// Code generated by running "go generate" in golang.org/x/text. DO NOT EDIT. // Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package bidi import ( "container/list" "fmt" "sort" ) // This file contains a port of the reference implementation of the // Bidi Parentheses Algorithm: // http://www.unicode.org/Public/PROGRAMS/BidiReferenceJava/BidiPBAReference.java // // The implementation in this file covers definitions BD14-BD16 and rule N0 // of UAX#9. // // Some preprocessing is done for each rune before data is passed to this // algorithm: // - opening and closing brackets are identified // - a bracket pair type, like '(' and ')' is assigned a unique identifier that // is identical for the opening and closing bracket. It is left to do these // mappings. // - The BPA algorithm requires that bracket characters that are canonical // equivalents of each other be able to be substituted for each other. // It is the responsibility of the caller to do this canonicalization. // // In implementing BD16, this implementation departs slightly from the "logical" // algorithm defined in UAX#9. In particular, the stack referenced there // supports operations that go beyond a "basic" stack. An equivalent // implementation based on a linked list is used here. // Bidi_Paired_Bracket_Type // BD14. An opening paired bracket is a character whose // Bidi_Paired_Bracket_Type property value is Open. // // BD15. A closing paired bracket is a character whose // Bidi_Paired_Bracket_Type property value is Close. type bracketType byte const ( bpNone bracketType = iota bpOpen bpClose ) // bracketPair holds a pair of index values for opening and closing bracket // location of a bracket pair. type bracketPair struct { opener int closer int } func (b *bracketPair) String() string { return fmt.Sprintf("(%v, %v)", b.opener, b.closer) } // bracketPairs is a slice of bracketPairs with a sort.Interface implementation. type bracketPairs []bracketPair func (b bracketPairs) Len() int { return len(b) } func (b bracketPairs) Swap(i, j int) { b[i], b[j] = b[j], b[i] } func (b bracketPairs) Less(i, j int) bool { return b[i].opener < b[j].opener } // resolvePairedBrackets runs the paired bracket part of the UBA algorithm. // // For each rune, it takes the indexes into the original string, the class the // bracket type (in pairTypes) and the bracket identifier (pairValues). It also // takes the direction type for the start-of-sentence and the embedding level. // // The identifiers for bracket types are the rune of the canonicalized opening // bracket for brackets (open or close) or 0 for runes that are not brackets. func resolvePairedBrackets(s *isolatingRunSequence) { p := bracketPairer{ sos: s.sos, openers: list.New(), codesIsolatedRun: s.types, indexes: s.indexes, } dirEmbed := L if s.level&1 != 0 { dirEmbed = R } p.locateBrackets(s.p.pairTypes, s.p.pairValues) p.resolveBrackets(dirEmbed, s.p.initialTypes) } type bracketPairer struct { sos Class // direction corresponding to start of sequence // The following is a restatement of BD 16 using non-algorithmic language. // // A bracket pair is a pair of characters consisting of an opening // paired bracket and a closing paired bracket such that the // Bidi_Paired_Bracket property value of the former equals the latter, // subject to the following constraints. // - both characters of a pair occur in the same isolating run sequence // - the closing character of a pair follows the opening character // - any bracket character can belong at most to one pair, the earliest possible one // - any bracket character not part of a pair is treated like an ordinary character // - pairs may nest properly, but their spans may not overlap otherwise // Bracket characters with canonical decompositions are supposed to be // treated as if they had been normalized, to allow normalized and non- // normalized text to give the same result. In this implementation that step // is pushed out to the caller. The caller has to ensure that the pairValue // slices contain the rune of the opening bracket after normalization for // any opening or closing bracket. openers *list.List // list of positions for opening brackets // bracket pair positions sorted by location of opening bracket pairPositions bracketPairs codesIsolatedRun []Class // directional bidi codes for an isolated run indexes []int // array of index values into the original string } // matchOpener reports whether characters at given positions form a matching // bracket pair. func (p *bracketPairer) matchOpener(pairValues []rune, opener, closer int) bool { return pairValues[p.indexes[opener]] == pairValues[p.indexes[closer]] } const maxPairingDepth = 63 // locateBrackets locates matching bracket pairs according to BD16. // // This implementation uses a linked list instead of a stack, because, while // elements are added at the front (like a push) they are not generally removed // in atomic 'pop' operations, reducing the benefit of the stack archetype. func (p *bracketPairer) locateBrackets(pairTypes []bracketType, pairValues []rune) { // traverse the run // do that explicitly (not in a for-each) so we can record position for i, index := range p.indexes { // look at the bracket type for each character if pairTypes[index] == bpNone || p.codesIsolatedRun[i] != ON { // continue scanning continue } switch pairTypes[index] { case bpOpen: // check if maximum pairing depth reached if p.openers.Len() == maxPairingDepth { p.openers.Init() return } // remember opener location, most recent first p.openers.PushFront(i) case bpClose: // see if there is a match count := 0 for elem := p.openers.Front(); elem != nil; elem = elem.Next() { count++ opener := elem.Value.