// Copyright 2018 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ld import ( "bytes" "cmd/internal/objabi" "cmd/link/internal/sym" "encoding/binary" "strings" ) // This file handles all algorithms related to XCOFF files generation. // Most of them are adaptations of the ones in cmd/link/internal/pe.go // as PE and XCOFF are based on COFF files. // XCOFF files generated are 64 bits. const ( // Total amount of space to reserve at the start of the file // for File Header, Auxiliary Header, and Section Headers. // May waste some. XCOFFHDRRESERVE = FILHSZ_64 + AOUTHSZ_EXEC64 + SCNHSZ_64*23 XCOFFSECTALIGN int64 = 32 // base on dump -o // XCOFF binaries should normally have all its sections position-independent. // However, this is not yet possible for .text because of some R_ADDR relocations // inside RODATA symbols. // .data and .bss are position-independent so their address start inside a unreachable // segment during execution to force segfault if something is wrong. XCOFFTEXTBASE = 0x100000000 // Start of text address XCOFFDATABASE = 0x200000000 // Start of data address ) // File Header type XcoffFileHdr64 struct { Fmagic uint16 // Target machine Fnscns uint16 // Number of sections Ftimedat int32 // Time and date of file creation Fsymptr uint64 // Byte offset to symbol table start Fopthdr uint16 // Number of bytes in optional header Fflags uint16 // Flags Fnsyms int32 // Number of entries in symbol table } const ( U64_TOCMAGIC = 0767 // AIX 64-bit XCOFF ) // Flags that describe the type of the object file. const ( F_RELFLG = 0x0001 F_EXEC = 0x0002 F_LNNO = 0x0004 F_FDPR_PROF = 0x0010 F_FDPR_OPTI = 0x0020 F_DSA = 0x0040 F_VARPG = 0x0100 F_DYNLOAD = 0x1000 F_SHROBJ = 0x2000 F_LOADONLY = 0x4000 ) // Auxiliary Header type XcoffAoutHdr64 struct { Omagic int16 // Flags - Ignored If Vstamp Is 1 Ovstamp int16 // Version Odebugger uint32 // Reserved For Debugger Otextstart uint64 // Virtual Address Of Text Odatastart uint64 // Virtual Address Of Data Otoc uint64 // Toc Address Osnentry int16 // Section Number For Entry Point Osntext int16 // Section Number For Text Osndata int16 // Section Number For Data Osntoc int16 // Section Number For Toc Osnloader int16 // Section Number For Loader Osnbss int16 // Section Number For Bss Oalgntext int16 // Max Text Alignment Oalgndata int16 // Max Data Alignment Omodtype [2]byte // Module Type Field Ocpuflag uint8 // Bit Flags - Cputypes Of Objects Ocputype uint8 // Reserved for CPU type Otextpsize uint8 // Requested text page size Odatapsize uint8 // Requested data page size Ostackpsize uint8 // Requested stack page size Oflags uint8 // Flags And TLS Alignment Otsize uint64 // Text Size In Bytes Odsize uint64 // Data Size In Bytes Obsize uint64 // Bss Size In Bytes Oentry uint64 // Entry Point Address Omaxstack uint64 // Max Stack Size Allowed Omaxdata uint64 // Max Data Size Allowed Osntdata int16 // Section Number For Tdata Section Osntbss int16 // Section Number For Tbss Section Ox64flags uint16 // Additional Flags For 64-Bit Objects Oresv3a int16 // Reserved Oresv3 [2]int32 // Reserved } // Section Header type XcoffScnHdr64 struct { Sname [8]byte // Section Name Spaddr uint64 // Physical Address Svaddr uint64 // Virtual Address Ssize uint64 // Section Size Sscnptr uint64 // File Offset To Raw Data Srelptr uint64 // File Offset To Relocation Slnnoptr uint64 // File Offset To Line Numbers Snreloc uint32 // Number Of Relocation Entries Snlnno uint32 // Number Of Line Number Entries Sflags uint32 // flags } // Flags defining the section type. const ( STYP_DWARF = 0x0010 STYP_TEXT = 0x0020 STYP_DATA = 0x0040 STYP_BSS = 0x0080 STYP_EXCEPT = 0x0100 STYP_INFO = 0x0200 STYP_TDATA = 0x0400 STYP_TBSS = 0x0800 STYP_LOADER = 0x1000 STYP_DEBUG = 0x2000 STYP_TYPCHK = 0x4000 STYP_OVRFLO = 0x8000 ) const ( SSUBTYP_DWINFO = 0x10000 // DWARF info section SSUBTYP_DWLINE = 0x20000 // DWARF line-number section SSUBTYP_DWPBNMS = 0x30000 // DWARF public names section SSUBTYP_DWPBTYP = 0x40000 // DWARF public types section SSUBTYP_DWARNGE = 0x50000 // DWARF aranges section SSUBTYP_DWABREV = 0x60000 // DWARF abbreviation section SSUBTYP_DWSTR = 0x70000 // DWARF strings section SSUBTYP_DWRNGES = 0x80000 // DWARF ranges section SSUBTYP_DWLOC = 0x90000 // DWARF location lists section SSUBTYP_DWFRAME = 0xA0000 // DWARF frames section SSUBTYP_DWMAC = 0xB0000 // DWARF macros