// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Memory allocator. // // This was originally based on tcmalloc, but has diverged quite a bit. // http://goog-perftools.sourceforge.net/doc/tcmalloc.html // The main allocator works in runs of pages. // Small allocation sizes (up to and including 32 kB) are // rounded to one of about 70 size classes, each of which // has its own free set of objects of exactly that size. // Any free page of memory can be split into a set of objects // of one size class, which are then managed using a free bitmap. // // The allocator's data structures are: // // fixalloc: a free-list allocator for fixed-size off-heap objects, // used to manage storage used by the allocator. // mheap: the malloc heap, managed at page (8192-byte) granularity. // mspan: a run of pages managed by the mheap. // mcentral: collects all spans of a given size class. // mcache: a per-P cache of mspans with free space. // mstats: allocation statistics. // // Allocating a small object proceeds up a hierarchy of caches: // // 1. Round the size up to one of the small size classes // and look in the corresponding mspan in this P's mcache. // Scan the mspan's free bitmap to find a free slot. // If there is a free slot, allocate it. // This can all be done without acquiring a lock. // // 2. If the mspan has no free slots, obtain a new mspan // from the mcentral's list of mspans of the required size // class that have free space. // Obtaining a whole span amortizes the cost of locking // the mcentral. // // 3. If the mcentral's mspan list is empty, obtain a run // of pages from the mheap to use for the mspan. // // 4. If the mheap is empty or has no page runs large enough, // allocate a new group of pages (at least 1MB) from the // operating system. Allocating a large run of pages // amortizes the cost of talking to the operating system. // // Sweeping an mspan and freeing objects on it proceeds up a similar // hierarchy: // // 1. If the mspan is being swept in response to allocation, it // is returned to the mcache to satisfy the allocation. // // 2. Otherwise, if the mspan still has allocated objects in it, // it is placed on the mcentral free list for the mspan's size // class. // // 3. Otherwise, if all objects in the mspan are free, the mspan // is now "idle", so it is returned to the mheap and no longer // has a size class. // This may coalesce it with adjacent idle mspans. // // 4. If an mspan remains idle for long enough, return its pages // to the operating system. // // Allocating and freeing a large object uses the mheap // directly, bypassing the mcache and mcentral. // // Free object slots in an mspan are zeroed only if mspan.needzero is // false. If needzero is true, objects are zeroed as they are // allocated. There are various benefits to delaying zeroing this way: // // 1. Stack frame allocation can avoid zeroing altogether. // // 2. It exhibits better temporal locality, since the program is // probably about to write to the memory. // // 3. We don't zero pages that never get reused. // Virtual memory layout // // The heap consists of a set of arenas, which are 64MB on 64-bit and // 4MB on 32-bit (heapArenaBytes). Each arena's start address is also // aligned to the arena size. // // Each arena has an associated heapArena object that stores the // metadata for that arena: the heap bitmap for all words in the arena // and the span map for all pages in the arena. heapArena objects are // themselves allocated off-heap. // // Since arenas are aligned, the address space can be viewed as a // series of arena frames. The arena map (mheap_.arenas) maps from // arena frame number to *heapArena, or nil for parts of the address // space not backed by the Go heap. The arena map is structured as a // two-level array consisting of a "L1" arena map and many "L2" arena // maps; however, since arenas are large, on many architectures, the // arena map consists of a single, large L2 map. // // The arena map covers the entire possible address space, allowing // the Go heap to use any part of the address space. The allocator // attempts to keep arenas contiguous so that large spans (and hence // large objects) can cross arenas. package runtime import ( "runtime/internal/atomic" "runtime/internal/math" "runtime/internal/sys" "unsafe" ) const ( debugMalloc = false maxTinySize = _TinySize tinySizeClass = _TinySizeClass maxSmallSize = _MaxSmallSize pageShift = _PageShift pageSize = _PageSize pageMask = _PageMask // By construction, single page spans of the smallest object class // have the most objects per span. maxObjsPerSpan = pageSize / 8 concurrentSweep = _ConcurrentSweep _PageSize = 1 << _PageShift _PageMask = _PageSize - 1 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems _64bit = 1 << (^uintptr(0) >> 63) / 2 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go. _TinySize = 16 _TinySizeClass = int8(2) _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc // Per-P, per order stack segment cache size. _StackCacheSize = 32 * 1024 // Number of orders that get caching. Order 0 is FixedStack // and each successive order is twice as large. // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks // will be allocated directly. // Since FixedStack is different on different systems, we // must vary NumStackOrders to keep the same maximum cached size. // OS | FixedStack | NumStackOrders // -----------------+------------+--------------- // linux/darwin/bsd | 2KB | 4 // windows/32 | 4KB | 3 // windows/64 | 8KB | 2 // plan9 | 4KB | 3 _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9 // heapAddrBits is the number of bits in a heap address. On // amd64, addresses are sign-extended beyond heapAddrBits. On // other arches, they are zero-extended. // // On most 64-bit platforms, we limit this to 48 bits based on a // combination of hardware and OS limitations. // // amd64 hardware limits addresses to 48 bits, sign-extended // to 64 bits. Addresses where the top 16 bits are not either // all 0 or all 1 are "non-canonical" and invalid. Because of // these "negative" addresses, we offset addresses by 1<<47 // (arenaBaseOffset) on amd64 before computing indexes into // the heap arenas index. In 2017, amd64 hardware added // support for 57 bit addresses; however, currently only Linux // supports this extension and the kernel will never choose an // address above 1<<47 unless mmap is called with a hint // address above 1<<47 (which we never do). // // arm64 hardware (as of ARMv8) limits user addresses to 48 // bits, in the range [0, 1<<48). // // ppc64, mips64, and s390x support arbitrary 64 bit addresses // in hardware. On Linux, Go leans on stricter OS limits. Based // on Linux's processor.h, the user address space is limited as // follows on 64-bit architectures: // // Architecture Name Maximum Value (exclusive) // --------------------------------------------------------------------- // amd64 TASK_SIZE_MAX 0x007ffffffff000 (47 bit addresses) // arm64 TASK_SIZE_64 0x01000000000000 (48 bit addresses) // ppc64{,le} TASK_SIZE_USER64 0x00400000000000 (46 bit addresses) // mips64{,le} TASK_SIZE64 0x00010000000000 (40 bit addresses) // s390x TASK_SIZE 1<<64 (64 bit addresses) // // These limits may increase over time, but are currently at // most 48 bits except on s390x. On all architectures, Linux // starts placing mmap'd regions at addresses that are // significantly below 48 bits, so even if it's possible to // exceed Go's 48 bit limit, it's extremely unlikely in // practice. // // On aix/ppc64, the limits is increased to 1<<60 to accept addresses // returned by mmap syscall. These are in range: // 0x0a00000000000000 - 0x0afffffffffffff // // On 32-bit platforms, we accept the full 32-bit address // space because doing so is cheap. // mips32 only has access to the low 2GB of virtual memory, so // we further limit it to 31 bits. // // WebAssembly currently has a limit of 4GB linear memory. heapAddrBits = (_64bit*(1-sys.GoarchWasm)*(1-sys.GoosAix))*48 + (1-_64bit+sys.GoarchWasm)*(32-(sys.GoarchMips+sys.GoarchMipsle)) + 60*sys.GoosAix // maxAlloc is the maximum size of an allocation. On 64-bit, // it's theoretically possible to allocate 1<<heapAddrBits bytes. On // 32-bit, however, this is one less than 1<<32 because the // number of bytes in the address space doesn't actually fit // in a uintptr. maxAlloc = (1 << heapAddrBits) - (1-_64bit)*1 // The number of bits in a heap address, the size of heap // arenas, and the L1 and L2 arena map sizes are related by // // (1 << addr bits) = arena size * L1 entries * L2 entries // // Currently, we balance these as follows: // // Platform Addr bits Arena size L1 entries L2 entries // -------------- --------- ---------- ---------- ----------- // */64-bit 48 64MB 1 4M (32MB) // aix/64-bit 60 256MB 4096 4M (32MB) // windows/64-bit 48 4MB 64 1M (8MB) // */32-bit 32 4MB 1 1024 (4KB) // */mips(le) 31 4MB 1 512 (2KB) // heapArenaBytes is the size of a heap arena. The heap // consists of mappings of size heapArenaBytes, aligned to // heapArenaBytes. The initial heap mapping is one arena. // // This is currently 64MB on 64-bit non-Windows and 4MB on // 32-bit and on Windows. We use smaller arenas on Windows // because all committed memory is charged to the process, // even if it's not touched. Hence, for processes with small // heaps, the mapped arena space needs to be commensurate. // This is particularly important with the race detector, // since it significantly amplifies the cost of committed // memory. heapArenaBytes = 1 << logHeapArenaBytes // logHeapArenaBytes is log_2 of heapArenaBytes. For clarity, // prefer using heapArenaBytes where possible (we need the // constant to compute some other constants). logHeapArenaBytes = (6+20)*(_64bit*(1-sys.GoosWindows)*(1-sys.GoosAix)) + (2+20)*(_64bit*sys.GoosWindows) + (2+20)*(1-_64bit) + (8+20)*sys.GoosAix // heapArenaBitmapBytes is the size of each heap arena's bitmap. heapArenaBitmapBytes = heapArenaBytes / (sys.PtrSize * 8 / 2) pagesPerArena = heapArenaBytes / pageSize // arenaL1Bits is the number of bits of the arena number // covered by the first level arena map. // // This number should be small, since the first level arena // map requires PtrSize*(1<<arenaL1Bits) of space in the // binary's BSS. It can be zero, in which case the first level // index is effectively unused. There is a performance benefit // to this, since the generated code can be more efficient, // but comes at the cost of having a large L2 mapping. // // We use the L1 map on 64-bit Windows because the arena size // is small, but the address space is still 48 bits, and // there's a high cost to having a large L2. // // We use the L1 map on aix/ppc64 to keep the same L2 value // as on Linux. arenaL1Bits = 6*(_64bit*sys.GoosWindows) + 12*sys.GoosAix // arenaL2Bits is the number of bits of the arena number // covered by the second level arena index. // // The size of each arena map allocation is proportional to // 1<<arenaL2Bits, so it's important that this not be too // large. 