// Copyright 2016 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build mips mipsle #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #define REGCTXT R22 TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R29 = stack; R4 = argc; R5 = argv ADDU $-12, R29 MOVW R4, 4(R29) // argc MOVW R5, 8(R29) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVW $runtime·g0(SB), g MOVW $(-64*1024), R23 ADD R23, R29, R1 MOVW R1, g_stackguard0(g) MOVW R1, g_stackguard1(g) MOVW R1, (g_stack+stack_lo)(g) MOVW R29, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVW _cgo_init(SB), R25 BEQ R25, nocgo ADDU $-16, R29 MOVW R0, R7 // arg 3: not used MOVW R0, R6 // arg 2: not used MOVW $setg_gcc<>(SB), R5 // arg 1: setg MOVW g, R4 // arg 0: G JAL (R25) ADDU $16, R29 nocgo: // update stackguard after _cgo_init MOVW (g_stack+stack_lo)(g), R1 ADD $const__StackGuard, R1 MOVW R1, g_stackguard0(g) MOVW R1, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVW $runtime·m0(SB), R1 // save m->g0 = g0 MOVW g, m_g0(R1) // save m0 to g0->m MOVW R1, g_m(g) JAL runtime·check(SB) // args are already prepared JAL runtime·args(SB) JAL runtime·osinit(SB) JAL runtime·schedinit(SB) // create a new goroutine to start program MOVW $runtime·mainPC(SB), R1 // entry ADDU $-12, R29 MOVW R1, 8(R29) MOVW R0, 4(R29) MOVW R0, 0(R29) JAL runtime·newproc(SB) ADDU $12, R29 // start this M JAL runtime·mstart(SB) UNDEF RET DATA runtime·mainPC+0(SB)/4,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$4 TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 BREAK RET TEXT runtime·asminit(SB),NOSPLIT,$0-0 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB),NOSPLIT|NOFRAME,$0-4 MOVW buf+0(FP), R1 MOVW R29, gobuf_sp(R1) MOVW R31, gobuf_pc(R1) MOVW g, gobuf_g(R1) MOVW R0, gobuf_lr(R1) MOVW R0, gobuf_ret(R1) // Assert ctxt is zero. See func save. MOVW gobuf_ctxt(R1), R1 BEQ R1, 2(PC) JAL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB),NOSPLIT,$8-4 MOVW buf+0(FP), R3 MOVW gobuf_g(R3), g // make sure g is not nil JAL runtime·save_g(SB) MOVW 0(g), R2 MOVW gobuf_sp(R3), R29 MOVW gobuf_lr(R3), R31 MOVW gobuf_ret(R3), R1 MOVW gobuf_ctxt(R3), REGCTXT MOVW R0, gobuf_sp(R3) MOVW R0, gobuf_ret(R3) MOVW R0, gobuf_lr(R3) MOVW R0, gobuf_ctxt(R3) MOVW gobuf_pc(R3), R4 JMP (R4) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB),NOSPLIT|NOFRAME,$0-4 // Save caller state in g->sched MOVW R29, (g_sched+gobuf_sp)(g) MOVW R31, (g_sched+gobuf_pc)(g) MOVW R0, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVW g, R1 MOVW g_m(g), R3 MOVW m_g0(R3), g JAL runtime·save_g(SB) BNE g, R1, 2(PC) JMP runtime·badmcall(SB) MOVW fn+0(FP), REGCTXT // context MOVW 0(REGCTXT), R4 // code pointer MOVW (g_sched+gobuf_sp)(g), R29 // sp = m->g0->sched.sp ADDU $-8, R29 // make room for 1 arg and fake LR MOVW R1, 4(R29) MOVW R0, 0(R29) JAL (R4) JMP runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB),NOSPLIT,$0-0 UNDEF JAL (R31) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB),NOSPLIT,$0-4 MOVW fn+0(FP), R1 // R1 = fn MOVW R1, REGCTXT // context MOVW g_m(g), R2 // R2 = m MOVW m_gsignal(R2), R3 // R3 = gsignal BEQ g, R3, noswitch MOVW m_g0(R2), R3 // R3 = g0 BEQ g, R3, noswitch MOVW m_curg(R2), R4 BEQ g, R4, switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVW $runtime·badsystemstack(SB), R4 JAL (R4) JAL runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVW $runtime·systemstack_switch(SB), R4 ADDU $8, R4 // get past prologue MOVW R4, (g_sched+gobuf_pc)(g) MOVW R29, (g_sched+gobuf_sp)(g) MOVW R0, (g_sched+gobuf_lr)(g) MOVW g, (g_sched+gobuf_g)(g) // switch to g0 MOVW R3, g JAL runtime·save_g(SB) MOVW (g_sched+gobuf_sp)(g), R1 // make it look like mstart called systemstack on g0, to stop traceback ADDU $-4, R1 MOVW $runtime·mstart(SB), R2 MOVW R2, 0(R1) MOVW R1, R29 // call target function MOVW 0(REGCTXT), R4 // code pointer JAL (R4) // switch back to g MOVW g_m(g), R1 MOVW m_curg(R1), g JAL runtime·save_g(SB) MOVW (g_sched+gobuf_sp)(g), R29 MOVW R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // Using a tail call here cleans up tracebacks since we won't stop // at an intermediate systemstack. MOVW 0(REGCTXT), R4 // code pointer MOVW 0(R29), R31 // restore LR ADD $4, R29 JMP (R4) /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R1: framesize, R2: argsize, R3: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVW g_m(g), R7 MOVW m_g0(R7), R8 BNE g, R8, 3(PC) JAL runtime·badmorestackg0(SB) JAL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVW m_gsignal(R7), R8 BNE g, R8, 3(PC) JAL runtime·badmorestackgsignal(SB) JAL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVW R29, (g_sched+gobuf_sp)(g) MOVW R31, (g_sched+gobuf_pc)(g) MOVW R3, (g_sched+gobuf_lr)(g) MOVW REGCTXT, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOVW R3, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVW R29, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVW g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVW m_g0(R7), g JAL runtime·save_g(SB) MOVW (g_sched+gobuf_sp)(g), R29 // Create a stack frame on g0 to call newstack. MOVW R0, -4(R29) // Zero saved LR in frame ADDU $-4, R29 JAL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0-0 MOVW R0, REGCTXT JMP runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. #define DISPATCH(NAME,MAXSIZE) \ MOVW $MAXSIZE, R23; \ SGTU R1, R23, R23; \ BNE R23, 3(PC); \ MOVW $NAME(SB), R4; \ JMP (R4) TEXT ·reflectcall(SB),NOSPLIT|NOFRAME,$0-20 MOVW argsize+12(FP), R1 DISPATCH(runtime·call16, 16) DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVW $runtime·badreflectcall(SB), R4 JMP (R4) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB),WRAPPER,$MAXSIZE-20; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVW arg+8(FP), R1; \ MOVW argsize+12(FP), R2; \ MOVW R29, R3; \ ADDU $4, R3; \ ADDU R3, R2; \ BEQ R3, R2, 6(PC); \ MOVBU (R1), R4; \ ADDU $1, R1; \ MOVBU R4, (R3); \ ADDU $1, R3; \ JMP -5(PC); \ /* call function */ \ MOVW f+4(FP), REGCTXT; \ MOVW (REGCTXT), R4; \ PCDATA $PCDATA_StackMapIndex, $0; \ JAL (R4); \ /* copy return values back */ \ MOVW argtype+0(FP), R5; \ MOVW arg+8(FP), R1; \ MOVW n+12(FP), R2; \ MOVW retoffset+16(FP), R4; \ ADDU $4, R29, R3; \ ADDU R4, R3; \ ADDU R4, R1; \ SUBU R4, R2; \ JAL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $16-0 MOVW R5, 4(R29) MOVW R1, 8(R29) MOVW R3, 12(R29) MOVW R2, 16(R29) JAL runtime·reflectcallmove(SB) RET CALLFN(·call16, 16) CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT,$0-4 RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 8 bytes to get back to JAL deferreturn // 3. JMP to fn TEXT runtime·jmpdefer(SB),NOSPLIT,$0-8 MOVW 0(R29), R31 ADDU $-8, R31 MOVW fv+0(FP), REGCTXT MOVW argp+4(FP), R29 ADDU $-4, R29 NOR R0, R0 // prevent scheduling MOVW 0(REGCTXT), R4 JMP (R4) // Save state of caller into g->sched. Smashes R1. