// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package amd64 import ( "cmd/compile/internal/gc" "cmd/internal/obj" "cmd/internal/obj/x86" "cmd/internal/objabi" ) // no floating point in note handlers on Plan 9 var isPlan9 = objabi.GOOS == "plan9" // DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ, // See runtime/mkduff.go. const ( dzBlocks = 16 // number of MOV/ADD blocks dzBlockLen = 4 // number of clears per block dzBlockSize = 19 // size of instructions in a single block dzMovSize = 4 // size of single MOV instruction w/ offset dzLeaqSize = 4 // size of single LEAQ instruction dzClearStep = 16 // number of bytes cleared by each MOV instruction dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block dzSize = dzBlocks * dzBlockSize ) // dzOff returns the offset for a jump into DUFFZERO. // b is the number of bytes to zero. func dzOff(b int64) int64 { off := int64(dzSize) off -= b / dzClearLen * dzBlockSize tailLen := b % dzClearLen if tailLen >= dzClearStep { off -= dzLeaqSize + dzMovSize*(tailLen/dzClearStep) } return off } // duffzeroDI returns the pre-adjustment to DI for a call to DUFFZERO. // b is the number of bytes to zero. func dzDI(b int64) int64 { tailLen := b % dzClearLen if tailLen < dzClearStep { return 0 } tailSteps := tailLen / dzClearStep return -dzClearStep * (dzBlockLen - tailSteps) } func zerorange(pp *gc.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog { const ( ax = 1 << iota x0 ) if cnt == 0 { return p } if cnt%int64(gc.Widthreg) != 0 { // should only happen with nacl if cnt%int64(gc.Widthptr) != 0 { gc.Fatalf("zerorange count not a multiple of widthptr %d", cnt) } if *state&ax == 0 { p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) *state |= ax } p = pp.Appendpp(p, x86.AMOVL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off) off += int64(gc.Widthptr) cnt -= int64(gc.Widthptr) } if cnt == 8 { if *state&ax == 0 { p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) *state |= ax } p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off) } else if !isPlan9 && cnt <= int64(8*gc.Widthreg) { if *state&x0 == 0 { p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0) *state |= x0 } for i := int64(0); i < cnt/16; i++ { p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+i*16) } if cnt%16 != 0 { p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+cnt-int64(16)) } } else if !gc.Nacl && !isPlan9 && (cnt <= int64(128*gc.Widthreg)) { if *state&x0 == 0 { p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0) *state |= x0 } p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off+dzDI(cnt), obj.TYPE_REG, x86.REG_DI, 0) p = pp.Appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, dzOff(cnt)) p.To.Sym = gc.Duffzero if cnt%16 != 0 { p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_DI, -int64(8)) } } else { if *state&ax == 0 { p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) *state |= ax } p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(gc.Widthreg), obj.TYPE_REG, x86.REG_CX, 0) p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off, obj.TYPE_REG, x86.REG_DI, 0) p = pp.Appendpp(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) p = pp.Appendpp(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) } return p } func zeroAuto(pp *gc.Progs, n *gc.Node) { // Note: this code must not clobber any registers. op := x86.AMOVQ if gc.Widthptr == 4 { op = x86.AMOVL } sym := n.Sym.Linksym() size := n.Type.Size() for i := int64(0); i < size; i += int64(gc.Widthptr) { p := pp.Prog(op) p.From.Type = obj.TYPE_CONST p.From.Offset = 0 p.To.Type = obj.TYPE_MEM p.To.Name = obj.NAME_AUTO p.To.Reg = x86.REG_SP p.To.Offset = n.Xoffset + i p.To.Sym = sym } } func ginsnop(pp *gc.Progs) *obj.Prog { // This is actually not the x86 NOP anymore, // but at the point where it gets used, AX is dead // so it's okay if we lose the high bits. p := pp.Prog(x86.AXCHGL) p.From.Type = obj.TYPE_REG p.From.Reg = x86.REG_AX p.To.Type = obj.TYPE_REG p.To.Reg = x86.REG_AX return p }