section ) // Headers size const ( FILHSZ_32 = 20 FILHSZ_64 = 24 AOUTHSZ_EXEC32 = 72 AOUTHSZ_EXEC64 = 120 SCNHSZ_32 = 40 SCNHSZ_64 = 72 LDHDRSZ_32 = 32 LDHDRSZ_64 = 56 LDSYMSZ_64 = 24 ) // Symbol Table Entry type XcoffSymEnt64 struct { Nvalue uint64 // Symbol value Noffset uint32 // Offset of the name in string table or .debug section Nscnum int16 // Section number of symbol Ntype uint16 // Basic and derived type specification Nsclass uint8 // Storage class of symbol Nnumaux int8 // Number of auxiliary entries } const SYMESZ = 18 const ( // Nscnum N_DEBUG = -2 N_ABS = -1 N_UNDEF = 0 //Ntype SYM_V_INTERNAL = 0x1000 SYM_V_HIDDEN = 0x2000 SYM_V_PROTECTED = 0x3000 SYM_V_EXPORTED = 0x4000 SYM_TYPE_FUNC = 0x0020 // is function ) // Storage Class. const ( C_NULL = 0 // Symbol table entry marked for deletion C_EXT = 2 // External symbol C_STAT = 3 // Static symbol C_BLOCK = 100 // Beginning or end of inner block C_FCN = 101 // Beginning or end of function C_FILE = 103 // Source file name and compiler information C_HIDEXT = 107 // Unnamed external symbol C_BINCL = 108 // Beginning of include file C_EINCL = 109 // End of include file C_WEAKEXT = 111 // Weak external symbol C_DWARF = 112 // DWARF symbol C_GSYM = 128 // Global variable C_LSYM = 129 // Automatic variable allocated on stack C_PSYM = 130 // Argument to subroutine allocated on stack C_RSYM = 131 // Register variable C_RPSYM = 132 // Argument to function or procedure stored in register C_STSYM = 133 // Statically allocated symbol C_BCOMM = 135 // Beginning of common block C_ECOML = 136 // Local member of common block C_ECOMM = 137 // End of common block C_DECL = 140 // Declaration of object C_ENTRY = 141 // Alternate entry C_FUN = 142 // Function or procedure C_BSTAT = 143 // Beginning of static block C_ESTAT = 144 // End of static block C_GTLS = 145 // Global thread-local variable C_STTLS = 146 // Static thread-local variable ) // File Auxiliary Entry type XcoffAuxFile64 struct { Xfname [8]byte // Name or offset inside string table Xftype uint8 // Source file string type Xauxtype uint8 // Type of auxiliary entry } // Function Auxiliary Entry type XcoffAuxFcn64 struct { Xlnnoptr uint64 // File pointer to line number Xfsize uint32 // Size of function in bytes Xendndx uint32 // Symbol table index of next entry Xpad uint8 // Unused Xauxtype uint8 // Type of auxiliary entry } // csect Auxiliary Entry. type XcoffAuxCSect64 struct { Xscnlenlo uint32 // Lower 4 bytes of length or symbol table index Xparmhash uint32 // Offset of parameter type-check string Xsnhash uint16 // .typchk section number Xsmtyp uint8 // Symbol alignment and type Xsmclas uint8 // Storage-mapping class Xscnlenhi uint32 // Upper 4 bytes of length or symbol table index Xpad uint8 // Unused Xauxtype uint8 // Type of auxiliary entry } // Auxiliary type const ( _AUX_EXCEPT = 255 _AUX_FCN = 254 _AUX_SYM = 253 _AUX_FILE = 252 _AUX_CSECT = 251 _AUX_SECT = 250 ) // Xftype field const ( XFT_FN = 0 // Source File Name XFT_CT = 1 // Compile Time Stamp XFT_CV = 2 // Compiler Version Number XFT_CD = 128 // Compiler Defined Information/ ) // Symbol type field. const ( XTY_ER = 0 // External reference XTY_SD = 1 // Section definition XTY_LD = 2 // Label definition XTY_CM = 3 // Common csect definition XTY_WK = 0x8 // Weak symbol XTY_EXP = 0x10 // Exported symbol XTY_ENT = 0x20 // Entry point symbol XTY_IMP = 0x40 // Imported symbol ) // Storage-mapping class. const ( XMC_PR = 0 // Program code XMC_RO = 1 // Read-only constant XMC_DB = 2 // Debug dictionary table XMC_TC = 3 // TOC entry XMC_UA = 4 // Unclassified XMC_RW = 5 // Read/Write data XMC_GL = 6 // Global linkage XMC_XO = 7 // Extended operation XMC_SV = 8 // 32-bit supervisor call descriptor XMC_BS = 9 // BSS class XMC_DS = 10 // Function descriptor XMC_UC = 11 // Unnamed FORTRAN common XMC_TC0 = 15 // TOC anchor XMC_TD = 16 // Scalar data entry in the TOC XMC_SV64 = 17 // 64-bit supervisor call descriptor XMC_SV3264 = 18 // Supervisor call descriptor for both 32-bit and 64-bit XMC_TL = 20 // Read/Write thread-local data XMC_UL = 21 // Read/Write thread-local data (.tbss) XMC_TE = 22 // TOC entry ) // Loader Header type XcoffLdHdr64 struct { Lversion int32 // Loader section version number Lnsyms int32 // Number of symbol table entries Lnreloc int32 // Number of relocation table entries Listlen uint32 // Length of import file ID string