// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build ppc64 ppc64le #include "go_asm.h" #include "go_tls.h" #include "funcdata.h" #include "textflag.h" #include "asm_ppc64x.h" TEXT runtime·rt0_go(SB),NOSPLIT,$0 // R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer // initialize essential registers BL runtime·reginit(SB) SUB $(FIXED_FRAME+16), R1 MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame MOVW R3, FIXED_FRAME+0(R1) // argc MOVD R4, FIXED_FRAME+8(R1) // argv // create istack out of the given (operating system) stack. // _cgo_init may update stackguard. MOVD $runtime·g0(SB), g BL runtime·save_g(SB) MOVD $(-64*1024), R31 ADD R31, R1, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) MOVD R3, (g_stack+stack_lo)(g) MOVD R1, (g_stack+stack_hi)(g) // if there is a _cgo_init, call it using the gcc ABI. MOVD _cgo_init(SB), R12 CMP R0, R12 BEQ nocgo #ifdef GOARCH_ppc64 // ppc64 use elf ABI v1. we must get the real entry address from // first slot of the function descriptor before call. MOVD 8(R12), R2 MOVD (R12), R12 #endif MOVD R12, CTR // r12 = "global function entry point" MOVD R13, R5 // arg 2: TLS base pointer MOVD $setg_gcc<>(SB), R4 // arg 1: setg MOVD g, R3 // arg 0: G // C functions expect 32 bytes of space on caller stack frame // and a 16-byte aligned R1 MOVD R1, R14 // save current stack SUB $32, R1 // reserve 32 bytes RLDCR $0, R1, $~15, R1 // 16-byte align BL (CTR) // may clobber R0, R3-R12 MOVD R14, R1 // restore stack MOVD 24(R1), R2 XOR R0, R0 // fix R0 nocgo: // update stackguard after _cgo_init MOVD (g_stack+stack_lo)(g), R3 ADD $const__StackGuard, R3 MOVD R3, g_stackguard0(g) MOVD R3, g_stackguard1(g) // set the per-goroutine and per-mach "registers" MOVD $runtime·m0(SB), R3 // save m->g0 = g0 MOVD g, m_g0(R3) // save m0 to g0->m MOVD R3, g_m(g) BL runtime·check(SB) // args are already prepared BL runtime·args(SB) BL runtime·osinit(SB) BL runtime·schedinit(SB) // create a new goroutine to start program MOVD $runtime·mainPC(SB), R3 // entry MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL runtime·newproc(SB) ADD $(16+FIXED_FRAME), R1 // start this M BL runtime·mstart(SB) MOVD R0, 0(R0) RET DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) GLOBL runtime·mainPC(SB),RODATA,$8 TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, 0(R0) // TODO: TD RET TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 RET TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0 // crosscall_ppc64 and crosscall2 need to reginit, but can't // get at the 'runtime.reginit' symbol. BR runtime·reginit(SB) TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0 // set R0 to zero, it's expected by the toolchain XOR R0, R0 RET /* * go-routine */ // void gosave(Gobuf*) // save state in Gobuf; setjmp TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8 MOVD buf+0(FP), R3 MOVD R1, gobuf_sp(R3) MOVD LR, R31 MOVD R31, gobuf_pc(R3) MOVD g, gobuf_g(R3) MOVD R0, gobuf_lr(R3) MOVD R0, gobuf_ret(R3) // Assert ctxt is zero. See func save. MOVD gobuf_ctxt(R3), R3 CMP R0, R3 BEQ 2(PC) BL runtime·badctxt(SB) RET // void gogo(Gobuf*) // restore state from Gobuf; longjmp TEXT runtime·gogo(SB), NOSPLIT, $16-8 MOVD buf+0(FP), R5 MOVD gobuf_g(R5), g // make sure g is not nil BL runtime·save_g(SB) MOVD 0(g), R4 MOVD gobuf_sp(R5), R1 MOVD gobuf_lr(R5), R31 #ifndef GOOS_aix MOVD 24(R1), R2 // restore R2 #endif MOVD R31, LR MOVD gobuf_ret(R5), R3 MOVD gobuf_ctxt(R5), R11 MOVD R0, gobuf_sp(R5) MOVD R0, gobuf_ret(R5) MOVD R0, gobuf_lr(R5) MOVD R0, gobuf_ctxt(R5) CMP R0, R0 // set condition codes for == test, needed by stack split MOVD gobuf_pc(R5), R12 MOVD