// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/sys" "unsafe" ) type mOS struct{} //go:noescape func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 // Linux futex. // // futexsleep(uint32 *addr, uint32 val) // futexwakeup(uint32 *addr) // // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. // Futexwakeup wakes up threads sleeping on addr. // Futexsleep is allowed to wake up spuriously. const ( _FUTEX_PRIVATE_FLAG = 128 _FUTEX_WAIT_PRIVATE = 0 | _FUTEX_PRIVATE_FLAG _FUTEX_WAKE_PRIVATE = 1 | _FUTEX_PRIVATE_FLAG ) // Atomically, // if(*addr == val) sleep // Might be woken up spuriously; that's allowed. // Don't sleep longer than ns; ns < 0 means forever. //go:nosplit func futexsleep(addr *uint32, val uint32, ns int64) { var ts timespec // Some Linux kernels have a bug where futex of // FUTEX_WAIT returns an internal error code // as an errno. Libpthread ignores the return value // here, and so can we: as it says a few lines up, // spurious wakeups are allowed. if ns < 0 { futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, nil, nil, 0) return } // It's difficult to live within the no-split stack limits here. // On ARM and 386, a 64-bit divide invokes a general software routine // that needs more stack than we can afford. So we use timediv instead. // But on real 64-bit systems, where words are larger but the stack limit // is not, even timediv is too heavy, and we really need to use just an // ordinary machine instruction. if sys.PtrSize == 8 { ts.set_sec(ns / 1000000000) ts.set_nsec(int32(ns % 1000000000)) } else { ts.tv_nsec = 0 ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))) } futex(unsafe.Pointer(addr), _FUTEX_WAIT_PRIVATE, val, unsafe.Pointer(&ts), nil, 0) } // If any procs are sleeping on addr, wake up at most cnt. //go:nosplit func futexwakeup(addr *uint32, cnt uint32) { ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE_PRIVATE, cnt, nil, nil, 0) if ret >= 0 { return } // I don't know that futex wakeup can return // EAGAIN or EINTR, but if it does, it would be // safe to loop and call futex again. systemstack(func() { print("futexwakeup addr=", addr, " returned ", ret, "\n") }) *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 } func getproccount() int32 { // This buffer is huge (8 kB) but we are on the system stack // and there should be plenty of space (64 kB). // Also this is a leaf, so we're not holding up the memory for long. // See golang.org/issue/11823. // The suggested behavior here is to keep trying with ever-larger // buffers, but we don't have a dynamic memory allocator at the // moment, so that's a bit tricky and seems like overkill. const maxCPUs = 64 * 1024 var buf [maxCPUs / 8]byte r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) if r < 0 { return 1 } n := int32(0) for _, v := range buf[:r] { for v != 0 { n += int32(v & 1) v >>= 1 } } if n == 0 { n = 1 } return n } // Clone, the Linux rfork. const ( _CLONE_VM = 0x100 _CLONE_FS = 0x200 _CLONE_FILES = 0x400 _CLONE_SIGHAND = 0x800 _CLONE_PTRACE = 0x2000 _CLONE_VFORK = 0x4000 _CLONE_PARENT = 0x8000 _CLONE_THREAD = 0x10000 _CLONE_NEWNS = 0x20000 _CLONE_SYSVSEM = 0x40000 _CLONE_SETTLS = 0x80000 _CLONE_PARENT_SETTID = 0x100000 _CLONE_CHILD_CLEARTID = 0x200000 _CLONE_UNTRACED = 0x800000 _CLONE_CHILD_SETTID = 0x1000000 _CLONE_STOPPED = 0x2000000 _CLONE_NEWUTS = 0x4000000 _CLONE_NEWIPC = 0x8000000 cloneFlags = _CLONE_VM | /* share memory */ _CLONE_FS | /* share cwd, etc */ _CLONE_FILES | /* share fd table */ _CLONE_SIGHAND | /* share sig handler table */ _CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */ _CLONE_THREAD /* revisit - okay for now */ ) //go:noescape func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32 // May run with m.p==nil, so write barriers are not allowed. //go:nowritebarrier func newosproc(mp *m) { stk := unsafe.Pointer(mp.g0.stack.hi) /* * note: strace gets confused if we use CLONE_PTRACE here. */ if false { print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n") } // Disable signals during clone, so that the new thread starts // with signals disabled. It will enable them in minit. var oset sigset sigprocmask(_SIG_SETMASK, &sigset_all, &oset) ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart))) sigprocmask(_SIG_SETMASK, &oset, nil) if ret < 0 { print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n") if ret == -_EAGAIN { println("runtime: may need to increase max user processes (ulimit -u)") } throw("newosproc") } } // Version of newosproc that doesn't require a valid G. //go:nosplit func newosproc0(stacksize uintptr, fn unsafe.Pointer) { stack := sysAlloc(stacksize, &memstats.stacks_sys) if stack == nil { write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) exit(1) } ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) if ret < 0 { write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) exit(1) } } var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") var failthreadcreate = []byte("runtime: failed to create new OS thread\n") const ( _AT_NULL = 0 // End of vector _AT_PAGESZ = 6 // System physical page size _AT_HWCAP = 16 // hardware capability bit vector _AT_RANDOM = 25 // introduced in 2.6.29 _AT_HWCAP2 = 26 // hardware capability bit vector 2 ) var procAuxv = []byte("/proc/self/auxv\x00") var addrspace_vec [1]byte func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32 func sysargs(argc int32, argv **byte) { n := argc + 1 // skip over argv, envp to get to auxv for argv_index(argv, n) != nil { n++ } // skip NULL separator n++ // now argv+n is auxv auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize)) if sysauxv(auxv[:]) != 0 { return } // In some situations we don't get a loader-provided // auxv, such as when loaded as a library on Android. // Fall back to /proc/self/auxv. fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0) if fd < 0 { // On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to // try using mincore to detect the physical page size. // mincore should return EINVAL when address is not a multiple of system page size. const size = 256 << 10 // size of memory region to allocate p, err := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) if err != 0 { return } var n uintptr for n = 4 << 10; n < size; n <<= 1 { err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0]) if err == 0 { physPageSize = n break } } if physPageSize == 0 { physPageSize = size } munmap(p, size) return } var buf [128]uintptr n = read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf))) closefd(fd) if n < 0 { return } // Make sure buf is terminated, even if we didn't read // the whole file. buf[len(buf)-2] = _AT_NULL sysauxv(buf[:]) } func sysauxv(auxv []uintptr) int { var i int for ; auxv[i] != _AT_NULL; i += 2 { tag, val := auxv[i], auxv[i+1] switch tag { case _AT_RANDOM: // The kernel provides a pointer to 16-bytes // worth of random data. startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:] case _AT_PAGESZ: physPageSize = val } archauxv(tag, val) vdsoauxv(tag, val) } return i / 2 } func osinit() { ncpu = getproccount() } var urandom_dev = []byte("/dev/urandom\x00") func getRandomData(r []byte) { if startupRandomData != nil { n := copy(r, startupRandomData) extendRandom(r, n) return } fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) closefd(fd) extendRandom(r, int(n)) } func goenvs() { goenvs_unix() } // Called to do synchronous initialization of Go code built with // -buildmode=c-archive or -buildmode=c-shared. // None of the Go runtime is initialized. //go:nosplit //go:nowritebarrierrec func libpreinit() { initsig(true) } // Called to initialize a new m (including the bootstrap m). // Called on the parent thread (main thread in case of bootstrap), can allocate memory. func mpreinit(mp *m) { mp.gsignal = malg(32 * 1024) // Linux wants >= 2K mp.gsignal.m = mp } func gettid() uint32 // Called to initialize a new m (including the bootstrap m). // Called on the new thread, cannot allocate memory. func minit() { minitSignals() // for debuggers, in case cgo created the thread getg().m.procid = uint64(gettid()) } // Called from dropm to undo the effect of an minit. //go:nosplit func unminit() { unminitSignals() } //#ifdef GOARCH_386 //#define sa_handler k_sa_handler //#endif func sigreturn() func sigtramp(sig uint32, info *siginfo, ctx unsafe.Pointer) func cgoSigtramp() //go:noescape func sigaltstack(new, old *stackt) //go:noescape func setitimer(mode int32, new, old *itimerval) //go:noescape func rtsigprocmask(how int32, new, old *sigset, size int32) //go:nosplit //go:nowritebarrierrec func sigprocmask(how int32, new, old *sigset) { rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new))) } func raise(sig uint32) func raiseproc(sig uint32) //go:noescape func sched_getaffinity(pid, len uintptr, buf *byte) int32 func osyield() //go:nosplit //go:nowritebarrierrec func setsig(i uint32, fn uintptr) { var sa sigactiont sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART sigfillset(&sa.sa_mask) // Although Linux manpage says "sa_restorer element is obsolete and // should not be used". x86_64 kernel requires it. Only use it on // x86. if GOARCH == "386" || GOARCH == "amd64" { sa.sa_restorer = funcPC(sigreturn) } if fn == funcPC(sighandler) { if iscgo { fn = funcPC(cgoSigtramp) } else { fn = funcPC(sigtramp) } } sa.sa_handler = fn sigaction(i, &sa, nil) } //go:nosplit //go:nowritebarrierrec func setsigstack(i uint32) { var sa sigactiont sigaction(i, nil, &sa) if sa.sa_flags&_SA_ONSTACK != 0 { return } sa.sa_flags |= _SA_ONSTACK sigaction(i, &sa, nil) } //go:nosplit //go:nowritebarrierrec func getsig(i uint32) uintptr { var sa sigactiont sigaction(i, nil, &sa) return sa.sa_handler } // setSignaltstackSP sets the ss_sp field of a stackt. //go:nosplit func setSignalstackSP(s *stackt, sp uintptr) { *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp } func (c *sigctxt) fixsigcode(sig uint32) { } // sysSigaction calls the rt_sigaction system call. //go:nosplit func sysSigaction(sig uint32, new, old *sigactiont) { if rt_sigaction(uintptr(sig), new, old, unsafe.Sizeof(sigactiont{}.sa_mask)) != 0 { // Workaround for bugs in QEMU user mode emulation. // // QEMU turns calls to the sigaction system call into // calls to the C library sigaction call; the C // library call rejects attempts to call sigaction for // SIGCANCEL (32) or SIGSETXID (33). // // QEMU rejects calling sigaction on SIGRTMAX (64). // // Just ignore the error in these case. There isn't // anything we can do about it anyhow. if sig != 32 && sig != 33 && sig != 64 { // Use system stack to avoid split stack overflow on ppc64/ppc64le. systemstack(func() { throw("sigaction failed") }) } } } // rt_sigaction is implemented in assembly. //go:noescape func rt_sigaction(sig uintptr, new, old *sigactiont, size uintptr) int32