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVW R31, (g_sched+gobuf_pc)(g) MOVW R29, (g_sched+gobuf_sp)(g) MOVW R0, (g_sched+gobuf_lr)(g) MOVW R0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVW (g_sched+gobuf_ctxt)(g), R1 BEQ R1, 2(PC) JAL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-12 MOVW fn+0(FP), R25 MOVW arg+4(FP), R4 MOVW R29, R3 // save original stack pointer MOVW g, R2 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. MOVW g_m(g), R5 MOVW m_g0(R5), R6 BEQ R6, g, g0 JAL gosave<>(SB) MOVW R6, g JAL runtime·save_g(SB) MOVW (g_sched+gobuf_sp)(g), R29 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers and O32 frame. ADDU $-24, R29 AND $~7, R29 // O32 ABI expects 8-byte aligned stack on function entry MOVW R2, 16(R29) // save old g on stack MOVW (g_stack+stack_hi)(R2), R2 SUBU R3, R2 MOVW R2, 20(R29) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) JAL (R25) // Restore g, stack pointer. R2 is return value. MOVW 16(R29), g JAL runtime·save_g(SB) MOVW (g_stack+stack_hi)(g), R5 MOVW 20(R29), R6 SUBU R6, R5 MOVW R5, R29 MOVW R2, ret+8(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$16-16 MOVW $fn+0(FP), R1 MOVW R1, 4(R29) MOVW frame+4(FP), R1 MOVW R1, 8(R29) MOVW framesize+8(FP), R1 MOVW R1, 12(R29) MOVW ctxt+12(FP), R1 MOVW R1, 16(R29) MOVW $runtime·cgocallback_gofunc(SB), R1 JAL (R1) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$8-16 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVB runtime·iscgo(SB), R1 BEQ R1, nocgo JAL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. BEQ g, needm MOVW g_m(g), R3 MOVW R3, savedm-4(SP) JMP havem needm: MOVW g, savedm-4(SP) // g is zero, so is m. MOVW $runtime·needm(SB), R4 JAL (R4) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVW g_m(g), R3 MOVW m_g0(R3), R1 MOVW R29, (g_sched+gobuf_sp)(R1) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 4(R29) aka savedsp-8(SP). MOVW m_g0(R3), R1 MOVW (g_sched+gobuf_sp)(R1), R2 MOVW R2, savedsp-8(SP) MOVW R29, (g_sched+gobuf_sp)(R1) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -4(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVW m_curg(R3), g JAL runtime·save_g(SB) MOVW (g_sched+gobuf_sp)(g), R2 // prepare stack as R2 MOVW (g_sched+gobuf_pc)(g), R4 MOVW R4, -12(R2) MOVW ctxt+12(FP), R1 MOVW R1, -8(R2) MOVW $-12(R2), R29 JAL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVW 0(R29), R4 MOVW R4, (g_sched+gobuf_pc)(g) MOVW $12(R29), R2 MOVW R2, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVW g_m(g), R3 MOVW m_g0(R3), g JAL runtime·save_g(SB) MOVW (g_sched+gobuf_sp)(g), R29 MOVW savedsp-8(SP), R2 MOVW R2, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVW savedm-4(SP), R3 BNE R3, droppedm MOVW $runtime·dropm(SB), R4 JAL (R4) droppedm: // Done! RET // void setg(G*); set g. for use by needm. // This only happens if iscgo, so jump straight to save_g TEXT runtime·setg(SB),NOSPLIT,$0-4 MOVW gg+0(FP), g JAL runtime·save_g(SB) RET // void setg_gcc(G*); set g in C TLS. // Must obey the gcc calling convention. TEXT setg_gcc<>(SB),NOSPLIT,$0 MOVW R4, g JAL runtime·save_g(SB) RET TEXT runtime·abort(SB),NOSPLIT,$0-0 