R12, CTR BR (CTR) // void mcall(fn func(*g)) // Switch to m->g0's stack, call fn(g). // Fn must never return. It should gogo(&g->sched) // to keep running g. TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8 // Save caller state in g->sched MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // Switch to m->g0 & its stack, call fn. MOVD g, R3 MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) CMP g, R3 BNE 2(PC) BR runtime·badmcall(SB) MOVD fn+0(FP), R11 // context MOVD 0(R11), R12 // code pointer MOVD R12, CTR MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp MOVDU R3, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) MOVDU R0, -8(R1) BL (CTR) MOVD 24(R1), R2 BR runtime·badmcall2(SB) // systemstack_switch is a dummy routine that systemstack leaves at the bottom // of the G stack. We need to distinguish the routine that // lives at the bottom of the G stack from the one that lives // at the top of the system stack because the one at the top of // the system stack terminates the stack walk (see topofstack()). TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 // We have several undefs here so that 16 bytes past // $runtime·systemstack_switch lies within them whether or not the // instructions that derive r2 from r12 are there. UNDEF UNDEF UNDEF BL (LR) // make sure this function is not leaf RET // func systemstack(fn func()) TEXT runtime·systemstack(SB), NOSPLIT, $0-8 MOVD fn+0(FP), R3 // R3 = fn MOVD R3, R11 // context MOVD g_m(g), R4 // R4 = m MOVD m_gsignal(R4), R5 // R5 = gsignal CMP g, R5 BEQ noswitch MOVD m_g0(R4), R5 // R5 = g0 CMP g, R5 BEQ noswitch MOVD m_curg(R4), R6 CMP g, R6 BEQ switch // Bad: g is not gsignal, not g0, not curg. What is it? // Hide call from linker nosplit analysis. MOVD $runtime·badsystemstack(SB), R12 MOVD R12, CTR BL (CTR) BL runtime·abort(SB) switch: // save our state in g->sched. Pretend to // be systemstack_switch if the G stack is scanned. MOVD $runtime·systemstack_switch(SB), R6 ADD $16, R6 // get past prologue (including r2-setting instructions when they're there) MOVD R6, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD g, (g_sched+gobuf_g)(g) // switch to g0 MOVD R5, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R3 // make it look like mstart called systemstack on g0, to stop traceback SUB $FIXED_FRAME, R3 MOVD $runtime·mstart(SB), R4 MOVD R4, 0(R3) MOVD R3, R1 // call target function MOVD 0(R11), R12 // code pointer MOVD R12, CTR BL (CTR) // restore TOC pointer. It seems unlikely that we will use systemstack // to call a function defined in another module, but the results of // doing so would be so confusing that it's worth doing this. MOVD g_m(g), R3 MOVD m_curg(R3), g MOVD (g_sched+gobuf_sp)(g), R3 #ifndef GOOS_aix MOVD 24(R3), R2 #endif // switch back to g MOVD g_m(g), R3 MOVD m_curg(R3), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVD R0, (g_sched+gobuf_sp)(g) RET noswitch: // already on m stack, just call directly // On other arches we do a tail call here, but it appears to be // impossible to tail call a function pointer in shared mode on // ppc64 because the caller is responsible for restoring the TOC. MOVD 0(R11), R12 // code pointer MOVD R12, CTR BL (CTR) #ifndef GOOS_aix MOVD 24(R1), R2 #endif RET /* * support for morestack */ // Called during function prolog when more stack is needed. // Caller has already loaded: // R3: framesize, R4: argsize, R5: LR // // The traceback routines see morestack on a g0 as being // the top of a stack (for example, morestack calling newstack // calling the scheduler calling newm calling gc), so we must // record an argument size. For that