// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build mips64 mips64le #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #define REGCTXT R22 TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R29 = stack; R4 = argc; R5 = argv ADDV $-24, R29 MOVW R4, 8(R29) // argc MOVV R5, 16(R29) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVV $runtime·g0(SB), g MOVV $(-64*1024), R23 ADDV R23, R29, R1 MOVV R1, g_stackguard0(g) MOVV R1, g_stackguard1(g) MOVV R1, (g_stack+stack_lo)(g) MOVV R29, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVV _cgo_init(SB), R25 BEQ R25, nocgo MOVV R0, R7 // arg 3: not used MOVV R0, R6 // arg 2: not used MOVV $setg_gcc<>(SB), R5 // arg 1: setg MOVV g, R4 // arg 0: G JAL (R25) nocgo: // update stackguard after _cgo_init MOVV (g_stack+stack_lo)(g), R1 ADDV $const__StackGuard, R1 MOVV R1, g_stackguard0(g) MOVV R1, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVV $runtime·m0(SB), R1 // save m->g0 = g0 MOVV g, m_g0(R1) // save m0 to g0->m MOVV R1, g_m(g) JAL runtime·check(SB) // args are already prepared JAL runtime·args(SB) JAL runtime·osinit(SB) JAL runtime·schedinit(SB) // create a new goroutine to start program MOVV $runtime·mainPC(SB), R1 // entry ADDV $-24, R29 MOVV R1, 16(R29) MOVV R0, 8(R29) MOVV R0, 0(R29) JAL runtime·newproc(SB) ADDV $24, R29 // start this M JAL runtime·mstart(SB) MOVV R0, 1(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 MOVV R0, 2(R0) // TODO: TD RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8 MOVV buf+0(FP), R1 MOVV R29, gobuf_sp(R1) MOVV R31, gobuf_pc(R1) MOVV g, gobuf_g(R1) MOVV R0, gobuf_lr(R1) MOVV R0, gobuf_ret(R1) // Assert ctxt is zero. See func save. MOVV gobuf_ctxt(R1), R1 BEQ R1, 2(PC) JAL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $16-8 MOVV buf+0(FP), R3 MOVV gobuf_g(R3), g // make sure g is not nil JAL runtime·save_g(SB) MOVV 0(g), R2 MOVV gobuf_sp(R3), R29 MOVV gobuf_lr(R3), R31 MOVV gobuf_ret(R3), R1 MOVV gobuf_ctxt(R3), REGCTXT MOVV R0, gobuf_sp(R3) MOVV R0, gobuf_ret(R3) MOVV R0, gobuf_lr(R3) MOVV R0, gobuf_ctxt(R3) MOVV gobuf_pc(R3), R4 JMP (R4) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 // Save caller state in g->sched MOVV R29, (g_sched+gobuf_sp)(g) MOVV R31, (g_sched+gobuf_pc)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVV g, R1 MOVV g_m(g), R3 MOVV m_g0(R3), g JAL runtime·save_g(SB) BNE g, R1, 2(PC) JMP runtime·badmcall(SB) MOVV fn+0(FP), REGCTXT // context MOVV 0(REGCTXT), R4 // code pointer MOVV (g_sched+gobuf_sp)(g), R29 // sp = m->g0->sched.sp ADDV $-16, R29 MOVV R1, 8(R29) MOVV R0, 0(R29) JAL (R4) JMP runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 UNDEF JAL (R31) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVV fn+0(FP), R1 // R1 = fn MOVV R1, REGCTXT // context MOVV g_m(g), R2 // R2 = m MOVV m_gsignal(R2), R3 // R3 = gsignal BEQ g, R3, noswitch MOVV m_g0(R2), R3 // R3 = g0 BEQ g, R3, noswitch MOVV m_curg(R2), R4 BEQ g, R4, switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVV $runtime·badsystemstack(SB), R4 JAL (R4) JAL runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVV $runtime·systemstack_switch(SB), R4 ADDV $8, R4 // get past prologue MOVV R4, (g_sched+gobuf_pc)(g) MOVV R29, (g_sched+gobuf_sp)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV g, (g_sched+gobuf_g)(g) // switch to g0 MOVV R3, g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R1 // make it look like mstart called systemstack on g0, to stop traceback ADDV $-8, R1 MOVV $runtime·mstart(SB), R2 MOVV R2, 0(R1) MOVV R1, R29 // call target function MOVV 0(REGCTXT), R4 // code pointer JAL (R4) // switch back to g MOVV g_m(g), R1 MOVV m_curg(R1), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 MOVV R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVV 0(REGCTXT), R4 // code pointer MOVV 0(R29), R31 // restore LR ADDV $8, R29 JMP (R4) /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R1: framesize, R2: argsize, R3: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVV g_m(g), R7 MOVV m_g0(R7), R8 