// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" // _rt0_arm is common startup code for most ARM systems when using // internal linking. This is the entry point for the program from the // kernel for an ordinary -buildmode=exe program. The stack holds the // number of arguments and the C-style argv. TEXT _rt0_arm(SB),NOSPLIT|NOFRAME,$0 MOVW (R13), R0 // argc MOVW $4(R13), R1 // argv B runtime·rt0_go(SB) // main is common startup code for most ARM systems when using // external linking. The C startup code will call the symbol "main" // passing argc and argv in the usual C ABI registers R0 and R1. TEXT main(SB),NOSPLIT|NOFRAME,$0 B runtime·rt0_go(SB) // _rt0_arm_lib is common startup code for most ARM systems when // using -buildmode=c-archive or -buildmode=c-shared. The linker will // arrange to invoke this function as a global constructor (for // c-archive) or when the shared library is loaded (for c-shared). // We expect argc and argv to be passed in the usual C ABI registers // R0 and R1. TEXT _rt0_arm_lib(SB),NOSPLIT,$104 // Preserve callee-save registers. Raspberry Pi's dlopen(), for example, // actually cares that R11 is preserved. MOVW R4, 12(R13) MOVW R5, 16(R13) MOVW R6, 20(R13) MOVW R7, 24(R13) MOVW R8, 28(R13) MOVW g, 32(R13) MOVW R11, 36(R13) // Skip floating point registers on GOARM < 6. MOVB runtime·goarm(SB), R11 CMP $6, R11 BLT skipfpsave MOVD F8, (40+8*0)(R13) MOVD F9, (40+8*1)(R13) MOVD F10, (40+8*2)(R13) MOVD F11, (40+8*3)(R13) MOVD F12, (40+8*4)(R13) MOVD F13, (40+8*5)(R13) MOVD F14, (40+8*6)(R13) MOVD F15, (40+8*7)(R13) skipfpsave: // Save argc/argv. MOVW R0, _rt0_arm_lib_argc<>(SB) MOVW R1, _rt0_arm_lib_argv<>(SB) MOVW $0, g // Initialize g. // Synchronous initialization. CALL runtime·libpreinit(SB) // Create a new thread to do the runtime initialization. MOVW _cgo_sys_thread_create(SB), R2 CMP $0, R2 BEQ nocgo MOVW $_rt0_arm_lib_go<>(SB), R0 MOVW $0, R1 BL (R2) B rr nocgo: MOVW $0x800000, R0 // stacksize = 8192KB MOVW $_rt0_arm_lib_go<>(SB), R1 // fn MOVW R0, 4(R13) MOVW R1, 8(R13) BL runtime·newosproc0(SB) rr: // Restore callee-save registers and return. MOVB runtime·goarm(SB), R11 CMP $6, R11 BLT skipfprest MOVD (40+8*0)(R13), F8 MOVD (40+8*1)(R13), F9 MOVD (40+8*2)(R13), F10 MOVD (40+8*3)(R13), F11 MOVD (40+8*4)(R13), F12 MOVD (40+8*5)(R13), F13 MOVD (40+8*6)(R13), F14 MOVD (40+8*7)(R13), F15 skipfprest: MOVW 12(R13), R4 MOVW 16(R13), R5 MOVW 20(R13), R6 MOVW 24(R13), R7 MOVW 28(R13), R8 MOVW 32(R13), g MOVW 36(R13), R11 RET // _rt0_arm_lib_go initializes the Go runtime. // This is started in a separate thread by _rt0_arm_lib. TEXT _rt0_arm_lib_go<>(SB),NOSPLIT,$8 MOVW _rt0_arm_lib_argc<>(SB), R0 MOVW _rt0_arm_lib_argv<>(SB), R1 B runtime·rt0_go(SB) DATA _rt0_arm_lib_argc<>(SB)/4,$0 GLOBL _rt0_arm_lib_argc<>(SB),NOPTR,$4 DATA _rt0_arm_lib_argv<>(SB)/4,$0 GLOBL _rt0_arm_lib_argv<>(SB),NOPTR,$4 // using NOFRAME means do not save LR on stack. // argc is in R0, argv is in R1. TEXT runtime·rt0_go(SB),NOSPLIT|NOFRAME,$0 MOVW $0xcafebabe, R12 // copy arguments forward on an even stack // use R13 instead of SP to avoid linker rewriting the offsets SUB $64, R13 // plenty of scratch AND $~7, R13 MOVW R0, 60(R13) // save argc, argv away MOVW R1, 64(R13) // set