purpose, it has no arguments. TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 // Cannot grow scheduler stack (m->g0). MOVD g_m(g), R7 MOVD m_g0(R7), R8 CMP g, R8 BNE 3(PC) BL runtime·badmorestackg0(SB) BL runtime·abort(SB) // Cannot grow signal stack (m->gsignal). MOVD m_gsignal(R7), R8 CMP g, R8 BNE 3(PC) BL runtime·badmorestackgsignal(SB) BL runtime·abort(SB) // Called from f. // Set g->sched to context in f. MOVD R1, (g_sched+gobuf_sp)(g) MOVD LR, R8 MOVD R8, (g_sched+gobuf_pc)(g) MOVD R5, (g_sched+gobuf_lr)(g) MOVD R11, (g_sched+gobuf_ctxt)(g) // Called from f. // Set m->morebuf to f's caller. MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP MOVD g, (m_morebuf+gobuf_g)(R7) // Call newstack on m->g0's stack. MOVD m_g0(R7), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVDU R0, -(FIXED_FRAME+0)(R1) // create a call frame on g0 BL runtime·newstack(SB) // Not reached, but make sure the return PC from the call to newstack // is still in this function, and not the beginning of the next. UNDEF TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 MOVD R0, R11 BR runtime·morestack(SB) // reflectcall: call a function with the given argument list // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). // we don't have variable-sized frames, so we use a small number // of constant-sized-frame functions to encode a few bits of size in the pc. // Caution: ugly multiline assembly macros in your future! #define DISPATCH(NAME,MAXSIZE) \ MOVD $MAXSIZE, R31; \ CMP R3, R31; \ BGT 4(PC); \ MOVD $NAME(SB), R12; \ MOVD R12, CTR; \ BR (CTR) // Note: can't just "BR NAME(SB)" - bad inlining results. TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32 MOVWZ argsize+24(FP), R3 DISPATCH(runtime·call32, 32) DISPATCH(runtime·call64, 64) DISPATCH(runtime·call128, 128) DISPATCH(runtime·call256, 256) DISPATCH(runtime·call512, 512) DISPATCH(runtime·call1024, 1024) DISPATCH(runtime·call2048, 2048) DISPATCH(runtime·call4096, 4096) DISPATCH(runtime·call8192, 8192) DISPATCH(runtime·call16384, 16384) DISPATCH(runtime·call32768, 32768) DISPATCH(runtime·call65536, 65536) DISPATCH(runtime·call131072, 131072) DISPATCH(runtime·call262144, 262144) DISPATCH(runtime·call524288, 524288) DISPATCH(runtime·call1048576, 1048576) DISPATCH(runtime·call2097152, 2097152) DISPATCH(runtime·call4194304, 4194304) DISPATCH(runtime·call8388608, 8388608) DISPATCH(runtime·call16777216, 16777216) DISPATCH(runtime·call33554432, 33554432) DISPATCH(runtime·call67108864, 67108864) DISPATCH(runtime·call134217728, 134217728) DISPATCH(runtime·call268435456, 268435456) DISPATCH(runtime·call536870912, 536870912) DISPATCH(runtime·call1073741824, 1073741824) MOVD $runtime·badreflectcall(SB), R12 MOVD R12, CTR BR (CTR) #define CALLFN(NAME,MAXSIZE) \ TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \ NO_LOCAL_POINTERS; \ /* copy arguments to stack */ \ MOVD arg+16(FP), R3; \ MOVWZ argsize+24(FP), R4; \ MOVD R1, R5; \ CMP R4, $8; \ BLT tailsetup; \ /* copy 8 at a time if possible */ \ ADD $(FIXED_FRAME-8), R5; \ SUB $8, R3; \ top: \ MOVDU 8(R3), R7; \ MOVDU R7, 8(R5); \ SUB $8, R4; \ CMP R4, $8; \ BGE top; \ /* handle remaining bytes */ \ CMP $0, R4; \ BEQ callfn; \ ADD $7, R3; \ ADD $7, R5; \ BR tail; \ tailsetup: \ CMP $0, R4; \ BEQ callfn; \ ADD $(FIXED_FRAME-1), R5; \ SUB $1, R3; \ tail: \ MOVBU 1(R3), R6; \ MOVBU R6, 1(R5); \ SUB $1, R4; \ CMP $0, R4; \ BGT tail; \ callfn: \ /* call function */ \ MOVD f+8(FP), R11; \ #ifdef GOOS_aix \ /* AIX won't trigger a SIGSEGV if R11 = nil */ \ /* So it manually triggers it */ \ CMP R0, R11 \ BNE 2(PC) \ MOVD R0, 0(R0) \ #endif \ MOVD (R11), R12; \ MOVD R12, CTR; \ PCDATA $PCDATA_StackMapIndex, $0; \ BL (CTR); \ #ifndef GOOS_aix \ MOVD 24(R1), R2; \ #endif \ /* copy return values back */ \ MOVD argtype+0(FP), R7; \ MOVD arg+16(FP), R3; \ MOVWZ n+24(FP), R4; \ MOVWZ retoffset+28(FP), R6; \ ADD $FIXED_FRAME, R1, R5; \ ADD R6, R5; \ ADD R6, R3; \ SUB R6, R4; \ BL callRet<>(SB); \ RET // callRet copies return values back at the end of call*. This is a // separate function so it can allocate stack space for the arguments // to reflectcallmove. It does not follow the Go ABI; it expects its // arguments in registers. TEXT callRet<>(SB), NOSPLIT, $32-0 MOVD R7, FIXED_FRAME+0(R1) MOVD R3, FIXED_FRAME+8(R1) MOVD R5, FIXED_FRAME+16(R1) MOVD R4, FIXED_FRAME+24(R1) BL runtime·reflectcallmove(SB) RET CALLFN(·call32, 32) CALLFN(·call64, 64) CALLFN(·call128, 128) CALLFN(·call256, 256) CALLFN(·call512, 512) CALLFN(·call1024, 1024) CALLFN(·call2048, 2048) CALLFN(·call4096, 4096) CALLFN(·call8192, 8192) CALLFN(·call16384, 16384) CALLFN(·call32768, 32768) CALLFN(·call65536, 65536) CALLFN(·call131072, 131072) CALLFN(·call262144, 262144) CALLFN(·call524288, 524288) CALLFN(·call1048576, 1048576) CALLFN(·call2097152, 2097152) CALLFN(·call4194304, 4194304) CALLFN(·call8388608, 8388608) CALLFN(·call16777216, 16777216) CALLFN(·call33554432, 33554432) CALLFN(·call67108864, 67108864) CALLFN(·call134217728, 134217728) CALLFN(·call268435456, 268435456) CALLFN(·call536870912, 536870912) CALLFN(·call1073741824, 1073741824) TEXT runtime·procyield(SB),NOSPLIT|NOFRAME,$0-4 MOVW cycles+0(FP), R7 // POWER does not have a pause/yield instruction equivalent. // Instead, we can lower the program priority by setting the // Program Priority Register prior to the wait loop and set it // back to default afterwards. On Linux, the default priority is // medium-low. For details, see page 837 of the ISA 3.0. OR R1, R1, R1 // Set PPR priority to low again: SUB $1, R7 CMP $0, R7 BNE again OR R6, R6, R6 // Set PPR priority back to medium-low RET // void jmpdefer(fv, sp); // called from deferreturn. // 1. grab stored LR for caller // 2. sub 8 bytes to get back to either nop or toc reload before deferreturn // 3. BR to fn // When dynamically linking Go, it is not sufficient to rewind to the BL // deferreturn -- we might be jumping between modules and so we need to reset // the TOC pointer in r2. To do this, codegen inserts MOVD 24(R1), R2 *before* // the BL deferreturn and jmpdefer rewinds to that. TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16 MOVD 0(R1), R31 SUB $8, R31 MOVD R31, LR MOVD fv+0(FP), R11 MOVD argp+8(FP), R1 SUB $FIXED_FRAME, R1 #ifdef GOOS_aix // AIX won't trigger a SIGSEGV if R11 = nil // So it manually triggers it CMP R0, R11 BNE 2(PC) MOVD R0, 0(R0) #endif MOVD 0(R11), R12 MOVD R12, CTR BR (CTR) // Save state of caller into g->sched. Smashes R31. TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0 MOVD LR, R31 MOVD R31, (g_sched+gobuf_pc)(g) MOVD R1, (g_sched+gobuf_sp)(g) MOVD R0, (g_sched+gobuf_lr)(g) MOVD R0, (g_sched+gobuf_ret)(g) // Assert ctxt is zero. See func save. MOVD (g_sched+gobuf_ctxt)(g), R31 CMP R0, R31 BEQ 2(PC) BL runtime·badctxt(SB) RET // func asmcgocall(fn, arg unsafe.Pointer) int32 // Call fn(arg) on the scheduler stack, // aligned appropriately for the gcc ABI. // See cgocall.go for more details. TEXT ·asmcgocall(SB),NOSPLIT,$0-20 MOVD fn+0(FP), R3 MOVD arg+8(FP), R4 MOVD R1, R7 // save original stack pointer MOVD g, R5 // Figure out if we need to switch to m->g0 stack. // We get called to create new OS threads too, and those // come in on the m->g0 stack already. // Moreover, if it's called inside the signal handler, it must