48 bits leads to 32MB arena index allocations, which // is about the practical threshold. arenaL2Bits = heapAddrBits - logHeapArenaBytes - arenaL1Bits // arenaL1Shift is the number of bits to shift an arena frame // number by to compute an index into the first level arena map. arenaL1Shift = arenaL2Bits // arenaBits is the total bits in a combined arena map index. // This is split between the index into the L1 arena map and // the L2 arena map. arenaBits = arenaL1Bits + arenaL2Bits // arenaBaseOffset is the pointer value that corresponds to // index 0 in the heap arena map. // // On amd64, the address space is 48 bits, sign extended to 64 // bits. This offset lets us handle "negative" addresses (or // high addresses if viewed as unsigned). // // On other platforms, the user address space is contiguous // and starts at 0, so no offset is necessary. arenaBaseOffset uintptr = sys.GoarchAmd64 * (1 << 47) // Max number of threads to run garbage collection. // 2, 3, and 4 are all plausible maximums depending // on the hardware details of the machine. The garbage // collector scales well to 32 cpus. _MaxGcproc = 32 // minLegalPointer is the smallest possible legal pointer. // This is the smallest possible architectural page size, // since we assume that the first page is never mapped. // // This should agree with minZeroPage in the compiler. minLegalPointer uintptr = 4096 ) // physPageSize is the size in bytes of the OS's physical pages. // Mapping and unmapping operations must be done at multiples of // physPageSize. // // This must be set by the OS init code (typically in osinit) before // mallocinit. var physPageSize uintptr // OS-defined helpers: // // sysAlloc obtains a large chunk of zeroed memory from the // operating system, typically on the order of a hundred kilobytes // or a megabyte. // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator // may use larger alignment, so the caller must be careful to realign the // memory obtained by sysAlloc. // // sysUnused notifies the operating system that the contents // of the memory region are no longer needed and can be reused // for other purposes. // sysUsed notifies the operating system that the contents // of the memory region are needed again. // // sysFree returns it unconditionally; this is only used if // an out-of-memory error has been detected midway through // an allocation. It is okay if sysFree is a no-op. // // sysReserve reserves address space without allocating memory. // If the pointer passed to it is non-nil, the caller wants the // reservation there, but sysReserve can still choose another // location if that one is unavailable. // NOTE: sysReserve returns OS-aligned memory, but the heap allocator // may use larger alignment, so the caller must be careful to realign the // memory obtained by sysAlloc. // // sysMap maps previously reserved address space for use. // // sysFault marks a (already sysAlloc'd) region to fault // if accessed. Used only for debugging the runtime. func mallocinit() { if class_to_size[_TinySizeClass] != _TinySize { throw("bad TinySizeClass") } testdefersizes() if heapArenaBitmapBytes&(heapArenaBitmapBytes-1) != 0 { // heapBits expects modular arithmetic on bitmap // addresses to work. throw("heapArenaBitmapBytes not a power of 2") } // Copy class sizes out for statistics table. for i := range class_to_size { memstats.by_size[i].size = uint32(class_to_size[i]) } // Check physPageSize. if physPageSize == 0 { // The OS init code failed to fetch the physical page size. throw("failed to get system page size") } if physPageSize < minPhysPageSize { print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n") throw("bad system page size") } if physPageSize&(physPageSize-1) != 0 { print("system page size (", physPageSize, ") must be a power of 2\n") throw("bad system page size") } // Initialize the heap. mheap_.init() _g_ := getg() _g_.m.mcache = allocmcache() // Create initial arena growth hints. if sys.PtrSize == 8 && GOARCH != "wasm" { // On a 64-bit machine, we pick the following hints // because: // // 1. Starting from the middle of the address space // makes it easier to grow out a contiguous range // without running in to some other mapping. // // 2. This makes Go heap addresses more easily // recognizable when debugging. // // 3. Stack scanning in gccgo is still conservative, // so it's important that addresses be distinguishable // from other data. // // Starting at 0x00c0 means that the valid memory addresses // will begin 0x00c0, 0x00c1, ... // In little-endian, that's c0 00, c1 00, ... None of those are valid // UTF-8 sequences, and they are otherwise as far away from // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors // on OS X during thread allocations. 