BNE g, R8, 3(PC) JAL runtime·badmorestackg0(SB) JAL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVV m_gsignal(R7), R8 BNE g, R8, 3(PC) JAL runtime·badmorestackgsignal(SB) JAL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVV R29, (g_sched+gobuf_sp)(g) MOVV R31, (g_sched+gobuf_pc)(g) MOVV R3, (g_sched+gobuf_lr)(g) MOVV REGCTXT, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOVV R3, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVV R29, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVV g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVV m_g0(R7), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 // Create a stack frame on g0 to call newstack. MOVV R0, -8(R29) // Zero saved LR in frame ADDV $-8, R29 JAL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVV R0, REGCTXT JMP runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVV $MAXSIZE, R23; \ SGTU R1, R23, R23; \ BNE R23, 3(PC); \ MOVV $NAME(SB), R4; \ JMP (R4) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32 MOVWU argsize+24(FP), R1 DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVV $runtime·badreflectcall(SB), R4 JMP (R4) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVV arg+16(FP), R1; \ MOVWU argsize+24(FP), R2; \ MOVV R29, R3; \ ADDV $8, R3; \ ADDV R3, R2; \ BEQ R3, R2, 6(PC); \ MOVBU (R1), R4; \ ADDV $1, R1; \ MOVBU R4, (R3); \ ADDV $1, R3; \ JMP -5(PC); \ /* call function */ \ MOVV f+8(FP), REGCTXT; \ MOVV (REGCTXT), R4; \ PCDATA $PCDATA_StackMapIndex, $0; \ JAL (R4); \ /* copy return values back */ \ MOVV argtype+0(FP), R5; \ MOVV arg+16(FP), R1; \ MOVWU n+24(FP), R2; \ MOVWU retoffset+28(FP), R4; \ ADDV $8, R29, R3; \ ADDV R4, R3; \ ADDV R4, R1; \ SUBVU R4, R2; \ JAL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $32-0 MOVV R5, 8(R29) MOVV R1, 16(R29) MOVV R3, 24(R29) MOVV R2, 32(R29) JAL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-0 RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 8 bytes to get back to JAL deferreturn // 3. JMP to fn TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16 MOVV 0(R29), R31 ADDV $-8, R31 MOVV fv+0(FP), REGCTXT MOVV argp+8(FP), R29 ADDV $-8, R29 NOR R0, R0 // prevent scheduling MOVV 0(REGCTXT), R4 JMP (R4) // Save state of caller into g->sched. Smashes R1. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVV R31, (g_sched+gobuf_pc)(g) MOVV R29, (g_sched+gobuf_sp)(g) MOVV R0, (g_sched+gobuf_lr)(g) MOVV R0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVV (g_sched+gobuf_ctxt)(g), R1 BEQ R1, 2(PC) JAL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVV fn+0(FP), R25 MOVV arg+8(FP), R4 MOVV R29, R3 // save original stack pointer MOVV g, R2 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVV g_m(g), R5 MOVV m_g0(R5), R6 BEQ R6, g, g0 JAL gosave<>(SB) MOVV R6, g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers. ADDV $-16, R29 MOVV R2, 0(R29) // save old g on stack MOVV (g_stack+stack_hi)(R2), R2 SUBVU R3, R2 MOVV R2, 8(R29) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) JAL (R25) // Restore g, stack pointer. R2 is return value. MOVV 0(R29), g JAL runtime·save_g(SB) MOVV (g_stack+stack_hi)(g), R5 MOVV 8(R29), R6 SUBVU R6, R5 MOVV R5, R29 MOVW R2, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 MOVV $fn+0(FP), R1 MOVV R1, 8(R29) MOVV frame+8(FP), R1 MOVV R1, 16(R29) MOVV framesize+16(FP), R1 MOVV R1, 24(R29) MOVV ctxt+24(FP), R1 MOVV R1, 32(R29) MOVV $runtime·cgocallback_gofunc(SB), R1 JAL (R1) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R1 BEQ R1, nocgo JAL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. BEQ g, needm MOVV g_m(g), R3 MOVV R3, savedm-8(SP) JMP havem needm: MOVV g, savedm-8(SP) // g is zero, so is m. MOVV $runtime·needm(SB), R4 JAL (R4) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVV g_m(g), R3 MOVV m_g0(R3), R1 MOVV R29, (g_sched+gobuf_sp)(R1) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R29) aka savedsp-16(SP). MOVV m_g0(R3), R1 MOVV (g_sched+gobuf_sp)(R1), R2 MOVV R2, savedsp-16(SP) MOVV