table Lnimpid int32 // Number of import file IDs Lstlen uint32 // Length of string table Limpoff uint64 // Offset to start of import file IDs Lstoff uint64 // Offset to start of string table Lsymoff uint64 // Offset to start of symbol table Lrldoff uint64 // Offset to start of relocation entries } // Loader Symbol type XcoffLdSym64 struct { Lvalue uint64 // Address field Loffset uint32 // Byte offset into string table of symbol name Lscnum int16 // Section number containing symbol Lsmtype int8 // Symbol type, export, import flags Lsmclas int8 // Symbol storage class Lifile int32 // Import file ID; ordinal of import file IDs Lparm uint32 // Parameter type-check field } type xcoffLoaderSymbol struct { sym *sym.Symbol smtype int8 smclas int8 } type XcoffLdImportFile64 struct { Limpidpath string Limpidbase string Limpidmem string } type XcoffLdRel64 struct { Lvaddr uint64 // Address Field Lrtype uint16 // Relocation Size and Type Lrsecnm int16 // Section Number being relocated Lsymndx int32 // Loader-Section symbol table index } // xcoffLoaderReloc holds information about a relocation made by the loader. type xcoffLoaderReloc struct { sym *sym.Symbol rel *sym.Reloc rtype uint16 symndx int32 } const ( XCOFF_R_POS = 0x00 // A(sym) Positive Relocation ) type XcoffLdStr64 struct { size uint16 name string } // xcoffFile is used to build XCOFF file. type xcoffFile struct { xfhdr XcoffFileHdr64 xahdr XcoffAoutHdr64 sections []*XcoffScnHdr64 stringTable xcoffStringTable sectNameToScnum map[string]int16 loaderSize uint64 symtabOffset int64 // offset to the start of symbol table symbolCount uint32 // number of symbol table records written dynLibraries map[string]int // Dynamic libraries in .loader section. The integer represents its import file number (- 1) loaderSymbols []*xcoffLoaderSymbol // symbols inside .loader symbol table loaderReloc []*xcoffLoaderReloc // Reloc that must be made inside loader } // Var used by XCOFF Generation algorithms var ( xfile xcoffFile ) // xcoffStringTable is a XCOFF string table. type xcoffStringTable struct { strings []string stringsLen int } // size returns size of string table t. func (t *xcoffStringTable) size() int { // string table starts with 4-byte length at the beginning return t.stringsLen + 4 } // add adds string str to string table t. func (t *xcoffStringTable) add(str string) int { off := t.size() t.strings = append(t.strings, str) t.stringsLen += len(str) + 1 // each string will have 0 appended to it return off } // write writes string table t into the output file. func (t *xcoffStringTable) write(out *OutBuf) { out.Write32(uint32(t.size())) for _, s := range t.strings { out.WriteString(s) out.Write8(0) } } // write writes XCOFF section sect into the output file. func (sect *XcoffScnHdr64) write(ctxt *Link) { binary.Write(ctxt.Out, binary.BigEndian, sect) ctxt.Out.Write32(0) // Add 4 empty bytes at the end to match alignment } // addSection adds section to the XCOFF file f. func (f *xcoffFile) addSection(name string, addr uint64, size uint64, fileoff uint64, flags uint32) *XcoffScnHdr64 { sect := &XcoffScnHdr64{ Spaddr: addr, Svaddr: addr, Ssize: size, Sscnptr: fileoff, Sflags: flags, } copy(sect.Sname[:], name) // copy string to [8]byte f.sections = append(f.sections, sect) f.sectNameToScnum[name] = int16(len(f.sections)) return sect } // addDwarfSection adds a dwarf section to the XCOFF file f. // This function is similar to addSection, but Dwarf section names // must be modified to conventional names and they are various subtypes. func (f *xcoffFile) addDwarfSection(s *sym.Section) *XcoffScnHdr64 { newName, subtype := xcoffGetDwarfSubtype(s.Name) return f.addSection(newName, 0, s.Length, s.Seg.Fileoff+s.Vaddr-s.Seg.Vaddr, STYP_DWARF|subtype) } // xcoffGetDwarfSubtype returns the XCOFF name of the DWARF section str // and its subtype constant. func xcoffGetDwarfSubtype(str string) (string, uint32) { switch str { default: Exitf("unknown DWARF section name for XCOFF: %s", str) case ".debug_abbrev": return ".dwabrev", SSUBTYP_DWABREV case ".debug_info": return ".dwinfo", SSUBTYP_DWINFO case ".debug_frame": return ".dwframe", SSUBTYP_DWFRAME case ".debug_line": return ".dwline", SSUBTYP_DWLINE case ".debug_loc": return ".dwloc", SSUBTYP_DWLOC case ".debug_pubnames": return ".dwpbnms", SSUBTYP_DWPBNMS case ".debug_pubtypes": return ".dwpbtyp", SSUBTYP_DWPBTYP