up g register // g is R10 MOVW $runtime·g0(SB), g MOVW $runtime·m0(SB), R8 // save m->g0 = g0 MOVW g, m_g0(R8) // save g->m = m0 MOVW R8, g_m(g) // create istack out of the OS stack // (1MB of system stack is available on iOS and Android) MOVW $(-64*1024+104)(R13), R0 MOVW R0, g_stackguard0(g) MOVW R0, g_stackguard1(g) MOVW R0, (g_stack+stack_lo)(g) MOVW R13, (g_stack+stack_hi)(g) BL runtime·emptyfunc(SB) // fault if stack check is wrong BL runtime·_initcgo(SB) // will clobber R0-R3 // update stackguard after _cgo_init MOVW (g_stack+stack_lo)(g), R0 ADD $const__StackGuard, R0 MOVW R0, g_stackguard0(g) MOVW R0, g_stackguard1(g) BL runtime·check(SB) // saved argc, argv MOVW 60(R13), R0 MOVW R0, 4(R13) MOVW 64(R13), R1 MOVW R1, 8(R13) BL runtime·args(SB) BL runtime·checkgoarm(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVW $runtime·mainPC(SB), R0 MOVW.W R0, -4(R13) MOVW $8, R0 MOVW.W R0, -4(R13) MOVW $0, R0 MOVW.W R0, -4(R13) // push $0 as guard BL runtime·newproc(SB) MOVW $12(R13), R13 // pop args and LR // start this M BL runtime·mstart(SB) MOVW $1234, R0 MOVW $1000, R1 MOVW R0, (R1) // fail hard DATA runtime·mainPC+0(SB)/4,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 // gdb won't skip this breakpoint instruction automatically, // so you must manually "set $pc+=4" to skip it and continue. #ifdef GOOS_nacl WORD $0xe125be7f // BKPT 0x5bef, NACL_INSTR_ARM_BREAKPOINT #else #ifdef GOOS_plan9 WORD $0xD1200070 // undefined instruction used as armv5 breakpoint in Plan 9 #else WORD $0xe7f001f0 // undefined instruction that gdb understands is a software breakpoint #endif #endif RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 // disable runfast (flush-to-zero) mode of vfp if runtime.goarm > 5 MOVB runtime·goarm(SB), R11 CMP $5, R11 BLE 4(PC) WORD $0xeef1ba10 // vmrs r11, fpscr BIC $(1<<24), R11 WORD $0xeee1ba10 // vmsr fpscr, r11 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB),NOSPLIT|NOFRAME,$0-4 MOVW buf+0(FP), R0 MOVW R13, gobuf_sp(R0) MOVW LR, gobuf_pc(R0) MOVW g, gobuf_g(R0) MOVW $0, R11 MOVW R11, gobuf_lr(R0) MOVW R11, gobuf_ret(R0) // Assert ctxt is zero. See func save. MOVW gobuf_ctxt(R0), R0 CMP R0, R11 B.EQ 2(PC) CALL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB),NOSPLIT,$8-4 MOVW buf+0(FP), R1 MOVW gobuf_g(R1), R0 BL setg<>(SB) // NOTE: We updated g above, and we are about to update SP. // Until LR and PC are also updated, the g/SP/LR/PC quadruple // are out of sync and must not be used as the basis of a traceback. // Sigprof skips the traceback when SP is not within g's bounds, // and when the PC is inside this function, runtime.gogo. // Since we are about to update SP, until we complete runtime.gogo // we must not leave this function. In particular, no calls // after this point: it must be straight-line code until the // final B instruction. // See large comment in sigprof for more details. MOVW gobuf_sp(R1), R13 // restore SP==R13 MOVW gobuf_lr(R1), LR MOVW gobuf_ret(R1), R0 MOVW gobuf_ctxt(R1), R7 MOVW $0, R11 MOVW R11, gobuf_sp(R1) // clear to help garbage collector MOVW R11, gobuf_ret(R1) MOVW R11, gobuf_lr(R1) MOVW R11, gobuf_ctxt(R1) MOVW gobuf_pc(R1), R11 CMP R11, R11 // set condition codes for == test, needed by stack split