// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssa import ( "cmd/internal/src" "fmt" ) // Block represents a basic block in the control flow graph of a function. type Block struct { // A unique identifier for the block. The system will attempt to allocate // these IDs densely, but no guarantees. ID ID // Source position for block's control operation Pos src.XPos // The kind of block this is. Kind BlockKind // Likely direction for branches. // If BranchLikely, Succs[0] is the most likely branch taken. // If BranchUnlikely, Succs[1] is the most likely branch taken. // Ignored if len(Succs) < 2. // Fatal if not BranchUnknown and len(Succs) > 2. Likely BranchPrediction // After flagalloc, records whether flags are live at the end of the block. FlagsLiveAtEnd bool // Subsequent blocks, if any. The number and order depend on the block kind. Succs []Edge // Inverse of successors. // The order is significant to Phi nodes in the block. // TODO: predecessors is a pain to maintain. Can we somehow order phi // arguments by block id and have this field computed explicitly when needed? Preds []Edge // A value that determines how the block is exited. Its value depends on the kind // of the block. For instance, a BlockIf has a boolean control value and BlockExit // has a memory control value. Control *Value // Auxiliary info for the block. Its value depends on the Kind. Aux interface{} // The unordered set of Values that define the operation of this block. // The list must include the control value, if any. (TODO: need this last condition?) // After the scheduling pass, this list is ordered. Values []*Value // The containing function Func *Func // Storage for Succs, Preds, and Values succstorage [2]Edge predstorage [4]Edge valstorage [9]*Value } // Edge represents a CFG edge. // Example edges for b branching to either c or d. // (c and d have other predecessors.) // b.Succs = [{c,3}, {d,1}] // c.Preds = [?, ?, ?, {b,0}] // d.Preds = [?, {b,1}, ?] // These indexes allow us to edit the CFG in constant time. // In addition, it informs phi ops in degenerate cases like: // b: // if k then c else c // c: // v = Phi(x, y) // Then the indexes tell you whether x is chosen from // the if or else branch from b. // b.Succs = [{c,0},{c,1}] // c.Preds = [{b,0},{b,1}] // means x is chosen if k is true. type Edge struct { // block edge goes to (in a Succs list) or from (in a Preds list) b *Block // index of reverse edge. Invariant: // e := x.Succs[idx] // e.b.Preds[e.i] = Edge{x,idx} // and similarly for predecessors. i int } func (e Edge) Block() *Block { return e.b } func (e Edge) Index() int { return e.i } // kind control successors // ------------------------------------------ // Exit return mem [] // Plain nil [next] // If a boolean Value [then, else] // Defer mem [nopanic, panic] (control opcode should be OpStaticCall to runtime.deferproc) type BlockKind int8 // short form print func (b *Block) String() string { return fmt.Sprintf("b%d", b.ID) } // long form print func (b *Block) LongString() string { s := b.Kind.String() if b.Aux != nil { s += fmt.Sprintf(" %s", b.Aux) } if b.Control != nil { s += fmt.Sprintf(" %s", b.Control) } if len(b.Succs) > 0 { s += " ->" for _, c := range b.Succs { s += " " + c.b.String() } } switch b.Likely { case BranchUnlikely: s += " (unlikely)" case BranchLikely: s += " (likely)" } return s } func (b *Block) SetControl(v *Value) { if w := b.Control; w != nil { w.Uses-- } b.Control = v if v != nil { v.Uses++ } } // AddEdgeTo adds an edge from block b to block c. Used during building of the // SSA graph; do not use on an already-completed SSA graph. func (b *Block) AddEdgeTo(c *Block) { i := len(b.Succs) j := len(c.Preds) b.Succs = append(b.Succs, Edge{c, j}) c.Preds = append(c.Preds, Edge{b, i}) b.Func.invalidateCFG() } // removePred removes the ith input edge from b. // It is the responsibility of the caller to remove // the corresponding successor edge. func (b *Block) removePred(i int) { n := len(b.Preds) - 1 if i != n { e := b.Preds[n] b.Preds[i] = e // Update the other end of the edge we moved. e.b.Succs[e.i].i = i } b.Preds[n] = Edge{} b.Preds = b.Preds[:n] b.Func.invalidateCFG() } // removeSucc removes the ith output edge from b. // It is the responsibility of the caller to remove // the corresponding predecessor edge. func (b *Block) removeSucc(i int) { n := len(b.Succs) - 1 if i != n { e := b.Succs[n] b.Succs[i] = e // Update the other end of the edge we moved. e.b.Preds[e.i].i = i } b.Succs[n] = Edge{} b.Succs = b.Succs[:n] b.Func.invalidateCFG() } func (b *Block) swapSuccessors() { if len(b.Succs) != 2 { b.Fatalf("swapSuccessors with len(Succs)=%d", len(b.Succs)) } e0 := b.Succs[0] e1 := b.Succs[1] b.Succs[0] = e1 b.Succs[1] = e0 e0.b.Preds[e0.i].i = 1 e1.b.Preds[e1.i].i = 0 b.Likely *= -1 } // LackingPos indicates whether b is a block whose position should be inherited // from its successors. This is true if all the values within it have unreliable positions // and if it is "plain", meaning that there is no control flow that is also very likely // to correspond to a well-understood source position. func (b *Block) LackingPos() bool { // Non-plain predecessors are If or Defer, which both (1) have two successors, // which might have different line numbers and (2) correspond to statements // in the source code that have positions, so this case ought not occur anyway. if b.Kind != BlockPlain { return false } if b.Pos != src.NoXPos { return false } for _, v := range b.Values { if v.LackingPos() { continue } return false } return true } func (b *Block) Logf(msg string, args ...interface{}) { b.Func.Logf(msg, args...) } func (b *Block) Log() bool { return b.Func.Log() } func (b *Block) Fatalf(msg string, args ...interface{}) { b.Func.Fatalf(msg, args...) } type BranchPrediction int8 const ( BranchUnlikely = BranchPrediction(-1) BranchUnknown = BranchPrediction(0) BranchLikely = BranchPrediction(+1) )