case ".debug_ranges": return ".dwrnge", SSUBTYP_DWRNGES } // never used return "", 0 } // getXCOFFscnum returns the XCOFF section number of a Go section. func (f *xcoffFile) getXCOFFscnum(sect *sym.Section) int16 { switch sect.Seg { case &Segtext: return f.sectNameToScnum[".text"] case &Segdata: if sect.Name == ".noptrdata" || sect.Name == ".data" { return f.sectNameToScnum[".data"] } if sect.Name == ".noptrbss" || sect.Name == ".bss" { return f.sectNameToScnum[".bss"] } Errorf(nil, "unknown XCOFF segment data section: %s", sect.Name) case &Segdwarf: name, _ := xcoffGetDwarfSubtype(sect.Name) return f.sectNameToScnum[name] } Errorf(nil, "getXCOFFscnum not implemented for section %s", sect.Name) return -1 } // Xcoffinit initialised some internal value and setups // already known header information func Xcoffinit(ctxt *Link) { xfile.dynLibraries = make(map[string]int) HEADR = int32(Rnd(XCOFFHDRRESERVE, XCOFFSECTALIGN)) if *FlagTextAddr != -1 { Errorf(nil, "-T not available on AIX") } *FlagTextAddr = XCOFFTEXTBASE + int64(HEADR) *FlagDataAddr = 0 if *FlagRound != -1 { Errorf(nil, "-R not available on AIX") } *FlagRound = int(XCOFFSECTALIGN) } // SYMBOL TABLE // type records C_FILE information needed for genasmsym in XCOFF. type xcoffSymSrcFile struct { name string fileSymNb uint32 // Symbol number of this C_FILE csectSymNb uint64 // Symbol number for the current .csect csectSize int64 } var ( currDwscnoff = make(map[string]uint64) // Needed to create C_DWARF symbols currSymSrcFile xcoffSymSrcFile ) // writeSymbol writes a symbol or an auxiliary symbol entry on ctxt.out. func (f *xcoffFile) writeSymbol(out *OutBuf, byteOrder binary.ByteOrder, sym interface{}) { binary.Write(out, byteOrder, sym) f.symbolCount++ } // Write symbols needed when a new file appared : // - a C_FILE with one auxiliary entry for its name // - C_DWARF symbols to provide debug information // - a C_HIDEXT which will be a csect containing all of its functions // It needs several parameters to create .csect symbols such as its entry point and its section number. // // Currently, a new file is in fact a new package. It seems to be OK, but it might change // in the future. func (f *xcoffFile) writeSymbolNewFile(ctxt *Link, name string, firstEntry uint64, extnum int16) { /* C_FILE */ s := &XcoffSymEnt64{ Noffset: uint32(f.stringTable.add(".file")), Nsclass: C_FILE, Nscnum: N_DEBUG, Ntype: 0, // Go isn't inside predefined language. Nnumaux: 1, } f.writeSymbol(ctxt.Out, ctxt.Arch.ByteOrder, s) // Auxiliary entry for file name. ctxt.Out.Write32(0) ctxt.Out.Write32(uint32(f.stringTable.add(name))) ctxt.Out.Write32(0) // 6 bytes empty ctxt.Out.Write16(0) ctxt.Out.Write8(XFT_FN) ctxt.Out.Write16(0) // 2 bytes empty ctxt.Out.Write8(_AUX_FILE) f.symbolCount++ /* Dwarf */ for _, sect := range Segdwarf.Sections { // Find the size of this corresponding package DWARF compilation unit. // This size is set during DWARF generation (see dwarf.go). dwsize := getDwsectCUSize(sect.Name, name) // .debug_abbrev is commun to all packages and not found with the previous function if sect.Name == ".debug_abbrev" { s := ctxt.Syms.Lookup(sect.Name, 0) dwsize = uint64(s.Size) } // get XCOFF name name, _ := xcoffGetDwarfSubtype(sect.Name) s := &XcoffSymEnt64{ Nvalue: currDwscnoff[sect.Name], Noffset: uint32(f.stringTable.add(name)), Nsclass: C_DWARF, Nscnum: f.getXCOFFscnum(sect), Nnumaux: 1, } f.writeSymbol(ctxt.Out, ctxt.Arch.ByteOrder, s) // update the DWARF section offset in this file if sect.Name != ".debug_abbrev" { currDwscnoff[sect.Name] += dwsize } // Auxiliary dwarf section ctxt.Out.Write64(dwsize) // section length ctxt.Out.Write64(0) // nreloc ctxt.Out.Write8(0) // pad ctxt.Out.Write8(_AUX_SECT) f.symbolCount++ } /* .csect */ // Check if extnum is in text. // This is temporary and only here to check if this algorithm is correct. if extnum != 1 { Exitf("XCOFF symtab: A new file was detected with its first symbol not in .text") } currSymSrcFile.csectSymNb = uint64(f.symbolCount) currSymSrcFile.csectSize = 0 // No offset because no name s = &XcoffSymEnt64{ Nvalue: firstEntry, Nscnum: extnum, Nsclass: C_HIDEXT, Ntype: 0, // check visibility ? Nnumaux: 1, } f.writeSymbol(ctxt.Out, ctxt.Arch.ByteOrder, s) aux := &XcoffAuxCSect64{ Xsmclas: XMC_PR, Xsmtyp: XTY_SD | 5<<3, // align = 5 Xauxtype: _AUX_CSECT, } f.writeSymbol(ctxt.Out, ctxt.Arch.ByteOrder, aux) } // Update