// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package pem implements the PEM data encoding, which originated in Privacy // Enhanced Mail. The most common use of PEM encoding today is in TLS keys and // certificates. See RFC 1421. package pem import ( "bytes" "encoding/base64" "errors" "io" "sort" "strings" ) // A Block represents a PEM encoded structure. // // The encoded form is: // -----BEGIN Type----- // Headers // base64-encoded Bytes // -----END Type----- // where Headers is a possibly empty sequence of Key: Value lines. type Block struct { Type string // The type, taken from the preamble (i.e. "RSA PRIVATE KEY"). Headers map[string]string // Optional headers. Bytes []byte // The decoded bytes of the contents. Typically a DER encoded ASN.1 structure. } // getLine results the first \r\n or \n delineated line from the given byte // array. The line does not include trailing whitespace or the trailing new // line bytes. The remainder of the byte array (also not including the new line // bytes) is also returned and this will always be smaller than the original // argument. func getLine(data []byte) (line, rest []byte) { i := bytes.IndexByte(data, '\n') var j int if i < 0 { i = len(data) j = i } else { j = i + 1 if i > 0 && data[i-1] == '\r' { i-- } } return bytes.TrimRight(data[0:i], " \t"), data[j:] } // removeWhitespace returns a copy of its input with all spaces, tab and // newline characters removed. func removeWhitespace(data []byte) []byte { result := make([]byte, len(data)) n := 0 for _, b := range data { if b == ' ' || b == '\t' || b == '\r' || b == '\n' { continue } result[n] = b n++ } return result[0:n] } var pemStart = []byte("\n-----BEGIN ") var pemEnd = []byte("\n-----END ") var pemEndOfLine = []byte("-----") // Decode will find the next PEM formatted block (certificate, private key // etc) in the input. It returns that block and the remainder of the input. If // no PEM data is found, p is nil and the whole of the input is returned in // rest. func Decode(data []byte) (p *Block, rest []byte) { // pemStart begins with a newline. However, at the very beginning of // the byte array, we'll accept the start string without it. rest = data if bytes.HasPrefix(data, pemStart[1:]) { rest = rest[len(pemStart)-1 : len(data)] } else if i := bytes.Index(data, pemStart); i >= 0 { rest = rest[i+len(pemStart) : len(data)] } else { return nil, data } typeLine, rest := getLine(rest) if !bytes.HasSuffix(typeLine, pemEndOfLine) { return decodeError(data, rest) } typeLine = typeLine[0 : len(typeLine)-len(pemEndOfLine)] p = &Block{ Headers: make(map[string]string), Type: string(typeLine), } for { // This loop terminates because getLine's second result is // always smaller than its argument. if len(rest) == 0 { return nil, data } line, next := getLine(rest) i := bytes.IndexByte(line, ':') if i == -1 { break } // TODO(agl): need to cope with values that spread across lines. key, val := line[:i], line[i+1:] key = bytes.TrimSpace(key) val = bytes.TrimSpace(val) p.Headers[string(key)] = string(val) rest = next } var endIndex, endTrailerIndex int // If there were no headers, the END line might occur // immediately, without a leading newline. if len(p.Headers) == 0 && bytes.HasPrefix(rest, pemEnd[1:]) { endIndex = 0 endTrailerIndex = len(pemEnd) - 1 } else { endIndex = bytes.Index(rest, pemEnd) endTrailerIndex = endIndex + len(pemEnd) } if endIndex < 0 { return decodeError(data, rest) } // After the "-----" of the ending line, there should be the same type // and then a final five dashes. endTrailer := rest[endTrailerIndex:] endTrailerLen := len(typeLine) + len(pemEndOfLine) if len(endTrailer) < endTrailerLen { return decodeError(data, rest) } restOfEndLine := endTrailer[endTrailerLen:] endTrailer = endTrailer[:endTrailerLen] if !bytes.HasPrefix(endTrailer, typeLine) || !bytes.HasSuffix(endTrailer, pemEndOfLine) { return decodeError(data, rest) } // The line must end with only whitespace. if s, _ := getLine(restOfEndLine); len(s) != 