffset points to somewhere in our file. if o := int64(d.directoryOffset); o < 0 || o >= size { return nil, ErrFormat } return d, nil } // findDirectory64End tries to read the zip64 locator just before the // directory end and returns the offset of the zip64 directory end if // found. func findDirectory64End(r io.ReaderAt, directoryEndOffset int64) (int64, error) { locOffset := directoryEndOffset - directory64LocLen if locOffset < 0 { return -1, nil // no need to look for a header outside the file } buf := make([]byte, directory64LocLen) if _, err := r.ReadAt(buf, locOffset); err != nil { return -1, err } b := readBuf(buf) if sig := b.uint32(); sig != directory64LocSignature { return -1, nil } if b.uint32() != 0 { // number of the disk with the start of the zip64 end of central directory return -1, nil // the file is not a valid zip64-file } p := b.uint64() // relative offset of the zip64 end of central directory record if b.uint32() != 1 { // total number of disks return -1, nil // the file is not a valid zip64-file } return int64(p), nil } // readDirectory64End reads the zip64 directory end and updates the // directory end with the zip64 directory end values. func readDirectory64End(r io.ReaderAt, offset int64, d *directoryEnd) (err error) { buf := make([]byte, directory64EndLen) if _, err := r.ReadAt(buf, offset); err != nil { return err } b := readBuf(buf) if sig := b.uint32(); sig != directory64EndSignature { return ErrFormat } b = b[12:] // skip dir size, version and version needed (uint64 + 2x uint16) d.diskNbr = b.uint32() // number of this disk d.dirDiskNbr = b.uint32() // number of the disk with the start of the central directory d.dirRecordsThisDisk = b.uint64() // total number of entries in the central directory on this disk d.directoryRecords = b.uint64() // total number of entries in the central directory d.directorySize = b.uint64() // size of the central directory d.directoryOffset = b.uint64() // offset of start of central directory with respect to the starting disk number return nil } func findSignatureInBlock(b []byte) int { for i := len(b) - directoryEndLen; i >= 0; i-- { // defined from directoryEndSignature in struct.go if b[i] == 'P' && b[i+1] == 'K' && b[i+2] == 0x05 && b[i+3] == 0x06 { // n is length of comment n := int(b[i+directoryEndLen-2]) | int(b[i+directoryEndLen-1])<<8 if n+directoryEndLen+i <= len(b) { return i } } } return -1 } type readBuf []byte func (b *readBuf) uint8() uint8 { v := (*b)[0] *b = (*b)[1:] return v } func (b *readBuf) uint16() uint16 { v := binary.LittleEndian.Uint16(*b) *b = (*b)[2:] return v } func (b *readBuf) uint32() uint32 { v := binary.LittleEndian.Uint32(*b) *b = (*b)[4:] return v } func (b *readBuf) uint64() uint64 { v := binary.LittleEndian.Uint64(*b) *b = (*b)[8:] return v } func (b *readBuf) sub(n int) readBuf { b2 := (*b)[:n] *b = (*b)[n:] return b2 }