values for the previous package. // - Svalue of the C_FILE symbol: if it is the last one, this Svalue must be -1 // - Xsclen of the csect symbol. func (f *xcoffFile) updatePreviousFile(ctxt *Link, last bool) { // first file if currSymSrcFile.fileSymNb == 0 { return } prevOff := f.symtabOffset + int64(currSymSrcFile.fileSymNb*SYMESZ) currOff := ctxt.Out.Offset() // Update C_FILE ctxt.Out.SeekSet(prevOff) if last { ctxt.Out.Write64(0xFFFFFFFFFFFFFFFF) } else { ctxt.Out.Write64(uint64(f.symbolCount)) } // update csect scnlen in this auxiliary entry prevOff = f.symtabOffset + int64((currSymSrcFile.csectSymNb+1)*SYMESZ) ctxt.Out.SeekSet(prevOff) ctxt.Out.Write32(uint32(currSymSrcFile.csectSize & 0xFFFFFFFF)) prevOff += 12 ctxt.Out.SeekSet(prevOff) ctxt.Out.Write32(uint32(currSymSrcFile.csectSize >> 32)) ctxt.Out.SeekSet(currOff) } // Write symbol representing a .text function. // The symbol table is split with C_FILE corresponding to each package // and not to each source file as it should be. func (f *xcoffFile) writeSymbolFunc(ctxt *Link, x *sym.Symbol) []interface{} { // New XCOFF symbols which will be written. syms := []interface{}{} // Check if a new file is detected. if x.File == "" { // Undefined global symbol // If this happens, the algorithme must be redone. if currSymSrcFile.name != "" { Exitf("undefined global symbol found inside another file") } } else { // Current file has changed. New C_FILE, C_DWARF, etc must be generated. if currSymSrcFile.name != x.File { // update previous file values xfile.updatePreviousFile(ctxt, false) currSymSrcFile.name = x.File currSymSrcFile.fileSymNb = f.symbolCount f.writeSymbolNewFile(ctxt, x.File, uint64(x.Value), xfile.getXCOFFscnum(x.Sect)) } } s := &XcoffSymEnt64{ Nsclass: C_EXT, Noffset: uint32(xfile.stringTable.add(x.Name)), Nvalue: uint64(x.Value), Nscnum: f.getXCOFFscnum(x.Sect), Ntype: SYM_TYPE_FUNC, Nnumaux: 2, } if x.Version != 0 || x.Attr.VisibilityHidden() || x.Attr.Local() { s.Nsclass = C_HIDEXT } syms = append(syms, s) // Update current csect size currSymSrcFile.csectSize += x.Size // create auxiliary entries a2 := &XcoffAuxFcn64{ Xfsize: uint32(x.Size), Xlnnoptr: 0, // TODO Xendndx: xfile.symbolCount + 3, // this symbol + 2 aux entries Xauxtype: _AUX_FCN, } syms = append(syms, a2) a4 := &XcoffAuxCSect64{ Xscnlenlo: uint32(currSymSrcFile.csectSymNb & 0xFFFFFFFF), Xscnlenhi: uint32(currSymSrcFile.csectSymNb >> 32), Xsmclas: XMC_PR, // Program Code Xsmtyp: XTY_LD, // label definition (based on C) Xauxtype: _AUX_CSECT, } syms = append(syms, a4) return syms } // put function used by genasmsym to write symbol table func putaixsym(ctxt *Link, x *sym.Symbol, str string, t SymbolType, addr int64, go_ *sym.Symbol) { // All XCOFF symbols generated by this GO symbols // Can be a symbol entry or a auxiliary entry syms := []interface{}{} switch t { default: return case TextSym: if x.FuncInfo != nil { // Function within a file syms = xfile.writeSymbolFunc(ctxt, x) } else { // Only runtime.text and runtime.etext come through this way if x.Name != "runtime.text" && x.Name != "runtime.etext" && x.Name != "go.buildid" { Exitf("putaixsym: unknown text symbol %s", x.Name) } s := &XcoffSymEnt64{ Nsclass: C_HIDEXT, Noffset: uint32(xfile.stringTable.add(str)), Nvalue: uint64(x.Value), Nscnum: xfile.getXCOFFscnum(x.Sect), Ntype: SYM_TYPE_FUNC, Nnumaux: 1, } syms = append(syms, s) size := uint64(x.Size) a4 := &XcoffAuxCSect64{ Xauxtype: _AUX_CSECT, Xscnlenlo: uint32(size & 0xFFFFFFFF), Xscnlenhi: uint32(size >> 32), Xsmclas: XMC_PR, Xsmtyp: XTY_SD, } syms = append(syms, a4) } case DataSym, BSSSym: s := &XcoffSymEnt64{ Nsclass: C_EXT, Noffset: uint32(xfile.stringTable.add(str)), Nvalue: uint64(x.Value), Nscnum: xfile.getXCOFFscnum(x.Sect), Nnumaux: 1, } if x.Version != 0 || x.Attr.VisibilityHidden() || x.Attr.Local() { // There is more symbols in the case of a global data // which are related to the assembly generated // to access such symbols. // But as Golang as its own way to check if a symbol is // global or local (the capital letter), we don't need to // implement them yet. s.Nsclass = C_HIDEXT } syms = append(syms, s) // Create auxiliary entry // Normally, size should be the size of csect containing all // the data and bss symbols of one file/package. // However, it's easier to just have a csect for each symbol. // It might