0x00c0 causes conflicts with // AddressSanitizer which reserves all memory up to 0x0100. // These choices reduce the odds of a conservative garbage collector // not collecting memory because some non-pointer block of memory // had a bit pattern that matched a memory address. // // However, on arm64, we ignore all this advice above and slam the // allocation at 0x40 << 32 because when using 4k pages with 3-level // translation buffers, the user address space is limited to 39 bits // On darwin/arm64, the address space is even smaller. // On AIX, mmaps starts at 0x0A00000000000000 for 64-bit. // processes. for i := 0x7f; i >= 0; i-- { var p uintptr switch { case GOARCH == "arm64" && GOOS == "darwin": p = uintptr(i)<<40 | uintptrMask&(0x0013<<28) case GOARCH == "arm64": p = uintptr(i)<<40 | uintptrMask&(0x0040<<32) case GOOS == "aix": if i == 0 { // We don't use addresses directly after 0x0A00000000000000 // to avoid collisions with others mmaps done by non-go programs. continue } p = uintptr(i)<<40 | uintptrMask&(0xa0<<52) case raceenabled: // The TSAN runtime requires the heap // to be in the range [0x00c000000000, // 0x00e000000000). p = uintptr(i)<<32 | uintptrMask&(0x00c0<<32) if p >= uintptrMask&0x00e000000000 { continue } default: p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32) } hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) hint.addr = p hint.next, mheap_.arenaHints = mheap_.arenaHints, hint } } else { // On a 32-bit machine, we're much more concerned // about keeping the usable heap contiguous. // Hence: // // 1. We reserve space for all heapArenas up front so // they don't get interleaved with the heap. They're // ~258MB, so this isn't too bad. (We could reserve a // smaller amount of space up front if this is a // problem.) // // 2. We hint the heap to start right above the end of // the binary so we have the best chance of keeping it // contiguous. // // 3. We try to stake out a reasonably large initial // heap reservation. const arenaMetaSize = (1 << arenaBits) * unsafe.Sizeof(heapArena{}) meta := uintptr(sysReserve(nil, arenaMetaSize)) if meta != 0 { mheap_.heapArenaAlloc.init(meta, arenaMetaSize) } // We want to start the arena low, but if we're linked // against C code, it's possible global constructors // have called malloc and adjusted the process' brk. // Query the brk so we can avoid trying to map the // region over it (which will cause the kernel to put // the region somewhere else, likely at a high // address). procBrk := sbrk0() // If we ask for the end of the data segment but the // operating system requires a little more space // before we can start allocating, it will give out a // slightly higher pointer. Except QEMU, which is // buggy, as usual: it won't adjust the pointer // upward. So adjust it upward a little bit ourselves: // 1/4 MB to get away from the running binary image. p := firstmoduledata.end if p < procBrk { p = procBrk } if mheap_.heapArenaAlloc.next <= p && p < mheap_.heapArenaAlloc.end { p = mheap_.heapArenaAlloc.end } p = round(p+(256<<10), heapArenaBytes) // Because we're worried about fragmentation on // 32-bit, we try to make a large initial reservation. arenaSizes := []uintptr{ 512 << 20, 256 << 20, 128 << 20, } for _, arenaSize := range arenaSizes { a, size := sysReserveAligned(unsafe.Pointer(p), arenaSize, heapArenaBytes) if a != nil { mheap_.arena.init(uintptr(a), size) p = uintptr(a) + size // For hint below break } } hint := (*arenaHint)(mheap_.arenaHintAlloc.alloc()) hint.addr = p hint.next, mheap_.arenaHints = mheap_.arenaHints, hint } } // sysAlloc allocates heap arena space for at least n bytes. The // returned pointer is always heapArenaBytes-aligned and backed by // h.arenas metadata. The returned size is always a multiple of // heapArenaBytes. sysAlloc returns nil on failure. // There is no corresponding free function. // // h must be locked. func (h *mheap) sysAlloc(n uintptr) (v unsafe.Pointer, size uintptr) { n = round(n, heapArenaBytes) // First, try the arena pre-reservation. v = h.arena.alloc(n, heapArenaBytes, &memstats.heap_sys) if v != nil { size = n goto mapped } // Try to grow the heap at a hint address. for h.arenaHints != nil { hint := h.arenaHints p := hint.addr if hint.down { p -= n } if p+n < p { // We can't use this, so don't ask. v = nil } else if arenaIndex(p+n-1) >= 1<<arenaBits { // Outside addressable heap. Can't use. v = nil } else { v = sysReserve(unsafe.Pointer(p), n) } if p == uintptr(v) { // Success. Update the hint. if !hint.down { p += n } hint.addr = p size = n break } // Failed. Discard this hint and try the next. // // TODO: This would be cleaner if sysReserve could be // told to only return the requested address. In // particular, this is already how Windows behaves, so // it would simply things there. if v != nil { sysFree(v, n, nil) } h.arenaHints = hint.next h.arenaHintAlloc.free(unsafe.Pointer(hint)) } if size == 0 { if