B (R11) // func mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB),NOSPLIT|NOFRAME,$0-4 // Save caller state in g->sched. MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_pc)(g) MOVW $0, R11 MOVW R11, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVW g, R1 MOVW g_m(g), R8 MOVW m_g0(R8), R0 BL setg<>(SB) CMP g, R1 B.NE 2(PC) B runtime·badmcall(SB) MOVB runtime·iscgo(SB), R11 CMP $0, R11 BL.NE runtime·save_g(SB) MOVW fn+0(FP), R0 MOVW (g_sched+gobuf_sp)(g), R13 SUB $8, R13 MOVW R1, 4(R13) MOVW R0, R7 MOVW 0(R0), R0 BL (R0) B runtime·badmcall2(SB) RET // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0 MOVW $0, R0 BL (R0) // clobber lr to ensure push {lr} is kept RET // func systemstack(fn func()) TEXT runtime·systemstack(SB),NOSPLIT,$0-4 MOVW fn+0(FP), R0 // R0 = fn MOVW g_m(g), R1 // R1 = m MOVW m_gsignal(R1), R2 // R2 = gsignal CMP g, R2 B.EQ noswitch MOVW m_g0(R1), R2 // R2 = g0 CMP g, R2 B.EQ noswitch MOVW m_curg(R1), R3 CMP g, R3 B.EQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVW $runtime·badsystemstack(SB), R0 BL (R0) B runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVW $runtime·systemstack_switch(SB), R3 #ifdef GOOS_nacl ADD $4, R3, R3 // get past nacl-insert bic instruction #endif ADD $4, R3, R3 // get past push {lr} MOVW R3, (g_sched+gobuf_pc)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // switch to g0 MOVW R0, R5 MOVW R2, R0 BL setg<>(SB) MOVW R5, R0 MOVW (g_sched+gobuf_sp)(R2), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $4, R3, R3 MOVW $runtime·mstart(SB), R4 MOVW R4, 0(R3) MOVW R3, R13 // call target function MOVW R0, R7 MOVW 0(R0), R0 BL (R0) // switch back to g MOVW g_m(g), R1 MOVW m_curg(R1), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R13 MOVW $0, R3 MOVW R3, (g_sched+gobuf_sp)(g) RET noswitch: // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVW R0, R7 MOVW 0(R0), R0 MOVW.P 4(R13), R14 // restore LR B (R0) /* * support for morestack */ // Called during function prolog when more stack is needed. // R3 prolog's LR // using NOFRAME means do not save LR on stack. // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVW g_m(g), R8 MOVW m_g0(R8), R4 CMP g, R4 BNE 3(PC) BL runtime·badmorestackg0(SB) B runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVW m_gsignal(R8), R4 CMP g, R4 BNE 3(PC) BL runtime·badmorestackgsignal(SB) B runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVW R13, (g_sched+gobuf_sp)(g) MOVW LR, (g_sched+gobuf_pc)(g) MOVW R3, (g_sched+gobuf_lr)(g) MOVW R7, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOVW R3, (m_morebuf+gobuf_pc)(R8) // f's caller's PC MOVW R13, (m_morebuf+gobuf_sp)(R8) // f's caller's SP MOVW g, (m_morebuf+gobuf_g)(R8) // Call newstack on m->g0's stack. MOVW m_g0(R8), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R13 MOVW $0, R0 MOVW.W R0, -4(R13) // create a call frame on g0 (saved LR) BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. RET TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R7 B runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ CMP $MAXSIZE, R0; \ B.HI 3(PC); \ MOVW $NAME(SB), R1; \ B (R1) TEXT ·reflectcall(SB),NOSPLIT|NOFRAME,$0-20 MOVW argsize+12(FP), R0 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVW $runtime·badreflectcall(SB), R1 B (R1) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-20; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVW argptr+8(FP), R0; \ MOVW argsize+12(FP), R2; \ ADD $4, R13, R1; \ CMP $0, R2; \ B.EQ 5(PC); \ MOVBU.P 1(R0), R5; \ MOVBU.P R5, 1(R1); \ SUB $1, R2, R2; \ B -5(PC); \ /* call function */ \ MOVW f+4(FP), R7; \ MOVW (R7), R0; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (R0); \ /* copy return values back */ \ MOVW argtype+0(FP), R4; \ MOVW argptr+8(FP), R0; \ MOVW argsize+12(FP), R2; \ MOVW retoffset+16(FP), R3; \ ADD $4, R13, R1; \ ADD R3, R1; \ ADD R3, R0; \ SUB R3, R2; \ BL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $16-0 MOVW R4, 4(R13) MOVW R0, 8(R13) MOVW R1, 12(R13) MOVW R2, 16(R13) BL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) // void jmpdefer(fn, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 4 bytes to get back to BL deferreturn // 3. B to fn // TODO(rsc): Push things on stack and then use pop // to load all registers simultaneously, so that a profiling // interrupt can never see mismatched SP/LR/PC. // (And double-check that pop is atomic in that way.) TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8 MOVW 0(R13), LR MOVW $-4(LR), LR // BL deferreturn MOVW fv+0(FP), R7 MOVW argp+4(FP), R13 MOVW $-4(R13), R13 // SP is 4 below argp, due to saved LR MOVW 0(R7), R1 B (R1) // Save state of caller into g->sched. Smashes R11. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVW LR, (g_sched+gobuf_pc)(g) MOVW R13, (g_sched+gobuf_sp)(g) MOVW $0, R11 MOVW R11, (g_sched+gobuf_lr)(g) MOVW R11, (g_sched+gobuf_ret)(g) MOVW R11, (g_sched+gobuf_ctxt)(g) // Assert ctxt is zero. See func save. MOVW (g_sched+gobuf_ctxt)(g), R11 CMP $0, R11 B.EQ 2(PC) CALL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-12 MOVW fn+0(FP), R1 MOVW arg+4(FP), R0 MOVW R13, R2 CMP $0, g BEQ nosave MOVW g, R4 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVW g_m(g), R8 MOVW m_gsignal(R8), R3 CMP R3, g BEQ nosave MOVW m_g0(R8), R3 CMP R3, g BEQ nosave BL gosave<>(SB) MOVW R0, R5 MOVW R3, R0 BL setg<>(SB) MOVW R5, R0 MOVW (g_sched+gobuf_sp)(g), R13 // Now on a scheduling stack (a pthread-created stack). SUB $24, R13 BIC $0x7, R13 // alignment for gcc ABI MOVW R4, 20(R13) // save old g MOVW (g_stack+stack_hi)(R4), R4 SUB R2, R4 MOVW R4, 16(R13) // save depth in stack (can't just save SP, as stack might be copied during a callback) BL (R1) // Restore registers, g, stack pointer. MOVW R0, R5 MOVW 20(R13), R0 BL setg<>(SB) MOVW (g_stack+stack_hi)(g), R1 MOVW 16(R13), R2 SUB R2, R1 MOVW R5, R0 MOVW R1, R13 MOVW R0, ret+8(FP) RET nosave: // Running on a system stack, perhaps even without a g. // Having no g can happen during thread creation or thread teardown // (see needm/dropm on Solaris, for example). // This code is like the above sequence but without saving/restoring g // and without worrying about the stack moving out from under us // (because we're on a system stack, not a goroutine stack). // The above code could be used directly if already on a system stack, // but then the only path through this code would be a rare case on Solaris. // Using this code for all "already on system stack" calls exercises it