change size := uint64(x.Size) a4 := &XcoffAuxCSect64{ Xauxtype: _AUX_CSECT, Xscnlenlo: uint32(size & 0xFFFFFFFF), Xscnlenhi: uint32(size >> 32), } // Read only data if x.Type >= sym.STYPE && x.Type <= sym.SPCLNTAB { a4.Xsmclas = XMC_RO } else { a4.Xsmclas = XMC_RW } if t == DataSym { a4.Xsmtyp |= XTY_SD } else { a4.Xsmtyp |= XTY_CM } syms = append(syms, a4) case UndefinedSym: if x.Type != sym.SDYNIMPORT && x.Type != sym.SHOSTOBJ { return } s := &XcoffSymEnt64{ Nsclass: C_EXT, Noffset: uint32(xfile.stringTable.add(str)), Nnumaux: 1, } syms = append(syms, s) a4 := &XcoffAuxCSect64{ Xauxtype: _AUX_CSECT, Xsmclas: XMC_DS, Xsmtyp: XTY_ER | XTY_IMP, } if x.Name == "__n_pthreads" { // Currently, all imported symbols made by cgo_import_dynamic are // syscall functions, except __n_pthreads which is a variable. // TODO(aix): Find a way to detect variables imported by cgo. a4.Xsmclas = XMC_RW } syms = append(syms, a4) } for _, s := range syms { xfile.writeSymbol(ctxt.Out, ctxt.Arch.ByteOrder, s) } } // Generate XCOFF Symbol table and XCOFF String table func (f *xcoffFile) asmaixsym(ctxt *Link) { // write symbol table genasmsym(ctxt, putaixsym) // update last file Svalue xfile.updatePreviousFile(ctxt, true) // write string table xfile.stringTable.write(ctxt.Out) } func (f *xcoffFile) genDynSym(ctxt *Link) { var dynsyms []*sym.Symbol for _, s := range ctxt.Syms.Allsym { if s.Type != sym.SHOSTOBJ && s.Type != sym.SDYNIMPORT { continue } dynsyms = append(dynsyms, s) } for _, s := range dynsyms { f.adddynimpsym(ctxt, s) if _, ok := f.dynLibraries[s.Dynimplib()]; !ok { f.dynLibraries[s.Dynimplib()] = len(f.dynLibraries) } } } // (*xcoffFile)adddynimpsym adds the dynamic symbol "s" to a XCOFF file. // A new symbol named s.Extname() is created to be the actual dynamic symbol // in the .loader section and in the symbol table as an External Reference. // The symbol "s" is transformed to SXCOFFTOC to end up in .data section. // However, there is no writing protection on those symbols and // it might need to be added. // TODO(aix): Handles dynamic symbols without library. func (f *xcoffFile) adddynimpsym(ctxt *Link, s *sym.Symbol) { // Check that library name is given. // Pattern is already checked when compiling. if s.Dynimplib() == "" { Errorf(s, "imported symbol must have a given library") } s.Type = sym.SXCOFFTOC // Create new dynamic symbol extsym := ctxt.Syms.Lookup(s.Extname(), 0) extsym.Type = sym.SDYNIMPORT extsym.Attr |= sym.AttrReachable extsym.SetDynimplib(s.Dynimplib()) extsym.SetExtname(s.Extname()) extsym.SetDynimpvers(s.Dynimpvers()) // Add loader symbol lds := &xcoffLoaderSymbol{ sym: extsym, smtype: XTY_IMP, smclas: XMC_DS, } if s.Name == "__n_pthreads" { // Currently, all imported symbols made by cgo_import_dynamic are // syscall functions, except __n_pthreads which is a variable. // TODO(aix): Find a way to detect variables imported by cgo. lds.smclas = XMC_RW } f.loaderSymbols = append(f.loaderSymbols, lds) // Relocation to retrieve the external address s.AddBytes(make([]byte, 8)) s.SetAddr(ctxt.Arch, 0, extsym) } // Xcoffadddynrel adds a dynamic relocation in a XCOFF file. // This relocation will be made by the loader. func Xcoffadddynrel(ctxt *Link, s *sym.Symbol, r *sym.Reloc) bool { if s.Type <= sym.SPCLNTAB { Errorf(s, "cannot have a relocation to %s in a text section symbol", r.Sym.Name) return false } ldr := &xcoffLoaderReloc{ sym: s, rel: r, } switch r.Type { default: Errorf(s, "unexpected .loader relocation to symbol: %s (type: %s)", r.Sym.Name, r.Type.String()) return false case objabi.R_ADDR: if s.Type == sym.SXCOFFTOC && r.Sym.Type == sym.SDYNIMPORT { // Imported symbol relocation for i, dynsym := range xfile.loaderSymbols { if dynsym.sym.Name == r.Sym.Name { ldr.symndx = int32(i + 3) // +3 because of 3 section symbols break } } } else if s.Type == sym.SDATA { switch r.Sym.Sect.Seg { default: Errorf(s, "unknown segment for .loader relocation with symbol %s", r.Sym.Name) case &Segtext: case &Segrodata: ldr.symndx = 0 // .text case &Segdata: if r.Sym.Type == sym.SBSS || r.Sym.Type == sym.SNOPTRBSS { ldr.symndx = 2 // .bss } else { ldr.symndx = 1 // .data } } } else { Errorf(s, "unexpected type for .loader relocation R_ADDR for symbol %s: %s to %s", r.Sym.Name, s.Type, r.Sym.Type) return false } ldr.rtype = 0x3F<<8 + XCOFF_R_POS } xfile.loaderReloc = append(xfile.loaderReloc, ldr) return