R29, (g_sched+gobuf_sp)(R1) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVV m_curg(R3), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R2 // prepare stack as R2 MOVV (g_sched+gobuf_pc)(g), R4 MOVV R4, -24(R2) MOVV ctxt+24(FP), R1 MOVV R1, -16(R2) MOVV $-24(R2), R29 JAL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVV 0(R29), R4 MOVV R4, (g_sched+gobuf_pc)(g) MOVV $24(R29), R2 MOVV R2, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVV g_m(g), R3 MOVV m_g0(R3), g JAL runtime·save_g(SB) MOVV (g_sched+gobuf_sp)(g), R29 MOVV savedsp-16(SP), R2 MOVV R2, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVV savedm-8(SP), R3 BNE R3, droppedm MOVV $runtime·dropm(SB), R4 JAL (R4) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVV gg+0(FP), g // This only happens if iscgo, so jump straight to save_g JAL runtime·save_g(SB) RET // void setg_gcc(G*); set g called from gcc with g in R1 TEXT setg_gcc<>(SB),NOSPLIT,$0-0 MOVV R1, g JAL runtime·save_g(SB) RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R0 UNDEF // AES hashing not implemented for mips64 TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R1 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT,$16 // g (R30) and REGTMP (R23) might be clobbered by load_g. They // are callee-save in the gcc calling convention, so save them. MOVV R23, savedR23-16(SP) MOVV g, savedG-8(SP) JAL runtime·load_g(SB) MOVV g_m(g), R1 MOVV m_curg(R1), R1 MOVV (g_stack+stack_hi)(R1), R2 // return value in R2 MOVV savedG-8(SP), g MOVV savedR23-16(SP), R23 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 NOR R0, R0 // NOP JAL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit NOR R0, R0 // NOP TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R1 MOVB R1, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - R20 is the destination of the write // - R21 is the value being written at R20. // It clobbers R23 (the linker temp register). // The act of CALLing gcWriteBarrier will clobber R31 (LR). // It does not clobber any other general-purpose registers, // but may clobber others (e.g., floating point registers). TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$192 // Save the registers clobbered by the fast path. MOVV R1, 184(R29) MOVV R2, 192(R29) MOVV g_m(g), R1 MOVV m_p(R1), R1 MOVV (p_wbBuf+wbBuf_next)(R1), R2 // Increment wbBuf.next position. ADDV $16, R2 MOVV R2, (p_wbBuf+wbBuf_next)(R1) MOVV (p_wbBuf+wbBuf_end)(R1), R1 MOVV R1, R23 // R23 is linker temp register // Record the write. MOVV R21, -16(R2) // Record value MOVV (R20), R1 // TODO: This turns bad writes into bad reads. MOVV R1, -8(R2) // Record *slot // Is the buffer full? BEQ R2, R23, flush ret: MOVV 184(R29), R1 MOVV 192(R29), R2 // Do the write. MOVV R21, (R20) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. MOVV R20, 8(R29) // Also first argument to wbBufFlush MOVV R21, 16(R29) // Also second argument to wbBufFlush // R1 already saved // R2 already saved MOVV R3, 24(R29) MOVV R4, 32(R29) MOVV R5, 40(R29) MOVV R6, 48(R29) MOVV R7, 56(R29) MOVV R8, 64(R29) MOVV R9, 72(R29) MOVV R10, 80(R29) MOVV R11, 88(R29) MOVV R12, 96(R29) MOVV R13, 104(R29) MOVV R14, 112(R29) MOVV R15, 120(R29) MOVV R16, 128(R29) MOVV R17, 136(R29) MOVV R18, 144(R29) MOVV R19, 152(R29) // R20 already saved // R21 already saved. MOVV R22, 160(R29) // R23 is tmp register. MOVV R24, 168(R29) MOVV R25, 176(R29) // R26 is reserved by kernel. // R27 is reserved by kernel. // R28 is REGSB (not modified by Go code). // R29 is SP. // R30 is g. // R31 is LR, which was saved by the prologue. // This takes arguments R20 and R21. CALL runtime·wbBufFlush(SB) MOVV 8(R29), R20 MOVV 16(R29), R21 MOVV 24(R29), R3 MOVV 32(R29), R4 MOVV 40(R29), R5 MOVV 48(R29), R6 MOVV 56(R29), R7 MOVV 64(R29), R8 MOVV 72(R29), R9 MOVV 80(R29), R10 MOVV 88(R29), R11 MOVV 96(R29), R12 MOVV 104(R29), R13 MOVV 112(R29), R14 MOVV 120(R29), R15 MOVV 128(R29), R16 MOVV 136(R29), R17 MOVV 144(R29), R18 MOVV 152(R29), R19 MOVV 160(R29), R22 MOVV 168(R29), R24 MOVV 176(R29), R25 JMP ret