0 { return decodeError(data, rest) } base64Data := removeWhitespace(rest[:endIndex]) p.Bytes = make([]byte, base64.StdEncoding.DecodedLen(len(base64Data))) n, err := base64.StdEncoding.Decode(p.Bytes, base64Data) if err != nil { return decodeError(data, rest) } p.Bytes = p.Bytes[:n] // the -1 is because we might have only matched pemEnd without the // leading newline if the PEM block was empty. _, rest = getLine(rest[endIndex+len(pemEnd)-1:]) return } func decodeError(data, rest []byte) (*Block, []byte) { // If we get here then we have rejected a likely looking, but // ultimately invalid PEM block. We need to start over from a new // position. We have consumed the preamble line and will have consumed // any lines which could be header lines. However, a valid preamble // line is not a valid header line, therefore we cannot have consumed // the preamble line for the any subsequent block. Thus, we will always // find any valid block, no matter what bytes precede it. // // For example, if the input is // // -----BEGIN MALFORMED BLOCK----- // junk that may look like header lines // or data lines, but no END line // // -----BEGIN ACTUAL BLOCK----- // realdata // -----END ACTUAL BLOCK----- // // we've failed to parse using the first BEGIN line // and now will try again, using the second BEGIN line. p, rest := Decode(rest) if p == nil { rest = data } return p, rest } const pemLineLength = 64 type lineBreaker struct { line [pemLineLength]byte used int out io.Writer } var nl = []byte{'\n'} func (l *lineBreaker) Write(b []byte) (n int, err error) { if l.used+len(b) < pemLineLength { copy(l.line[l.used:], b) l.used += len(b) return len(b), nil } n, err = l.out.Write(l.line[0:l.used]) if err != nil { return } excess := pemLineLength - l.used l.used = 0 n, err = l.out.Write(b[0:excess]) if err != nil { return } n, err = l.out.Write(nl) if err != nil { return } return l.Write(b[excess:]) } func (l *lineBreaker) Close() (err error) { if l.used > 0 { _, err = l.out.Write(l.line[0:l.used]) if err != nil { return } _, err = l.out.Write(nl) } return } func writeHeader(out io.Writer, k, v string) error { _, err := out.Write([]byte(k + ": " + v + "\n")) return err } // Encode writes the PEM encoding of b to out. func Encode(out io.Writer, b *Block) error { // Check for invalid block before writing any output. for k := range b.Headers { if strings.Contains(k, ":") { return errors.New("pem: cannot encode a header key that contains a colon") } } // All errors below are relayed from underlying io.Writer, // so it is now safe to write data. if _, err := out.Write(pemStart[1:]); err != nil { return err } if _, err := out.Write([]byte(b.Type + "-----\n")); err != nil { return err } if len(b.Headers) > 0 { const procType = "Proc-Type" h := make([]string, 0, len(b.Headers)) hasProcType := false for k := range b.Headers { if k == procType { hasProcType = true continue } h = append(h, k) } // The Proc-Type header must be written first. // See RFC 1421, section 4.6.1.1 if hasProcType { if err := writeHeader(out, procType, b.Headers[procType]); err != nil { return err } } // For consistency of output, write other headers sorted by key. sort.Strings(h) for _, k := range h { if err := writeHeader(out, k, b.Headers[k]); err != nil { return err } } if _, err := out.Write(nl); err != nil { return err } } var breaker lineBreaker breaker.out = out b64 := base64.NewEncoder(base64.StdEncoding, &breaker) if _, err := b64.Write(b.Bytes); err != nil { return err } b64.Close() breaker.Close() if _, err := out.Write(pemEnd[1:]); err != nil { return err } _, err := out.Write([]byte(b.Type + "-----\n")) return err } // EncodeToMemory returns the PEM encoding of b. // // If b has invalid headers and cannot be encoded, // EncodeToMemory returns nil. If it is important to // report details about this error case, use Encode instead. func EncodeToMemory(b *Block) []byte { var buf bytes.Buffer if err := Encode(&buf, b); err != nil { return nil } return buf.Bytes() }