true } func (ctxt *Link) doxcoff() { if *FlagD { // All XCOFF files have dynamic symbols because of the syscalls. Exitf("-d is not available on AIX") } // Initial map used to store compilation unit size for each DWARF section (see dwarf.go). dwsectCUSize = make(map[string]uint64) // TOC toc := ctxt.Syms.Lookup("TOC", 0) toc.Type = sym.SXCOFFTOC toc.Attr |= sym.AttrReachable // XCOFF does not allow relocations of data symbol address to a text symbol. // Such case occurs when a RODATA symbol retrieves a data symbol address. // When it happens, this RODATA symbol is moved to .data section. // runtime.algarray is a readonly symbol but stored inside .data section. // If it stays in .data, all type symbols will be moved to .data which // cannot be done. algarray := ctxt.Syms.Lookup("runtime.algarray", 0) algarray.Type = sym.SRODATA for { again := false for _, s := range ctxt.Syms.Allsym { if s.Type != sym.SRODATA { continue } for ri := range s.R { r := &s.R[ri] if r.Type != objabi.R_ADDR { continue } if r.Sym.Type != sym.Sxxx && r.Sym.Type != sym.STEXT && r.Sym.Type != sym.SRODATA { s.Type = sym.SDATA again = true break } } } if !again { break } } // Add entry point to .loader symbols. ep := ctxt.Syms.ROLookup(*flagEntrySymbol, 0) if !ep.Attr.Reachable() { Exitf("wrong entry point") } xfile.loaderSymbols = append(xfile.loaderSymbols, &xcoffLoaderSymbol{ sym: ep, smtype: XTY_ENT | XTY_SD, smclas: XMC_DS, }) xfile.genDynSym(ctxt) for _, s := range ctxt.Syms.Allsym { if strings.HasPrefix(s.Name, "TOC.") { s.Type = sym.SXCOFFTOC } } } // Loader section // Currently, this section is created from scratch when assembling the XCOFF file // according to information retrieved in xfile object. // Create loader section and returns its size func Loaderblk(ctxt *Link, off uint64) { xfile.writeLdrScn(ctxt, off) } func (f *xcoffFile) writeLdrScn(ctxt *Link, globalOff uint64) { var symtab []*XcoffLdSym64 var strtab []*XcoffLdStr64 var importtab []*XcoffLdImportFile64 var reloctab []*XcoffLdRel64 var dynimpreloc []*XcoffLdRel64 // As the string table is updated in any loader subsection, // its length must be computed at the same time. stlen := uint32(0) // Loader Header hdr := &XcoffLdHdr64{ Lversion: 2, Lsymoff: LDHDRSZ_64, } /* Symbol table */ for _, s := range f.loaderSymbols { lds := &XcoffLdSym64{ Loffset: uint32(stlen + 2), Lsmtype: s.smtype, Lsmclas: s.smclas, } switch s.smtype { default: Errorf(s.sym, "unexpected loader symbol type: 0x%x", s.smtype) case XTY_ENT | XTY_SD: lds.Lvalue = uint64(s.sym.Value) lds.Lscnum = f.getXCOFFscnum(s.sym.Sect) case XTY_IMP: lds.Lifile = int32(f.dynLibraries[s.sym.Dynimplib()] + 1) } ldstr := &XcoffLdStr64{ size: uint16(len(s.sym.Name) + 1), // + null terminator name: s.sym.Name, } stlen += uint32(2 + ldstr.size) // 2 = sizeof ldstr.size symtab = append(symtab, lds) strtab = append(strtab, ldstr) } hdr.Lnsyms = int32(len(symtab)) hdr.Lrldoff = hdr.Lsymoff + uint64(24*hdr.Lnsyms) // 24 = sizeof one symbol off := hdr.Lrldoff // current offset is the same of reloc offset /* Reloc */ ep := ctxt.Syms.ROLookup(*flagEntrySymbol, 0) ldr := &XcoffLdRel64{ Lvaddr: uint64(ep.Value), Lrtype: 0x3F00, Lrsecnm: f.getXCOFFscnum(ep.Sect), Lsymndx: 0, } off += 16 reloctab = append(reloctab, ldr) off += uint64(16 * len(f.loaderReloc)) for _, r := range f.loaderReloc { ldr = &XcoffLdRel64{ Lvaddr: uint64(r.sym.Value + int64(r.rel.Off)), Lrtype: r.rtype, Lsymndx: r.symndx, } if r.sym.Sect != nil { ldr.Lrsecnm = f.getXCOFFscnum(r.sym.Sect) } reloctab = append(reloctab, ldr) } off += uint64(16 * len(dynimpreloc)) reloctab = append(reloctab, dynimpreloc...) hdr.Lnreloc = int32(len(reloctab)) hdr.Limpoff = off /* Import */ // Default import: /usr/lib:/lib ldimpf := &XcoffLdImportFile64{ Limpidpath: "/usr/lib:/lib", } off += uint64(len(ldimpf.Limpidpath) + len(ldimpf.Limpidbase) + len(ldimpf.Limpidmem) + 3) // + null delimiter importtab = append(importtab, ldimpf) // The map created by adddynimpsym associates the name to a number // This number represents the librairie index (- 1) in this import files section // Therefore, they must be sorted before being put inside the section libsOrdered := make([]string, len(f.dynLibraries)) for key, val := range f.dynLibraries { if libsOrdered[val] != "" { continue } libsOrdered[val] = key } for _, lib := range libsOrdered { // lib string is