not switch // to g0 as it can be in use by another syscall. MOVD g_m(g), R8 MOVD m_gsignal(R8), R6 CMP R6, g BEQ g0 MOVD m_g0(R8), R6 CMP R6, g BEQ g0 BL gosave<>(SB) MOVD R6, g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 // Now on a scheduling stack (a pthread-created stack). g0: // Save room for two of our pointers, plus 32 bytes of callee // save area that lives on the caller stack. #ifdef GOOS_aix // Create a fake LR to improve backtrace. MOVD $runtime·asmcgocall(SB), R6 MOVD R6, 16(R1) #endif SUB $48, R1 RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI MOVD R5, 40(R1) // save old g on stack MOVD (g_stack+stack_hi)(R5), R5 SUB R7, R5 MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) #ifdef GOOS_aix MOVD R7, 0(R1) // Save frame pointer to allow manual backtrace with gdb #else MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?) #endif // This is a "global call", so put the global entry point in r12 MOVD R3, R12 #ifdef GOARCH_ppc64 // ppc64 use elf ABI v1. we must get the real entry address from // first slot of the function descriptor before call. #ifndef GOOS_aix // aix just passes the function pointer for the moment, see golang.org/cl/146898 for details. MOVD 8(R12), R2 MOVD (R12), R12 #endif #endif MOVD R12, CTR MOVD R4, R3 // arg in r3 BL (CTR) // C code can clobber R0, so set it back to 0. F27-F31 are // callee save, so we don't need to recover those. XOR R0, R0 // Restore g, stack pointer, toc pointer. // R3 is errno, so don't touch it MOVD 40(R1), g MOVD (g_stack+stack_hi)(g), R5 MOVD 32(R1), R6 SUB R6, R5 #ifndef GOOS_aix MOVD 24(R5), R2 #endif MOVD R5, R1 BL runtime·save_g(SB) MOVW R3, ret+16(FP) RET // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) // Turn the fn into a Go func (by taking its address) and call // cgocallback_gofunc. TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 MOVD $fn+0(FP), R3 MOVD R3, FIXED_FRAME+0(R1) MOVD frame+8(FP), R3 MOVD R3, FIXED_FRAME+8(R1) MOVD framesize+16(FP), R3 MOVD R3, FIXED_FRAME+16(R1) MOVD ctxt+24(FP), R3 MOVD R3, FIXED_FRAME+24(R1) MOVD $runtime·cgocallback_gofunc(SB), R12 MOVD R12, CTR BL (CTR) RET // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) // See cgocall.go for more details. TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 NO_LOCAL_POINTERS // Load m and g from thread-local storage. MOVBZ runtime·iscgo(SB), R3 CMP R3, $0 BEQ nocgo BL runtime·load_g(SB) nocgo: // If g is nil, Go did not create the current thread. // Call needm to obtain one for temporary use. // In this case, we're running on the thread stack, so there's // lots of space, but the linker doesn't know. Hide the call from // the linker analysis by using an indirect call. CMP g, $0 BEQ needm MOVD g_m(g), R8 MOVD R8, savedm-8(SP) BR havem needm: MOVD g, savedm-8(SP) // g is zero, so is m. MOVD $runtime·needm(SB), R12 MOVD R12, CTR BL (CTR) // Set m->sched.sp = SP, so that if a panic happens // during the function we are about to execute, it will // have a valid SP to run on the g0 stack. // The next few lines (after the havem label) // will save this SP onto the stack and then write // the same SP back to m->sched.sp. That seems redundant, // but if an unrecovered panic happens, unwindm will // restore the g->sched.sp from the stack location // and then systemstack will try to use it. If we don't set it here, // that restored SP will be uninitialized (typically 0) and // will not be usable. MOVD g_m(g), R8 MOVD m_g0(R8), R3 MOVD R1, (g_sched+gobuf_sp)(R3) havem: // Now there's a valid m, and we're running on its m->g0. // Save current m->g0->sched.sp on stack and then set it to SP. // Save