raceenabled { // The race detector assumes the heap lives in // [0x00c000000000, 0x00e000000000), but we // just ran out of hints in this region. Give // a nice failure. throw("too many address space collisions for -race mode") } // All of the hints failed, so we'll take any // (sufficiently aligned) address the kernel will give // us. v, size = sysReserveAligned(nil, n, heapArenaBytes) if v == nil { return nil, 0 } // Create new hints for extending this region. hint := (*arenaHint)(h.arenaHintAlloc.alloc()) hint.addr, hint.down = uintptr(v), true hint.next, mheap_.arenaHints = mheap_.arenaHints, hint hint = (*arenaHint)(h.arenaHintAlloc.alloc()) hint.addr = uintptr(v) + size hint.next, mheap_.arenaHints = mheap_.arenaHints, hint } // Check for bad pointers or pointers we can't use. { var bad string p := uintptr(v) if p+size < p { bad = "region exceeds uintptr range" } else if arenaIndex(p) >= 1<<arenaBits { bad = "base outside usable address space" } else if arenaIndex(p+size-1) >= 1<<arenaBits { bad = "end outside usable address space" } if bad != "" { // This should be impossible on most architectures, // but it would be really confusing to debug. print("runtime: memory allocated by OS [", hex(p), ", ", hex(p+size), ") not in usable address space: ", bad, "\n") throw("memory reservation exceeds address space limit") } } if uintptr(v)&(heapArenaBytes-1) != 0 { throw("misrounded allocation in sysAlloc") } // Back the reservation. sysMap(v, size, &memstats.heap_sys) mapped: // Create arena metadata. for ri := arenaIndex(uintptr(v)); ri <= arenaIndex(uintptr(v)+size-1); ri++ { l2 := h.arenas[ri.l1()] if l2 == nil { // Allocate an L2 arena map. l2 = (*[1 << arenaL2Bits]*heapArena)(persistentalloc(unsafe.Sizeof(*l2), sys.PtrSize, nil)) if l2 == nil { throw("out of memory allocating heap arena map") } atomic.StorepNoWB(unsafe.Pointer(&h.arenas[ri.l1()]), unsafe.Pointer(l2)) } if l2[ri.l2()] != nil { throw("arena already initialized") } var r *heapArena r = (*heapArena)(h.heapArenaAlloc.alloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys)) if r == nil { r = (*heapArena)(persistentalloc(unsafe.Sizeof(*r), sys.PtrSize, &memstats.gc_sys)) if r == nil { throw("out of memory allocating heap arena metadata") } } // Add the arena to the arenas list. if len(h.allArenas) == cap(h.allArenas) { size := 2 * uintptr(cap(h.allArenas)) * sys.PtrSize if size == 0 { size = physPageSize } newArray := (*notInHeap)(persistentalloc(size, sys.PtrSize, &memstats.gc_sys)) if newArray == nil { throw("out of memory allocating allArenas") } oldSlice := h.allArenas *(*notInHeapSlice)(unsafe.Pointer(&h.allArenas)) = notInHeapSlice{newArray, len(h.allArenas), int(size / sys.PtrSize)} copy(h.allArenas, oldSlice) // Do not free the old backing array because // there may be concurrent readers. Since we // double the array each time, this can lead // to at most 2x waste. } h.allArenas = h.allArenas[:len(h.allArenas)+1] h.allArenas[len(h.allArenas)-1] = ri // Store atomically just in case an object from the // new heap arena becomes visible before the heap lock // is released (which shouldn't happen, but there's // little downside to this). atomic.StorepNoWB(unsafe.Pointer(&l2[ri.l2()]), unsafe.Pointer(r)) } // Tell the race detector about the new heap memory. if raceenabled { racemapshadow(v, size) } return } // sysReserveAligned is like sysReserve, but the returned pointer is // aligned to align bytes. It may reserve either n or n+align bytes, // so it returns the size that was reserved. func sysReserveAligned(v unsafe.Pointer, size, align uintptr) (unsafe.Pointer, uintptr) { // Since the alignment is rather large in uses of this // function, we're not likely to get it by chance, so we ask // for a larger region and remove the parts we don't need. retries := 0 retry: p := uintptr(sysReserve(v, size+align)) switch { case p == 0: return nil, 0 case p&(align-1) == 0: // We got lucky and got an aligned region, so we can // use the whole thing. return unsafe.Pointer(p), size + align case GOOS == "windows": // On Windows we can't release pieces of a // reservation, so we release the whole thing and // re-reserve the aligned sub-region. This may race, // so we may have to try again. sysFree(unsafe.Pointer(p), size+align, nil) p = round(p, align) p2 := sysReserve(unsafe.Pointer(p), size) if p != uintptr(p2) { // Must have raced. Try again. sysFree(p2, size, nil) if retries++; retries == 100 { throw("failed to allocate aligned heap memory; too many retries") } goto retry } // Success. return p2, size default: // Trim off the unaligned parts. pAligned := round(p, align) sysFree(unsafe.Pointer(p), pAligned-p, nil) end := pAligned + size endLen := (p + size + align) - end if endLen > 0 { sysFree(unsafe.Pointer(end), endLen, nil) } return unsafe.Pointer(pAligned), size } } // base address for all 0-byte allocations var zerobase uintptr // nextFreeFast returns the next free object if one is quickly available. // Otherwise it returns 0. func nextFreeFast(s *mspan) gclinkptr { theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache? if theBit < 64 { result := s.freeindex + uintptr(theBit) if result < s.nelems { freeidx := result + 1 if freeidx%64 == 0 && freeidx != s.nelems { return 0 } s.allocCache >>= uint(theBit + 1) s.freeindex = freeidx s.allocCount++ return gclinkptr(result*s.elemsize + s.base()) } } return 0 } // nextFree returns the next free object from the cached span if one is available. // Otherwise it refills the cache with a span with an available object and // returns that object along with a flag indicating that this was a heavy // weight allocation. If it is a heavy weight allocation the caller must // determine whether a new GC cycle needs to be started or if the GC is active // whether this goroutine needs to assist the GC. // // Must run in a non-preemptible context since otherwise the owner of // c could change. func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) { s = c.alloc[spc] shouldhelpgc = false freeIndex := s.nextFreeIndex() if freeIndex == s.nelems { // The span is full. if uintptr(s.allocCount) != s.nelems { println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems) throw("s.allocCount != s.nelems && freeIndex == s.nelems") } c.refill(spc) shouldhelpgc = true s = c.alloc[spc] freeIndex = s.nextFreeIndex() } if freeIndex >= s.nelems { throw("freeIndex is not valid") } v = gclinkptr(freeIndex*s.elemsize + s.base()) s.allocCount++ if uintptr(s.allocCount) > s.nelems { println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems) throw("s.allocCount > s.nelems") } return } // Allocate an object of size bytes. // Small objects are allocated from the per-P cache's free lists. // Large objects (> 32 kB) are allocated straight from the heap. func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { if gcphase == _GCmarktermination { throw("mallocgc called with gcphase == _GCmarktermination") } if size == 0 { return unsafe.Pointer(&zerobase) } if debug.sbrk != 0 { align := uintptr(16) if typ != nil { align = uintptr(typ.align) } return persistentalloc(size, align, &memstats.other_sys) } // assistG is the G to charge for this allocation, or nil if // GC is not currently active. var assistG *g if gcBlackenEnabled != 0 { // Charge the current user G for this allocation. assistG = getg() if assistG.m.curg != nil { assistG = assistG.m.curg } // Charge the allocation against the G. We'll account // for internal fragmentation at the end of mallocgc. assistG.gcAssistBytes -= int64(size) if assistG.gcAssistBytes < 0 { // This G is in debt. Assist the GC to correct // this before allocating. This must happen // before disabling preemption. gcAssistAlloc(assistG) } } // Set mp.mallocing to keep from being preempted by GC. mp := acquirem() if mp.mallocing != 0 { throw("malloc deadlock") } if mp.gsignal == getg() { throw("malloc during signal") } mp.mallocing = 1 shouldhelpgc := false dataSize := size c := gomcache() var x unsafe.Pointer noscan := typ == nil || typ.kind&kindNoPointers != 0 if size <= maxSmallSize { if noscan && size < maxTinySize { // Tiny allocator. // // Tiny allocator combines several tiny allocation requests // into a single memory block. The resulting memory block // is freed when all subobjects are unreachable. The subobjects // must be noscan (don't have pointers), this ensures that // the amount of potentially wasted memory is bounded. // // Size of the memory block used for combining (maxTinySize) is tunable. // Current setting is 16 bytes, which relates to 2x worst case memory // wastage (when all but one subobjects are unreachable). // 8 bytes would result in no wastage at all, but provides less // opportunities for combining. // 32 bytes provides more opportunities for combining, // but can lead to 4x worst case wastage. // The best case winning is 8x regardless of block size. // // Objects obtained from tiny allocator must not be freed explicitly. // So when an object will be freed explicitly, we ensure that // its size >= maxTinySize. // // SetFinalizer has a special case for objects potentially coming // from tiny allocator, it such case it allows to set finalizers // for an inner byte of a memory block. // // The main targets of tiny allocator are small strings and // standalone escaping variables. On a json benchmark // the allocator reduces number of allocations by ~12% and // reduces heap size by ~20%. off := c.tinyoffset // Align tiny pointer for required (conservative) alignment. if size&7 == 0 { off = round(off, 8) } else if size&3 == 0 { off = round(off, 4) } else if size&1 == 0 { off = round(off, 2) } if off+size <= maxTinySize && c.tiny != 0 { // The object fits into existing tiny block. x = unsafe.Pointer(c.tiny + off) c.tinyoffset = off + size c.local_tinyallocs++ mp.mallocing = 0 releasem(mp) return x } // Allocate a new maxTinySize block. span := c.alloc[tinySpanClass] v := nextFreeFast(span) if v == 0 { v, _, shouldhelpgc = c.nextFree(tinySpanClass) } x = unsafe.Pointer(v) (*[2]uint64)(x)[0] = 0 (*[2]uint64)(x)[1] = 0 // See if we need to replace the existing tiny block with the new one // based on amount of remaining free space. if size < c.tinyoffset || c.tiny == 0 { c.tiny = uintptr(x) c.tinyoffset = size } size = maxTinySize } else { var sizeclass uint8 if size <= smallSizeMax-8 { sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv] } else { sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv] } size = uintptr(class_to_size[sizeclass]) spc := makeSpanClass(sizeclass, noscan) span := c.alloc[spc] v := nextFreeFast(span) if v == 0 { v, span, shouldhelpgc = c.nextFree(spc) } x = unsafe.Pointer(v) if needzero && span.needzero != 0 { memclrNoHeapPointers(unsafe.Pointer(v), size) } } } else { var s *mspan shouldhelpgc = true systemstack(func() { s = largeAlloc(size, needzero, noscan) }) s.freeindex = 1 s.allocCount = 1 x = unsafe.Pointer(s.base()) size = s.elemsize } var scanSize uintptr if !noscan { // If allocating a defer+arg block, now that we've picked a malloc size // large enough to hold everything, cut the "asked for" size down to // just the defer header, so that the GC bitmap will record the arg block // as containing nothing at all (as if it were unused space at the end of // a malloc block caused by size rounding). // The defer arg areas are scanned as part of scanstack. if typ == deferType { dataSize = unsafe.Sizeof(_defer{}) } heapBitsSetType(uintptr(x), size, dataSize, typ) if dataSize > typ.size { // Array allocation. If there are any // pointers, GC has to scan to the last // element. if typ.ptrdata != 0 { scanSize = dataSize - typ.size + typ.ptrdata } } else { scanSize = typ.ptrdata } c.local_scan += scanSize } // Ensure that the stores above that initialize x to // type-safe memory and set the heap bits occur before // the caller can make x observable to the garbage // collector. Otherwise, on weakly ordered machines, // the garbage collector could follow a pointer to x, // but see uninitialized memory or stale heap bits. publicationBarrier() // Allocate black during GC. // All slots hold nil so no scanning is needed. // This may be racing with GC so do it atomically if there can be // a race marking the bit. if gcphase != _GCoff { gcmarknewobject(uintptr(x), size, scanSize) } if raceenabled { racemalloc(x, size) } if msanenabled { msanmalloc(x, size) } mp.mallocing = 0 releasem(mp) if debug.allocfreetrace != 0 { tracealloc(x, size, typ) } if rate := MemProfileRate; rate > 0 { if rate != 1 && int32(size) < c.next_sample { c.next_sample -= int32(size) } else { mp := acquirem() profilealloc(mp, x, size) releasem(mp) } } if assistG != nil { // Account for internal fragmentation in the assist // debt now that we know it. assistG.gcAssistBytes -= int64(size - dataSize) } if shouldhelpgc { if t := (gcTrigger{kind: gcTriggerHeap}); t.test() { gcStart(t) } } return x } func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan { // print("largeAlloc size=", size, "\n") if size+_PageSize < size { throw("out of memory") } npages := size >> _PageShift if size&_PageMask != 0 { npages++ } // Deduct credit for this span allocation and sweep if // necessary. mHeap_Alloc will also sweep npages, so this only // pays the debt down to npage pages. deductSweepCredit(npages*_PageSize, npages) s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero) if s == nil { throw("out of memory") } s.limit = s.base() + size heapBitsForAddr(s.base()).initSpan(s) return s } // implementation of new builtin // compiler (both frontend and SSA backend) knows the signature // of this function func newobject(typ *_type) unsafe.Pointer { return mallocgc(typ.size, typ, true) } //go:linkname reflect_unsafe_New reflect.unsafe_New func reflect_unsafe_New(typ *_type) unsafe.Pointer { return mallocgc(typ.size, typ, true) } // newarray allocates an array of n elements of type typ. func newarray(typ *_type, n int) unsafe.Pointer { if n == 1 { return mallocgc(typ.size, typ, true) } mem, overflow := math.MulUintptr(typ.size, uintptr(n)) if overflow || mem > maxAlloc || n < 0 { panic(plainError("runtime: allocation size out of range")) } return mallocgc(mem, typ, true) } //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer { return newarray(typ, n) } func profilealloc(mp *m, x unsafe.Pointer, size uintptr) { mp.mcache.next_sample = nextSample() mProf_Malloc(x, size) } // nextSample returns the next sampling point for heap profiling. The goal is // to sample allocations on average every MemProfileRate bytes, but with a // completely random distribution over the allocation timeline; this // corresponds to a Poisson process with parameter MemProfileRate. In Poisson // processes, the distance between two samples follows the exponential // distribution (exp(MemProfileRate)), so the best return value is a random // number taken from an exponential distribution whose mean is MemProfileRate. func nextSample() int32 { if GOOS == "plan9" { // Plan 9 doesn't support floating point in note handler. if g := getg(); g == g.m.gsignal { return nextSampleNoFP() } } return fastexprand(MemProfileRate) } // fastexprand returns a random number from an exponential distribution with // the specified mean. func fastexprand(mean int) int32 { // Avoid overflow. Maximum possible step is // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean. switch { case mean > 0x7000000: mean = 0x7000000 case mean == 0: return 0 } // Take a random sample of the exponential distribution exp(-mean*x). // The probability distribution function is