defined as base.a/mem.o or path/base.a/mem.o n := strings.Split(lib, "/") path := "" base := n[len(n)-2] mem := n[len(n)-1] if len(n) > 2 { path = lib[:len(lib)-len(base)-len(mem)-2] } ldimpf = &XcoffLdImportFile64{ Limpidpath: path, Limpidbase: base, Limpidmem: mem, } off += uint64(len(ldimpf.Limpidpath) + len(ldimpf.Limpidbase) + len(ldimpf.Limpidmem) + 3) // + null delimiter importtab = append(importtab, ldimpf) } hdr.Lnimpid = int32(len(importtab)) hdr.Listlen = uint32(off - hdr.Limpoff) hdr.Lstoff = off hdr.Lstlen = stlen /* Writing */ ctxt.Out.SeekSet(int64(globalOff)) binary.Write(ctxt.Out, ctxt.Arch.ByteOrder, hdr) for _, s := range symtab { binary.Write(ctxt.Out, ctxt.Arch.ByteOrder, s) } for _, r := range reloctab { binary.Write(ctxt.Out, ctxt.Arch.ByteOrder, r) } for _, f := range importtab { ctxt.Out.WriteString(f.Limpidpath) ctxt.Out.Write8(0) ctxt.Out.WriteString(f.Limpidbase) ctxt.Out.Write8(0) ctxt.Out.WriteString(f.Limpidmem) ctxt.Out.Write8(0) } for _, s := range strtab { ctxt.Out.Write16(s.size) ctxt.Out.WriteString(s.name) ctxt.Out.Write8(0) // null terminator } f.loaderSize = off + uint64(stlen) ctxt.Out.Flush() /* again for printing */ if !*flagA { return } ctxt.Logf("\n.loader section") // write in buf var buf bytes.Buffer binary.Write(&buf, ctxt.Arch.ByteOrder, hdr) for _, s := range symtab { binary.Write(&buf, ctxt.Arch.ByteOrder, s) } for _, f := range importtab { buf.WriteString(f.Limpidpath) buf.WriteByte(0) buf.WriteString(f.Limpidbase) buf.WriteByte(0) buf.WriteString(f.Limpidmem) buf.WriteByte(0) } for _, s := range strtab { binary.Write(&buf, ctxt.Arch.ByteOrder, s.size) buf.WriteString(s.name) buf.WriteByte(0) // null terminator } // Log buffer ctxt.Logf("\n\t%.8x|", globalOff) for i, b := range buf.Bytes() { if i > 0 && i%16 == 0 { ctxt.Logf("\n\t%.8x|", uint64(globalOff)+uint64(i)) } ctxt.Logf(" %.2x", b) } ctxt.Logf("\n") } // XCOFF assembling and writing file func (f *xcoffFile) writeFileHeader(ctxt *Link) { // File header f.xfhdr.Fmagic = U64_TOCMAGIC f.xfhdr.Fnscns = uint16(len(f.sections)) f.xfhdr.Ftimedat = 0 if !*FlagS { f.xfhdr.Fsymptr = uint64(f.symtabOffset) f.xfhdr.Fnsyms = int32(f.symbolCount) } if ctxt.BuildMode == BuildModeExe { f.xfhdr.Fopthdr = AOUTHSZ_EXEC64 f.xfhdr.Fflags = F_EXEC // auxiliary header f.xahdr.Ovstamp = 1 // based on dump -o f.xahdr.Omagic = 0x10b copy(f.xahdr.Omodtype[:], "1L") entry := ctxt.Syms.ROLookup(*flagEntrySymbol, 0) f.xahdr.Oentry = uint64(entry.Value) f.xahdr.Osnentry = f.getXCOFFscnum(entry.Sect) toc := ctxt.Syms.ROLookup("TOC", 0) f.xahdr.Otoc = uint64(toc.Value) f.xahdr.Osntoc = f.getXCOFFscnum(toc.Sect) // Based on dump -o f.xahdr.Oalgntext = 0x5 f.xahdr.Oalgndata = 0x5 binary.Write(ctxt.Out, binary.BigEndian, &f.xfhdr) binary.Write(ctxt.Out, binary.BigEndian, &f.xahdr) } else { f.xfhdr.Fopthdr = 0 binary.Write(ctxt.Out, binary.BigEndian, &f.xfhdr) } } func xcoffwrite(ctxt *Link) { ctxt.Out.SeekSet(0) xfile.writeFileHeader(ctxt) for _, sect := range xfile.sections { sect.write(ctxt) } } // Generate XCOFF assembly file func Asmbxcoff(ctxt *Link, fileoff int64) { xfile.sectNameToScnum = make(map[string]int16) // Add sections s := xfile.addSection(".text", Segtext.Vaddr, Segtext.Length, Segtext.Fileoff, STYP_TEXT) xfile.xahdr.Otextstart = s.Svaddr xfile.xahdr.Osntext = xfile.sectNameToScnum[".text"] xfile.xahdr.Otsize = s.Ssize s = xfile.addSection(".data", Segdata.Vaddr, Segdata.Filelen, Segdata.Fileoff, STYP_DATA) xfile.xahdr.Odatastart = s.Svaddr xfile.xahdr.Osndata = xfile.sectNameToScnum[".data"] xfile.xahdr.Odsize = s.Ssize s = xfile.addSection(".bss", Segdata.Vaddr+Segdata.Filelen, Segdata.Length-Segdata.Filelen, 0, STYP_BSS) xfile.xahdr.Osnbss = xfile.sectNameToScnum[".bss"] xfile.xahdr.Obsize = s.Ssize // add dwarf sections for _, sect := range Segdwarf.Sections { xfile.addDwarfSection(sect) } // add and write remaining sections if ctxt.LinkMode == LinkInternal { // Loader section if ctxt.BuildMode == BuildModeExe { Loaderblk(ctxt, uint64(fileoff)) s = xfile.addSection(".loader", 0, xfile.loaderSize, uint64(fileoff), STYP_LOADER) xfile.xahdr.Osnloader = xfile.sectNameToScnum[".loader"] } } else { // TODO: Relocation } // Write symbol table symo := Rnd(ctxt.Out.Offset(), int64(*FlagRound)) xfile.symtabOffset = symo ctxt.Out.SeekSet(int64(symo)) xfile.asmaixsym(ctxt) // write headers xcoffwrite(ctxt) }