current sp in m->g0->sched.sp in preparation for // switch back to m->curg stack. // NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP). MOVD m_g0(R8), R3 MOVD (g_sched+gobuf_sp)(R3), R4 MOVD R4, savedsp-16(SP) MOVD R1, (g_sched+gobuf_sp)(R3) // Switch to m->curg stack and call runtime.cgocallbackg. // Because we are taking over the execution of m->curg // but *not* resuming what had been running, we need to // save that information (m->curg->sched) so we can restore it. // We can restore m->curg->sched.sp easily, because calling // runtime.cgocallbackg leaves SP unchanged upon return. // To save m->curg->sched.pc, we push it onto the stack. // This has the added benefit that it looks to the traceback // routine like cgocallbackg is going to return to that // PC (because the frame we allocate below has the same // size as cgocallback_gofunc's frame declared above) // so that the traceback will seamlessly trace back into // the earlier calls. // // In the new goroutine, -8(SP) is unused (where SP refers to // m->curg's SP while we're setting it up, before we've adjusted it). MOVD m_curg(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4 MOVD (g_sched+gobuf_pc)(g), R5 MOVD R5, -(FIXED_FRAME+16)(R4) MOVD ctxt+24(FP), R3 MOVD R3, -16(R4) MOVD $-(FIXED_FRAME+16)(R4), R1 BL runtime·cgocallbackg(SB) // Restore g->sched (== m->curg->sched) from saved values. MOVD 0(R1), R5 MOVD R5, (g_sched+gobuf_pc)(g) MOVD $(FIXED_FRAME+16)(R1), R4 MOVD R4, (g_sched+gobuf_sp)(g) // Switch back to m->g0's stack and restore m->g0->sched.sp. // (Unlike m->curg, the g0 goroutine never uses sched.pc, // so we do not have to restore it.) MOVD g_m(g), R8 MOVD m_g0(R8), g BL runtime·save_g(SB) MOVD (g_sched+gobuf_sp)(g), R1 MOVD savedsp-16(SP), R4 MOVD R4, (g_sched+gobuf_sp)(g) // If the m on entry was nil, we called needm above to borrow an m // for the duration of the call. Since the call is over, return it with dropm. MOVD savedm-8(SP), R6 CMP R6, $0 BNE droppedm MOVD $runtime·dropm(SB), R12 MOVD R12, CTR BL (CTR) droppedm: // Done! RET // void setg(G*); set g. for use by needm. TEXT runtime·setg(SB), NOSPLIT, $0-8 MOVD gg+0(FP), g // This only happens if iscgo, so jump straight to save_g BL runtime·save_g(SB) RET #ifdef GOARCH_ppc64 TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 DWORD $_setg_gcc<>(SB) DWORD $0 DWORD $0 #endif // void setg_gcc(G*); set g in C TLS. // Must obey the gcc calling convention. #ifdef GOARCH_ppc64le TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 #else TEXT _setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0 #endif // The standard prologue clobbers R31, which is callee-save in // the C ABI, so we have to use $-8-0 and save LR ourselves. MOVD LR, R4 // Also save g and R31, since they're callee-save in C ABI MOVD R31, R5 MOVD g, R6 MOVD R3, g BL runtime·save_g(SB) MOVD R6, g MOVD R5, R31 MOVD R4, LR RET TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R0 UNDEF #define TBR 268 // int64 runtime·cputicks(void) TEXT runtime·cputicks(SB),NOSPLIT,$0-8 MOVD SPR(TBR), R3 MOVD R3, ret+0(FP) RET // AES hashing not implemented for ppc64 TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0 MOVW (R0), R1 TEXT runtime·return0(SB), NOSPLIT, $0 MOVW $0, R3 RET // Called from cgo wrappers, this function returns g->m->curg.stack.hi. // Must obey the gcc calling convention. TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0 // g (R30) and R31 are callee-save in the C ABI, so save them MOVD g, R4 MOVD R31, R5 MOVD LR, R6 BL runtime·load_g(SB) // clobbers g (R30), R31 MOVD g_m(g), R3 MOVD m_curg(R3), R3 MOVD (g_stack+stack_hi)(R3), R3 MOVD R4, g