UNDEF // Not implemented. TEXT runtime·aeshash(SB),NOSPLIT,$0 UNDEF // Not implemented. TEXT runtime·aeshash32(SB),NOSPLIT,$0 UNDEF // Not implemented. TEXT runtime·aeshash64(SB),NOSPLIT,$0 UNDEF // Not implemented. TEXT runtime·aeshashstr(SB),NOSPLIT,$0 UNDEF TEXT runtime·return0(SB),NOSPLIT,$0 MOVW $0, R1 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 // g (R30), R3 and REGTMP (R23) might be clobbered by load_g. R30 and R23 // are callee-save in the gcc calling convention, so save them. MOVW R23, R8 MOVW g, R9 MOVW R31, R10 // this call frame does not save LR JAL runtime·load_g(SB) MOVW g_m(g), R1 MOVW m_curg(R1), R1 MOVW (g_stack+stack_hi)(R1), R2 // return value in R2 MOVW R8, R23 MOVW R9, g MOVW R10, R31 RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 NOR R0, R0 // NOP JAL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit NOR R0, R0 // NOP TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R1 MOVB R1, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - R20 is the destination of the write // - R21 is the value being written at R20. // It clobbers R23 (the linker temp register). // The act of CALLing gcWriteBarrier will clobber R31 (LR). // It does not clobber any other general-purpose registers, // but may clobber others (e.g., floating point registers). TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$104 // Save the registers clobbered by the fast path. MOVW R1, 100(R29) MOVW R2, 104(R29) MOVW g_m(g), R1 MOVW m_p(R1), R1 MOVW (p_wbBuf+wbBuf_next)(R1), R2 // Increment wbBuf.next position. ADD $8, R2 MOVW R2, (p_wbBuf+wbBuf_next)(R1) MOVW (p_wbBuf+wbBuf_end)(R1), R1 MOVW R1, R23 // R23 is linker temp register // Record the write. MOVW R21, -8(R2) // Record value MOVW (R20), R1 // TODO: This turns bad writes into bad reads. MOVW R1, -4(R2) // Record *slot // Is the buffer full? BEQ R2, R23, flush ret: MOVW 100(R29), R1 MOVW 104(R29), R2 // Do the write. MOVW R21, (R20) RET flush: // Save all general purpose registers since these could be // clobbered by wbBufFlush and were not saved by the caller. MOVW R20, 4(R29) // Also first argument to wbBufFlush MOVW R21, 8(R29) // Also second argument to wbBufFlush // R1 already saved // R2 already saved MOVW R3, 12(R29) MOVW R4, 16(R29) MOVW R5, 20(R29) MOVW R6, 24(R29) MOVW R7, 28(R29) MOVW R8, 32(R29) MOVW R9, 36(R29) MOVW R10, 40(R29) MOVW R11, 44(R29) MOVW R12, 48(R29) MOVW R13, 52(R29) MOVW R14, 56(R29) MOVW R15, 60(R29) MOVW R16, 64(R29) MOVW R17, 68(R29) MOVW R18, 72(R29) MOVW R19, 76(R29) MOVW R20, 80(R29) // R21 already saved // R22 already saved. MOVW R22, 84(R29) // R23 is tmp register. MOVW R24, 88(R29) MOVW R25, 92(R29) // R26 is reserved by kernel. // R27 is reserved by kernel. MOVW R28, 96(R29) // R29 is SP. // R30 is g. // R31 is LR, which was saved by the prologue. // This takes arguments R20 and R21. CALL runtime·wbBufFlush(SB) MOVW 4(R29), R20 MOVW 8(R29), R21 MOVW 12(R29), R3 MOVW 16(R29), R4 MOVW 20(R29), R5 MOVW 24(R29), R6 MOVW 28(R29), R7 MOVW 32(R29), R8 MOVW 36(R29), R9 MOVW 40(R29), R10 MOVW 44(R29), R11 MOVW 48(R29), R12 MOVW 52(R29), R13 MOVW 56(R29), R14 MOVW 60(R29), R15 MOVW 64(R29), R16 MOVW 68(R29), R17 MOVW 72(R29), R18 MOVW 76(R29), R19 MOVW 80(R29), R20 MOVW 84(R29), R22 MOVW 88(R29), R24 MOVW 92(R29), R25 MOVW 96(R29), R28 JMP ret