(int) if p.matchOpener(pairValues, opener, i) { // if the opener matches, add nested pair to the ordered list p.pairPositions = append(p.pairPositions, bracketPair{opener, i}) // remove up to and including matched opener for ; count > 0; count-- { p.openers.Remove(p.openers.Front()) } break } } sort.Sort(p.pairPositions) // if we get here, the closing bracket matched no openers // and gets ignored } } } // Bracket pairs within an isolating run sequence are processed as units so // that both the opening and the closing paired bracket in a pair resolve to // the same direction. // // N0. Process bracket pairs in an isolating run sequence sequentially in // the logical order of the text positions of the opening paired brackets // using the logic given below. Within this scope, bidirectional types EN // and AN are treated as R. // // Identify the bracket pairs in the current isolating run sequence // according to BD16. For each bracket-pair element in the list of pairs of // text positions: // // a Inspect the bidirectional types of the characters enclosed within the // bracket pair. // // b If any strong type (either L or R) matching the embedding direction is // found, set the type for both brackets in the pair to match the embedding // direction. // // o [ e ] o -> o e e e o // // o [ o e ] -> o e o e e // // o [ NI e ] -> o e NI e e // // c Otherwise, if a strong type (opposite the embedding direction) is // found, test for adjacent strong types as follows: 1 First, check // backwards before the opening paired bracket until the first strong type // (L, R, or sos) is found. If that first preceding strong type is opposite // the embedding direction, then set the type for both brackets in the pair // to that type. 2 Otherwise, set the type for both brackets in the pair to // the embedding direction. // // o [ o ] e -> o o o o e // // o [ o NI ] o -> o o o NI o o // // e [ o ] o -> e e o e o // // e [ o ] e -> e e o e e // // e ( o [ o ] NI ) e -> e e o o o o NI e e // // d Otherwise, do not set the type for the current bracket pair. Note that // if the enclosed text contains no strong types the paired brackets will // both resolve to the same level when resolved individually using rules N1 // and N2. // // e ( NI ) o -> e ( NI ) o // getStrongTypeN0 maps character's directional code to strong type as required // by rule N0. // // TODO: have separate type for "strong" directionality. func (p *bracketPairer) getStrongTypeN0(index int) Class { switch p.codesIsolatedRun[index] { // in the scope of N0, number types are treated as R case EN, AN, AL, R: return R case L: return L default: return ON } } // classifyPairContent reports the strong types contained inside a Bracket Pair, // assuming the given embedding direction. // // It returns ON if no strong type is found. If a single strong type is found, // it returns this this type. Otherwise it returns the embedding direction. // // TODO: use separate type for "strong" directionality. func (p *bracketPairer) classifyPairContent(loc bracketPair, dirEmbed Class) Class { dirOpposite := ON for i := loc.opener + 1; i < loc.closer; i++ { dir := p.getStrongTypeN0(i) if dir == ON { continue } if dir == dirEmbed { return dir // type matching embedding direction found } dirOpposite = dir } // return ON if no strong type found, or class opposite to dirEmbed return dirOpposite } // classBeforePair determines which strong types are present before a Bracket // Pair. Return R or L if strong type found, otherwise ON. func (p *bracketPairer) classBeforePair(loc bracketPair) Class { for i := loc.opener - 1; i >= 0; i-- { if dir := p.getStrongTypeN0(i); dir != ON { return dir } } // no strong types found, return sos return p.sos } // assignBracketType implements rule N0 for a single bracket pair. func (p *bracketPairer) assignBracketType(loc bracketPair, dirEmbed Class, initialTypes []Class) { // rule "N0, a", inspect contents of pair dirPair := p.classifyPairContent(loc, dirEmbed) // dirPair is now L, R, or N (no strong type found) // the following logical tests are performed out of order compared to // the statement of the rules but yield the same results if dirPair == ON { return // case "d" - nothing to do } if dirPair != dirEmbed { // case "c": strong type found, opposite - check before (c.1) dirPair = p.classBeforePair(loc) if dirPair == dirEmbed || dirPair == ON { // no strong opposite type found before - use embedding (c.2) dirPair = dirEmbed } } // else: case "b", strong type found matching embedding, // no explicit action needed, as dirPair is already set to embedding // direction // set the bracket types to the type found p.setBracketsToType(loc, dirPair, initialTypes) } func (p *bracketPairer) setBracketsToType(loc bracketPair, dirPair Class, initialTypes []Class) { p.codesIsolatedRun[loc.opener] = dirPair p.codesIsolatedRun[loc.closer] = dirPair for i := loc.opener + 1; i < loc.closer; i++ { index := p.indexes[i] if initialTypes[index] != NSM { break } p.codesIsolatedRun[i] = dirPair } for i := loc.closer + 1; i < len(p.indexes); i++ { index := p.indexes[i] if initialTypes[index] != NSM { break } p.codesIsolatedRun[i] = dirPair } } // resolveBrackets implements rule N0 for a list of pairs. func (p *bracketPairer) resolveBrackets(dirEmbed Class, initialTypes []Class) { for _, loc := range p.pairPositions { p.assignBracketType(loc, dirEmbed, initialTypes) } }