more, // which should help keep it correct. SUB $24, R13 BIC $0x7, R13 // alignment for gcc ABI // save null g in case someone looks during debugging. MOVW $0, R4 MOVW R4, 20(R13) MOVW R2, 16(R13) // Save old stack pointer. BL (R1) // Restore stack pointer. MOVW 16(R13), R2 MOVW R2, R13 MOVW R0, ret+8(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$16-16 MOVW $fn+0(FP), R0 MOVW R0, 4(R13) MOVW frame+4(FP), R0 MOVW R0, 8(R13) MOVW framesize+8(FP), R0 MOVW R0, 12(R13) MOVW ctxt+12(FP), R0 MOVW R0, 16(R13) MOVW $runtime·cgocallback_gofunc(SB), R0 BL (R0) RET // cgocallback_gofunc(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-16 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R0 CMP $0, R0 BL.NE runtime·load_g(SB) // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP $0, g B.EQ needm MOVW g_m(g), R8 MOVW R8, savedm-4(SP) B havem needm: MOVW g, savedm-4(SP) // g is zero, so is m. MOVW $runtime·needm(SB), R0 BL (R0) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVW g_m(g), R8 MOVW m_g0(R8), R3 MOVW R13, (g_sched+gobuf_sp)(R3) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 4(R13) aka savedsp-8(SP). MOVW m_g0(R8), R3 MOVW (g_sched+gobuf_sp)(R3), R4 MOVW R4, savedsp-8(SP) MOVW R13, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -4(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVW m_curg(R8), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVW (g_sched+gobuf_pc)(g), R5 MOVW R5, -12(R4) MOVW ctxt+12(FP), R0 MOVW R0, -8(R4) MOVW $-12(R4), R13 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVW 0(R13), R5 MOVW R5, (g_sched+gobuf_pc)(g) MOVW $12(R13), R4 MOVW R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVW g_m(g), R8 MOVW m_g0(R8), R0 BL setg<>(SB) MOVW (g_sched+gobuf_sp)(g), R13 MOVW savedsp-8(SP), R4 MOVW R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVW savedm-4(SP), R6 CMP $0, R6 B.NE 3(PC) MOVW $runtime·dropm(SB), R0 BL (R0) // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB),NOSPLIT|NOFRAME,$0-4 MOVW gg+0(FP), R0 B setg<>(SB) TEXT setg<>(SB),NOSPLIT|NOFRAME,$0-0 MOVW R0, g // Save g to thread-local storage. #ifdef GOOS_windows B runtime·save_g(SB) #else MOVB runtime·iscgo(SB), R0 CMP $0, R0 B.EQ 2(PC) B runtime·save_g(SB) MOVW g, R0 RET #endif TEXT runtime·emptyfunc(SB),0,$0-0 RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R0 MOVW (R0), R1 // armPublicationBarrier is a native store/store barrier for ARMv7+. // On earlier ARM revisions, armPublicationBarrier is a no-op. // This will not work on SMP ARMv6 machines, if any are in use. // To implement publicationBarrier in sys_$GOOS_arm.s using the native // instructions, use: // // TEXT ·publicationBarrier(SB),NOSPLIT|NOFRAME,$0-0 // B runtime·armPublicationBarrier(SB) // TEXT runtime·armPublicationBarrier(SB),NOSPLIT|NOFRAME,$0-0 MOVB runtime·goarm(SB), R11 CMP $7, R11 BLT 2(PC) DMB MB_ST RET // AES hashing not implemented for ARM TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0 MOVW $0, R0 MOVW (R0), R1 TEXT runtime·return0(SB),NOSPLIT,$0 MOVW $0, R0 RET TEXT runtime·procyield(SB),NOSPLIT|NOFRAME,$0 MOVW cycles+0(FP), R1 MOVW $0, R0 yieldloop: WORD $0xe320f001 // YIELD (NOP pre-ARMv6K) CMP R0, R1 B.NE 2(PC) RET SUB $1, R1 B yieldloop // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$8 // R11 and g register are clobbered by load_g. They are // callee-save in the gcc calling convention, so save them here. MOVW R11, saveR11-4(SP) MOVW g, saveG-8(SP) BL runtime·load_g(SB) MOVW g_m(g), R0 MOVW m_curg(R0), R0 MOVW (g_stack+stack_hi)(R0), R0 MOVW saveG-8(SP), g MOVW saveR11-4(SP), R11 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 MOVW R0, R0 // NOP BL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit MOVW R0, R0 // NOP // x -> x/1000000, x%1000000, called from Go with args, results on stack. TEXT runtime·usplit(SB),NOSPLIT,$0-12 MOVW x+0(FP), R0 CALL runtime·usplitR0(SB) MOVW R0, q+4(FP) MOVW R1, r+8(FP) RET // R0, R1 = R0/1000000, R0%1000000 TEXT runtime·usplitR0(SB),NOSPLIT,$0 // magic multiply to avoid software divide without available m. // see output of go tool compile -S for x/1000000. MOVW R0, R3 MOVW $1125899907, R1 MULLU R1, R0, (R0, R1) MOVW R0>>18, R0 MOVW $1000000, R1 MULU R0, R1 SUB R1, R3, R1 RET TEXT runtime·sigreturn(SB),NOSPLIT,$0-0 RET #ifndef GOOS_nacl // This is called from .init_array and follows the platform, not Go, ABI. TEXT runtime·addmoduledata(SB),NOSPLIT,$0-8 MOVW R9, saver9-4(SP) // The access to global variables below implicitly uses R9, which is callee-save MOVW R11, saver11-8(SP) // Likewise, R11 is the temp register, but callee-save in C ABI MOVW runtime·lastmoduledatap(SB), R1 MOVW R0, moduledata_next(R1) MOVW R0, runtime·lastmoduledatap(SB) MOVW saver11-8(SP), R11 MOVW saver9-4(SP), R9 RET #endif TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R3 MOVB R3, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - R2 is the destination of the write // - R3 is the value being written at R2 // It clobbers condition codes. // It does not clobber any other general-purpose registers, // but may clobber others (e.g., floating point registers). // The act of CALLing gcWriteBarrier will clobber R14 (LR). TEXT runtime·gcWriteBarrier(SB),NOSPLIT|NOFRAME,$0 // Save the registers clobbered by the fast path. MOVM.DB.W [R0,R1], (R13) MOVW g_m(g), R0 MOVW m_p(R0), R0 MOVW (p_wbBuf+wbBuf_next)(R0), R1 // Increment wbBuf.next position. ADD $8, R1 MOVW R1, (p_wbBuf+wbBuf_next)(R0) MOVW (p_wbBuf+wbBuf_end)(R0), R0 CMP R1, R0 // Record the write. MOVW R3, -8(R1) // Record value MOVW (R2), R0 // TODO: This turns bad writes into bad reads. MOVW R0, -4(R1) // Record *slot // Is the buffer full? (flags set in CMP above) B.EQ flush ret: MOVM.IA.W (R13), [R0,R1] // Do the write. MOVW R3, (R2) // Normally RET on nacl clobbers R12, but because this // function has no frame it doesn't have to usual epilogue. RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. // // R0 and R1 were saved at entry. // R10 is g, so preserved. // R11 is linker temp, so no need to save. // R13 is stack pointer. // R15 is PC. // // This also sets up R2 and R3 as the arguments to wbBufFlush. MOVM.DB.W [R2-R9,R12], (R13) // Save R14 (LR) because the fast path above doesn't save it, // but needs it to RET. This is after the MOVM so it appears below // the arguments in the stack frame. MOVM.DB.W [R14], (R13) // This takes arguments R2 and R3. CALL runtime·wbBufFlush(SB) MOVM.IA.W (R13), [R14] MOVM.IA.W (R13), [R2-R9,R12] JMP ret