MOVD R5, R31 MOVD R6, LR RET // The top-most function running on a goroutine // returns to goexit+PCQuantum. // // When dynamically linking Go, it can be returned to from a function // implemented in a different module and so needs to reload the TOC pointer // from the stack (although this function declares that it does not set up x-a // frame, newproc1 does in fact allocate one for goexit and saves the TOC // pointer in the correct place). // goexit+_PCQuantum is halfway through the usual global entry point prologue // that derives r2 from r12 which is a bit silly, but not harmful. TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0 MOVD 24(R1), R2 BL runtime·goexit1(SB) // does not return // traceback from goexit1 must hit code range of goexit MOVD R0, R0 // NOP TEXT runtime·sigreturn(SB),NOSPLIT,$0-0 RET // prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the // module containing runtime) to the frame that goexit will execute in when // the goroutine exits. It's implemented in assembly mainly because that's the // easiest way to get access to R2. TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8 MOVD sp+0(FP), R3 MOVD R2, 24(R3) RET TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0 ADD $-8, R1 MOVD R31, 0(R1) MOVD runtime·lastmoduledatap(SB), R4 MOVD R3, moduledata_next(R4) MOVD R3, runtime·lastmoduledatap(SB) MOVD 0(R1), R31 ADD $8, R1 RET TEXT ·checkASM(SB),NOSPLIT,$0-1 MOVW $1, R3 MOVB R3, ret+0(FP) RET // gcWriteBarrier performs a heap pointer write and informs the GC. // // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: // - R20 is the destination of the write // - R21 is the value being written at R20. // It clobbers condition codes. // It does not clobber R0 through R15, // but may clobber any other register, *including* R31. TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$112 // The standard prologue clobbers R31. // We use R16 and R17 as scratch registers. MOVD g_m(g), R16 MOVD m_p(R16), R16 MOVD (p_wbBuf+wbBuf_next)(R16), R17 // Increment wbBuf.next position. ADD $16, R17 MOVD R17, (p_wbBuf+wbBuf_next)(R16) MOVD (p_wbBuf+wbBuf_end)(R16), R16 CMP R16, R17 // Record the write. MOVD R21, -16(R17) // Record value MOVD (R20), R16 // TODO: This turns bad writes into bad reads. MOVD R16, -8(R17) // Record *slot // Is the buffer full? (flags set in CMP above) BEQ flush ret: // Do the write. MOVD R21, (R20) RET flush: // Save registers R0 through R15 since these were not saved by the caller. // We don't save all registers on ppc64 because it takes too much space. MOVD R20, (FIXED_FRAME+0)(R1) // Also first argument to wbBufFlush MOVD R21, (FIXED_FRAME+8)(R1) // Also second argument to wbBufFlush // R0 is always 0, so no need to spill. // R1 is SP. // R2 is SB. MOVD R3, (FIXED_FRAME+16)(R1) MOVD R4, (FIXED_FRAME+24)(R1) MOVD R5, (FIXED_FRAME+32)(R1) MOVD R6, (FIXED_FRAME+40)(R1) MOVD R7, (FIXED_FRAME+48)(R1) MOVD R8, (FIXED_FRAME+56)(R1) MOVD R9, (FIXED_FRAME+64)(R1) MOVD R10, (FIXED_FRAME+72)(R1) MOVD R11, (FIXED_FRAME+80)(R1) MOVD R12, (FIXED_FRAME+88)(R1) // R13 is REGTLS MOVD R14, (FIXED_FRAME+96)(R1) MOVD R15, (FIXED_FRAME+104)(R1) // This takes arguments R20 and R21. CALL runtime·wbBufFlush(SB) MOVD (FIXED_FRAME+0)(R1), R20 MOVD (FIXED_FRAME+8)(R1), R21 MOVD (FIXED_FRAME+16)(R1), R3 MOVD (FIXED_FRAME+24)(R1), R4 MOVD (FIXED_FRAME+32)(R1), R5 MOVD (FIXED_FRAME+40)(R1), R6 MOVD (FIXED_FRAME+48)(R1), R7 MOVD (FIXED_FRAME+56)(R1), R8 MOVD (FIXED_FRAME+64)(R1), R9 MOVD (FIXED_FRAME+72)(R1), R10 MOVD (FIXED_FRAME+80)(R1), R11 MOVD (FIXED_FRAME+88)(R1), R12 MOVD (FIXED_FRAME+96)(R1), R14 MOVD (FIXED_FRAME+104)(R1), R15 JMP ret