// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:generate go run encgen.go -output enc_helpers.go package gob import ( "encoding" "encoding/binary" "math" "math/bits" "reflect" "sync" ) const uint64Size = 8 type encHelper func(state *encoderState, v reflect.Value) bool // encoderState is the global execution state of an instance of the encoder. // Field numbers are delta encoded and always increase. The field // number is initialized to -1 so 0 comes out as delta(1). A delta of // 0 terminates the structure. type encoderState struct { enc *Encoder b *encBuffer sendZero bool // encoding an array element or map key/value pair; send zero values fieldnum int // the last field number written. buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. next *encoderState // for free list } // encBuffer is an extremely simple, fast implementation of a write-only byte buffer. // It never returns a non-nil error, but Write returns an error value so it matches io.Writer. type encBuffer struct { data []byte scratch [64]byte } var encBufferPool = sync.Pool{ New: func() interface{} { e := new(encBuffer) e.data = e.scratch[0:0] return e }, } func (e *encBuffer) WriteByte(c byte) { e.data = append(e.data, c) } func (e *encBuffer) Write(p []byte) (int, error) { e.data = append(e.data, p...) return len(p), nil } func (e *encBuffer) WriteString(s string) { e.data = append(e.data, s...) } func (e *encBuffer) Len() int { return len(e.data) } func (e *encBuffer) Bytes() []byte { return e.data } func (e *encBuffer) Reset() { if len(e.data) >= tooBig { e.data = e.scratch[0:0] } else { e.data = e.data[0:0] } } func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState { e := enc.freeList if e == nil { e = new(encoderState) e.enc = enc } else { enc.freeList = e.next } e.sendZero = false e.fieldnum = 0 e.b = b if len(b.data) == 0 { b.data = b.scratch[0:0] } return e } func (enc *Encoder) freeEncoderState(e *encoderState) { e.next = enc.freeList enc.freeList = e } // Unsigned integers have a two-state encoding. If the number is less // than 128 (0 through 0x7F), its value is written directly. // Otherwise the value is written in big-endian byte order preceded // by the byte length, negated. // encodeUint writes an encoded unsigned integer to state.b. func (state *encoderState) encodeUint(x uint64) { if x <= 0x7F { state.b.WriteByte(uint8(x)) return } binary.BigEndian.PutUint64(state.buf[1:], x) bc := bits.LeadingZeros64(x) >> 3 // 8 - bytelen(x) state.buf[bc] = uint8(bc - uint64Size) // and then we subtract 8 to get -bytelen(x) state.b.Write(state.buf[bc : uint64Size+1]) } // encodeInt writes an encoded signed integer to state.w. // The low bit of the encoding says whether to bit complement the (other bits of the) // uint to recover the int. func (state *encoderState) encodeInt(i int64) { var x uint64 if i < 0 { x = uint64(^i<<1) | 1 } else { x = uint64(i << 1) } state.encodeUint(x) } // encOp is the signature of an encoding operator for a given type. type encOp func(i *encInstr, state *encoderState, v reflect.Value) // The 'instructions' of the encoding machine type encInstr struct { op encOp field int // field number in input index []int // struct index indir int // how many pointer indirections to reach the value in the struct } // update emits a field number and updates the state to record its value for delta encoding. // If the instruction pointer is nil, it does nothing func (state *encoderState) update(instr *encInstr) { if instr != nil { state.encodeUint(uint64(instr.field - state.fieldnum)) state.fieldnum = instr.field } } // Each encoder for a composite is responsible for handling any // indirections associated with the elements of the data structure. // If any pointer so reached is nil, no bytes are written. If the // data item is zero, no bytes are written. Single values - ints, // strings etc. - are indirected before calling their encoders. // Otherwise, the output (for a scalar) is the field number, as an // encoded integer, followed by the field data in its appropriate // format. // encIndirect dereferences pv indir times and returns the result. func encIndirect(pv reflect.Value, indir int) reflect.Value { for ; indir > 0; indir-- { if pv.IsNil() { break } pv = pv.Elem() } return pv } // encBool encodes the bool referenced by v as an unsigned 0 or 1. func encBool(i *encInstr, state *encoderState, v reflect.Value) { b := v.Bool() if b || state.sendZero { state.update(i) if b { state.encodeUint(1) } else { state.encodeUint(0) } } } // encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v. func encInt(i *encInstr, state *encoderState, v reflect.Value) { value := v.Int() if value != 0 || state.sendZero { state.update(i) state.encodeInt(value) } } // encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v. func encUint(i *encInstr, state *encoderState, v reflect.Value) { value := v.Uint() if value != 0 || state.sendZero { state.update(i) state.encodeUint(value) } } // floatBits returns a uint64 holding the bits of a floating-point number. // Floating-point numbers are transmitted as uint64s holding the bits // of the underlying representation. They are sent byte-reversed, with // the exponent end coming out first, so integer floating point numbers // (for example) transmit more compactly. This routine does the // swizzling. func floatBits(f float64) uint64 { u := math.Float64bits(f) return bits.ReverseBytes64(u) } // encFloat encodes the floating point value (float32 float64) referenced by v. func encFloat(i *encInstr, state *encoderState, v reflect.Value) { f := v.Float() if f != 0 || state.sendZero { bits := floatBits(f) state.update(i) state.encodeUint(bits) } } // encComplex encodes the complex value (complex64 complex128) referenced by v. // Complex numbers are just a pair of floating-point numbers, real part first. func encComplex(i *encInstr, state *encoderState, v reflect.Value) { c := v.Complex() if c != 0+0i || state.sendZero { rpart := floatBits(real(c)) ipart := floatBits(imag(c)) state.update(i) state.encodeUint(rpart) state.encodeUint(ipart) } } // encUint8Array encodes the byte array referenced by v. // Byte arrays are encoded as an unsigned count followed by the raw bytes. func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) { b := v.Bytes() if len(b) > 0 || state.sendZero { state.update(i) state.encodeUint(uint64(len(b))) state.b.Write(b) } } // encString encodes the string referenced by v. // Strings are encoded as an unsigned count followed by the raw bytes. func encString(i *encInstr, state *encoderState, v reflect.Value) { s := v.String() if len(s) > 0 || state.sendZero { state.update(i) state.encodeUint(uint64(len(s))) state.b.WriteString(s) } } // encStructTerminator encodes the end of an encoded struct // as delta field number of 0. func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) { state.encodeUint(0) } // Execution engine // encEngine an array of instructions indexed by field number of the encoding // data, typically a struct. It is executed top to bottom, walking the struct. type encEngine struct { instr []encInstr } const singletonField = 0 // valid reports whether the value is valid and a non-nil pointer. // (Slices, maps, and chans take care of themselves.) func valid(v reflect.Value) bool { switch v.Kind() { case reflect.Invalid: return false case reflect.Ptr: return !v.IsNil() } return true } // encodeSingle encodes a single top-level non-struct value. func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) { state := enc.newEncoderState(b) defer enc.freeEncoderState(state) state.fieldnum = singletonField // There is no surrounding struct to frame the transmission, so we must // generate data even if the item is zero. To do this, set sendZero. state.sendZero = true instr := &engine.instr[singletonField] if instr.indir > 0 { value = encIndirect(value, instr.indir) } if valid(value) { instr.op(instr, state, value) } } // encodeStruct encodes a single struct value. func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) { if !valid(value) { return } state := enc.newEncoderState(b) defer enc.freeEncoderState(state) state.fieldnum = -1 for i := 0; i < len(engine.instr); i++ { instr := &engine.instr[i] if i >= value.NumField() { // encStructTerminator instr.op(instr, state, reflect.Value{}) break } field := value.FieldByIndex(instr.index) if instr.indir > 0 { field = encIndirect(field, instr.indir) // TODO: Is field guaranteed valid? If so we could avoid this check. if !valid(field) { continue } } instr.op(instr, state, field) } } // encodeArray encodes an array. func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) { state := enc.newEncoderState(b) defer enc.freeEncoderState(state) state.fieldnum = -1 state.sendZero = true state.encodeUint(uint64(length)) if helper != nil && helper(state, value) { return } for i := 0; i < length; i++ { elem := value.Index(i) if elemIndir > 0 { elem = encIndirect(elem, elemIndir) // TODO: Is elem guaranteed valid? If so we could avoid this check. if !valid(elem) { errorf("encodeArray: nil element") } } op(nil, state, elem) } } // encodeReflectValue is a helper for maps. It encodes the value v. func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { for i := 0; i < indir && v.IsValid(); i++ { v = reflect.Indirect(v) } if !v.IsValid() { errorf("encodeReflectValue: nil element") } op(nil, state, v) } // encodeMap encodes a map as unsigned count followed by key:value pairs. func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { state := enc.newEncoderState(b) state.fieldnum = -1 state.sendZero = true keys := mv.MapKeys() state.encodeUint(uint64(len(keys))) for _, key := range keys { encodeReflectValue(state, key, keyOp, keyIndir) encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) } enc.freeEncoderState(state) } // encodeInterface encodes the interface value iv. // To send an interface, we send a string identifying the concrete type, followed // by the type identifier (which might require defining that type right now), followed // by the concrete value. A nil value gets sent as the empty string for the name, // followed by no value. func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) { // Gobs can encode nil interface values but not typed interface // values holding nil pointers, since nil pointers point to no value. elem := iv.Elem() if elem.Kind() == reflect.Ptr && elem.IsNil() { errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) } state := enc.newEncoderState(b) state.fieldnum = -1 state.sendZero = true if iv.IsNil() { state.encodeUint(0) return } ut := userType(iv.Elem().Type()) namei, ok := concreteTypeToName.Load(ut.base) if !ok { errorf("type not registered for interface: %s", ut.base) } name := namei.(string) // Send the name. state.encodeUint(uint64(len(name))) state.b.WriteString(name) // Define the type id if necessary. enc.sendTypeDescriptor(enc.writer(), state, ut) // Send the type id. enc.sendTypeId(state, ut) // Encode the value into a new buffer. Any nested type definitions // should be written to b, before the encoded value. enc.pushWriter(b) data := encBufferPool.Get().(*encBuffer) data.Write(spaceForLength) enc.encode(data, elem, ut) if enc.err != nil { error_(enc.err) } enc.popWriter() enc.writeMessage(b, data) data.Reset() encBufferPool.Put(data) if enc.err != nil { error_(enc.err) } enc.freeEncoderState(state) } // isZero reports whether the value is the zero of its type. func isZero(val reflect.Value) bool { switch val.Kind() { case reflect.Array: for i := 0; i < val.Len(); i++ { if !isZero(val.Index(i)) { return false } } return true case reflect.Map, reflect.Slice, reflect.String: return val.Len() == 0 case reflect.Bool: return !val.Bool() case reflect.Complex64, reflect.Complex128: return val.Complex() == 0 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Ptr: return val.IsNil() case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: return val.Int() == 0 case reflect.Float32, reflect.Float64: return val.Float() == 0 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: return val.Uint() == 0 case reflect.Struct: for i := 0; i < val.NumField(); i++ { if !isZero(val.Field(i)) { return false } } return true } panic("unknown type in isZero " + val.Type().String()) } // encGobEncoder encodes a value that implements the GobEncoder interface. // The data is sent as a byte array. func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) { // TODO: should we catch panics from the called method? var data []byte var err error // We know it's one of these. switch ut.externalEnc { case xGob: data, err = v.Interface().(GobEncoder).GobEncode() case xBinary: data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() case xText: data, err = v.Interface().(encoding.TextMarshaler).MarshalText() } if err != nil { error_(err) } state := enc.newEncoderState(b) state.fieldnum = -1 state.encodeUint(uint64(len(data))) state.b.Write(data) enc.freeEncoderState(state) } var encOpTable = [...]encOp{ reflect.Bool: encBool, reflect.Int: encInt, reflect.Int8: encInt, reflect.Int16: encInt, reflect.Int32: encInt, reflect.Int64: encInt, reflect.Uint: encUint, reflect.Uint8: encUint, reflect.Uint16: encUint, reflect.Uint32: encUint, reflect.Uint64: encUint, reflect.Uintptr: encUint, reflect.Float32: encFloat, reflect.Float64: encFloat, reflect.Complex64: encComplex, reflect.Complex128: encComplex, reflect.String: encString, } // encOpFor returns (a pointer to) the encoding op for the base type under rt and // the indirection count to reach it. func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) { ut := userType(rt) // If the type implements GobEncoder, we handle it without further processing. if ut.externalEnc != 0 { return gobEncodeOpFor(ut) } // If this type is already in progress, it's a recursive type (e.g. map[string]*T). // Return the pointer to the op we're already building. if opPtr := inProgress[rt]; opPtr != nil { return opPtr, ut.indir } typ := ut.base indir := ut.indir k := typ.Kind() var op encOp if int(k) < len(encOpTable) { op = encOpTable[k] } if op == nil { inProgress[rt] = &op // Special cases switch t := typ; t.Kind() { case reflect.Slice: if t.Elem().Kind() == reflect.Uint8 { op = encUint8Array break } // Slices have a header; we decode it to find the underlying array. elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) helper := encSliceHelper[t.Elem().Kind()] op = func(i *encInstr, state *encoderState, slice reflect.Value) { if !state.sendZero && slice.Len() == 0 { return } state.update(i) state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper) } case reflect.Array: // True arrays have size in the type. elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) helper := encArrayHelper[t.Elem().Kind()] op = func(i *encInstr, state *encoderState, array reflect.Value) { state.update(i) state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper) } case reflect.Map: keyOp, keyIndir := encOpFor(t.Key(), inProgress, building) elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) op = func(i *encInstr, state *encoderState, mv reflect.Value) { // We send zero-length (but non-nil) maps because the // receiver might want to use the map. (Maps don't use append.) if !state.sendZero && mv.IsNil() { return } state.update(i) state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) } case reflect.Struct: // Generate a closure that calls out to the engine for the nested type. getEncEngine(userType(typ), building) info := mustGetTypeInfo(typ) op = func(i *encInstr, state *encoderState, sv reflect.Value) { state.update(i) // indirect through info to delay evaluation for recursive structs enc := info.encoder.Load().(*encEngine) state.enc.encodeStruct(state.b, enc, sv) } case reflect.Interface: op = func(i *encInstr, state *encoderState, iv reflect.Value) { if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { return } state.update(i) state.enc.encodeInterface(state.b, iv) } } } if op == nil { errorf("can't happen: encode type %s", rt) } return &op, indir } // gobEncodeOpFor returns the op for a type that is known to implement GobEncoder. func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { rt := ut.user if ut.encIndir == -1 { rt = reflect.PtrTo(rt) } else if ut.encIndir > 0 { for i := int8(0); i < ut.encIndir; i++ { rt = rt.Elem() } } var op encOp op = func(i *encInstr, state *encoderState, v reflect.Value) { if ut.encIndir == -1 { // Need to climb up one level to turn value into pointer. if !v.CanAddr() { errorf("unaddressable value of type %s", rt) } v = v.Addr() } if !state.sendZero && isZero(v) { return } state.update(i) state.enc.encodeGobEncoder(state.b, ut, v) } return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. } // compileEnc returns the engine to compile the type. func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { srt := ut.base engine := new(encEngine) seen := make(map[reflect.Type]*encOp) rt := ut.base if ut.externalEnc != 0 { rt = ut.user } if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { f := srt.Field(fieldNum) if !isSent(&f) { continue } op, indir := encOpFor(f.Type, seen, building) engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir}) wireFieldNum++ } if srt.NumField() > 0 && len(engine.instr) == 0 { errorf("type %s has no exported fields", rt) } engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0}) } else { engine.instr = make([]encInstr, 1) op, indir := encOpFor(rt, seen, building) engine.instr[0] = encInstr{*op, singletonField, nil, indir} } return engine } // getEncEngine returns the engine to compile the type. func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { info, err := getTypeInfo(ut) if err != nil { error_(err) } enc, ok := info.encoder.Load().(*encEngine) if !ok { enc = buildEncEngine(info, ut, building) } return enc } func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { // Check for recursive types. if building != nil && building[info] { return nil } info.encInit.Lock() defer info.encInit.Unlock() enc, ok := info.encoder.Load().(*encEngine) if !ok { if building == nil { building = make(map[*typeInfo]bool) } building[info] = true enc = compileEnc(ut, building) info.encoder.Store(enc) } return enc } func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) { defer catchError(&enc.err) engine := getEncEngine(ut, nil) indir := ut.indir if ut.externalEnc != 0 { indir = int(ut.encIndir) } for i := 0; i < indir; i++ { value = reflect.Indirect(value) } if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { enc.encodeStruct(b, engine, value) } else { enc.encodeSingle(b, engine, value) } }