mean*exp(-mean*x), so the CDF is // p = 1 - exp(-mean*x), so // q = 1 - p == exp(-mean*x) // log_e(q) = -mean*x // -log_e(q)/mean = x // x = -log_e(q) * mean // x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency const randomBitCount = 26 q := fastrand()%(1<<randomBitCount) + 1 qlog := fastlog2(float64(q)) - randomBitCount if qlog > 0 { qlog = 0 } const minusLog2 = -0.6931471805599453 // -ln(2) return int32(qlog*(minusLog2*float64(mean))) + 1 } // nextSampleNoFP is similar to nextSample, but uses older, // simpler code to avoid floating point. func nextSampleNoFP() int32 { // Set first allocation sample size. rate := MemProfileRate if rate > 0x3fffffff { // make 2*rate not overflow rate = 0x3fffffff } if rate != 0 { return int32(fastrand() % uint32(2*rate)) } return 0 } type persistentAlloc struct { base *notInHeap off uintptr } var globalAlloc struct { mutex persistentAlloc } // persistentChunkSize is the number of bytes we allocate when we grow // a persistentAlloc. const persistentChunkSize = 256 << 10 // persistentChunks is a list of all the persistent chunks we have // allocated. The list is maintained through the first word in the // persistent chunk. This is updated atomically. var persistentChunks *notInHeap // Wrapper around sysAlloc that can allocate small chunks. // There is no associated free operation. // Intended for things like function/type/debug-related persistent data. // If align is 0, uses default align (currently 8). // The returned memory will be zeroed. // // Consider marking persistentalloc'd types go:notinheap. func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { var p *notInHeap systemstack(func() { p = persistentalloc1(size, align, sysStat) }) return unsafe.Pointer(p) } // Must run on system stack because stack growth can (re)invoke it. // See issue 9174. //go:systemstack func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap { const ( maxBlock = 64 << 10 // VM reservation granularity is 64K on windows ) if size == 0 { throw("persistentalloc: size == 0") } if align != 0 { if align&(align-1) != 0 { throw("persistentalloc: align is not a power of 2") } if align > _PageSize { throw("persistentalloc: align is too large") } } else { align = 8 } if size >= maxBlock { return (*notInHeap)(sysAlloc(size, sysStat)) } mp := acquirem() var persistent *persistentAlloc if mp != nil && mp.p != 0 { persistent = &mp.p.ptr().palloc } else { lock(&globalAlloc.mutex) persistent = &globalAlloc.persistentAlloc } persistent.off = round(persistent.off, align) if persistent.off+size > persistentChunkSize || persistent.base == nil { persistent.base = (*notInHeap)(sysAlloc(persistentChunkSize, &memstats.other_sys)) if persistent.base == nil { if persistent == &globalAlloc.persistentAlloc { unlock(&globalAlloc.mutex) } throw("runtime: cannot allocate memory") } // Add the new chunk to the persistentChunks list. for { chunks := uintptr(unsafe.Pointer(persistentChunks)) *(*uintptr)(unsafe.Pointer(persistent.base)) = chunks if atomic.Casuintptr((*uintptr)(unsafe.Pointer(&persistentChunks)), chunks, uintptr(unsafe.Pointer(persistent.base))) { break } } persistent.off = sys.PtrSize } p := persistent.base.add(persistent.off) persistent.off += size releasem(mp) if persistent == &globalAlloc.persistentAlloc { unlock(&globalAlloc.mutex) } if sysStat != &memstats.other_sys { mSysStatInc(sysStat, size) mSysStatDec(&memstats.other_sys, size) } return p } // inPersistentAlloc reports whether p points to memory allocated by // persistentalloc. This must be nosplit because it is called by the // cgo checker code, which is called by the write barrier code. //go:nosplit func inPersistentAlloc(p uintptr) bool { chunk := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&persistentChunks))) for chunk != 0 { if p >= chunk && p < chunk+persistentChunkSize { return true } chunk = *(*uintptr)(unsafe.Pointer(chunk)) } return false } // linearAlloc is a simple linear allocator that pre-reserves a region // of memory and then maps that region as needed. The caller is // responsible for locking. type linearAlloc struct { next uintptr // next free byte mapped uintptr // one byte past end of mapped space end uintptr // end of reserved space } func (l *linearAlloc) init(base, size uintptr) { l.next, l.mapped = base, base l.end = base + size } func (l *linearAlloc) alloc(size, align uintptr, sysStat *uint64) unsafe.Pointer { p := round(l.next, align) if p+size > l.end { return nil } l.next = p + size if pEnd := round(l.next-1, physPageSize); pEnd > l.mapped { // We need to map more of the reserved space. sysMap(unsafe.Pointer(l.mapped), pEnd-l.mapped, sysStat) l.mapped = pEnd } return unsafe.Pointer(p) } // notInHeap is off-heap memory allocated by a lower-level allocator // like sysAlloc or persistentAlloc. // // In general, it's better to use real types marked as go:notinheap, // but this serves as a generic type for situations where that isn't // possible (like in the allocators). // // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc? // //go:notinheap type notInHeap struct{} func (p *notInHeap) add(bytes uintptr) *notInHeap { return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes)) }