// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package math /* Floating-point sine and cosine. */ // The original C code, the long comment, and the constants // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, // available from http://www.netlib.org/cephes/cmath.tgz. // The go code is a simplified version of the original C. // // sin.c // // Circular sine // // SYNOPSIS: // // double x, y, sin(); // y = sin( x ); // // DESCRIPTION: // // Range reduction is into intervals of pi/4. The reduction error is nearly // eliminated by contriving an extended precision modular arithmetic. // // Two polynomial approximating functions are employed. // Between 0 and pi/4 the sine is approximated by // x + x**3 P(x**2). // Between pi/4 and pi/2 the cosine is represented as // 1 - x**2 Q(x**2). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // DEC 0, 10 150000 3.0e-17 7.8e-18 // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 // // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may // be meaningless for x > 2**49 = 5.6e14. // // cos.c // // Circular cosine // // SYNOPSIS: // // double x, y, cos(); // y = cos( x ); // // DESCRIPTION: // // Range reduction is into intervals of pi/4. The reduction error is nearly // eliminated by contriving an extended precision modular arithmetic. // // Two polynomial approximating functions are employed. // Between 0 and pi/4 the cosine is approximated by // 1 - x**2 Q(x**2). // Between pi/4 and pi/2 the sine is represented as // x + x**3 P(x**2). // // ACCURACY: // // Relative error: // arithmetic domain # trials peak rms // IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 // DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 // // Cephes Math Library Release 2.8: June, 2000 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier // // The readme file at http://netlib.sandia.gov/cephes/ says: // Some software in this archive may be from the book _Methods and // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster // International, 1989) or from the Cephes Mathematical Library, a // commercial product. In either event, it is copyrighted by the author. // What you see here may be used freely but it comes with no support or // guarantee. // // The two known misprints in the book are repaired here in the // source listings for the gamma function and the incomplete beta // integral. // // Stephen L. Moshier // moshier@na-net.ornl.gov // sin coefficients var _sin = [...]float64{ 1.58962301576546568060E-10, // 0x3de5d8fd1fd19ccd -2.50507477628578072866E-8, // 0xbe5ae5e5a9291f5d 2.75573136213857245213E-6, // 0x3ec71de3567d48a1 -1.98412698295895385996E-4, // 0xbf2a01a019bfdf03 8.33333333332211858878E-3, // 0x3f8111111110f7d0 -1.66666666666666307295E-1, // 0xbfc5555555555548 } // cos coefficients var _cos = [...]float64{ -1.13585365213876817300E-11, // 0xbda8fa49a0861a9b 2.08757008419747316778E-9, // 0x3e21ee9d7b4e3f05 -2.75573141792967388112E-7, // 0xbe927e4f7eac4bc6 2.48015872888517045348E-5, // 0x3efa01a019c844f5 -1.38888888888730564116E-3, // 0xbf56c16c16c14f91 4.16666666666665929218E-2, // 0x3fa555555555554b } // Cos returns the cosine of the radian argument x. // // Special cases are: // Cos(±Inf) = NaN // Cos(NaN) = NaN func Cos(x float64) float64 func cos(x float64) float64 { const ( PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, ) // special cases switch { case IsNaN(x) || IsInf(x, 0): return NaN() } // make argument positive sign := false x = Abs(x) var j uint64 var y, z float64 if x >= reduceThreshold { j, z = trigReduce(x) } else { j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle y = float64(j) // integer part of x/(Pi/4), as float // map zeros to origin if j&1 == 1 { j++ y++ } j &= 7 // octant modulo 2Pi radians (360 degrees) z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic } if j > 3 { j -= 4 sign = !sign } if j > 1 { sign = !sign } zz := z * z if j == 1 || j == 2 { y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) } else { y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) } if sign { y = -y } return y } // Sin returns the sine of the radian argument x. // // Special cases are: // Sin(±0) = ±0 // Sin(±Inf) = NaN // Sin(NaN) = NaN func Sin(x float64) float64 func sin(x float64) float64 { const ( PI4A = 7.85398125648498535156E-1 // 0x3fe921fb40000000, Pi/4 split into three parts PI4B = 3.77489470793079817668E-8 // 0x3e64442d00000000, PI4C = 2.69515142907905952645E-15 // 0x3ce8469898cc5170, ) // special cases switch { case x == 0 || IsNaN(x): return x // return ±0 || NaN() case IsInf(x, 0): return NaN() } // make argument positive but save the sign sign := false if x < 0 { x = -x sign = true } var j uint64 var y, z float64 if x >= reduceThreshold { j, z = trigReduce(x) } else { j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle y = float64(j) // integer part of x/(Pi/4), as float // map zeros to origin if j&1 == 1 { j++ y++ } j &= 7 // octant modulo 2Pi radians (360 degrees) z = ((x - y*PI4A) - y*PI4B) - y*PI4C // Extended precision modular arithmetic } // reflect in x axis if j > 3 { sign = !sign j -= 4 } zz := z * z if j == 1 || j == 2 { y = 1.0 - 0.5*zz + zz*zz*((((((_cos[0]*zz)+_cos[1])*zz+_cos[2])*zz+_cos[3])*zz+_cos[4])*zz+_cos[5]) } else { y = z + z*zz*((((((_sin[0]*zz)+_sin[1])*zz+_sin[2])*zz+_sin[3])*zz+_sin[4])*zz+_sin[5]) } if sign { y = -y } return y }