// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "internal/bytealg" "unsafe" ) // The constant is known to the compiler. // There is no fundamental theory behind this number. const tmpStringBufSize = 32 type tmpBuf [tmpStringBufSize]byte // concatstrings implements a Go string concatenation x+y+z+... // The operands are passed in the slice a. // If buf != nil, the compiler has determined that the result does not // escape the calling function, so the string data can be stored in buf // if small enough. func concatstrings(buf *tmpBuf, a []string) string { idx := 0 l := 0 count := 0 for i, x := range a { n := len(x) if n == 0 { continue } if l+n < l { throw("string concatenation too long") } l += n count++ idx = i } if count == 0 { return "" } // If there is just one string and either it is not on the stack // or our result does not escape the calling frame (buf != nil), // then we can return that string directly. if count == 1 && (buf != nil || !stringDataOnStack(a[idx])) { return a[idx] } s, b := rawstringtmp(buf, l) for _, x := range a { copy(b, x) b = b[len(x):] } return s } func concatstring2(buf *tmpBuf, a [2]string) string { return concatstrings(buf, a[:]) } func concatstring3(buf *tmpBuf, a [3]string) string { return concatstrings(buf, a[:]) } func concatstring4(buf *tmpBuf, a [4]string) string { return concatstrings(buf, a[:]) } func concatstring5(buf *tmpBuf, a [5]string) string { return concatstrings(buf, a[:]) } // Buf is a fixed-size buffer for the result, // it is not nil if the result does not escape. func slicebytetostring(buf *tmpBuf, b []byte) (str string) { l := len(b) if l == 0 { // Turns out to be a relatively common case. // Consider that you want to parse out data between parens in "foo()bar", // you find the indices and convert the subslice to string. return "" } if raceenabled { racereadrangepc(unsafe.Pointer(&b[0]), uintptr(l), getcallerpc(), funcPC(slicebytetostring)) } if msanenabled { msanread(unsafe.Pointer(&b[0]), uintptr(l)) } if l == 1 { stringStructOf(&str).str = unsafe.Pointer(&staticbytes[b[0]]) stringStructOf(&str).len = 1 return } var p unsafe.Pointer if buf != nil && len(b) <= len(buf) { p = unsafe.Pointer(buf) } else { p = mallocgc(uintptr(len(b)), nil, false) } stringStructOf(&str).str = p stringStructOf(&str).len = len(b) memmove(p, (*(*slice)(unsafe.Pointer(&b))).array, uintptr(len(b))) return } // stringDataOnStack reports whether the string's data is // stored on the current goroutine's stack. func stringDataOnStack(s string) bool { ptr := uintptr(stringStructOf(&s).str) stk := getg().stack return stk.lo <= ptr && ptr < stk.hi } func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) { if buf != nil && l <= len(buf) { b = buf[:l] s = slicebytetostringtmp(b) } else { s, b = rawstring(l) } return } // slicebytetostringtmp returns a "string" referring to the actual []byte bytes. // // Callers need to ensure that the returned string will not be used after // the calling goroutine modifies the original slice or synchronizes with // another goroutine. // // The function is only called when instrumenting // and otherwise intrinsified by the compiler. // // Some internal compiler optimizations use this function. // - Used for m[T1{... Tn{..., string(k), ...} ...}] and m[string(k)] // where k is []byte, T1 to Tn is a nesting of struct and array literals. // - Used for "<"+string(b)+">" concatenation where b is []byte. // - Used for string(b)=="foo" comparison where b is []byte. func slicebytetostringtmp(b []byte) string { if raceenabled && len(b) > 0 { racereadrangepc(unsafe.Pointer(&b[0]), uintptr(len(b)), getcallerpc(), funcPC(slicebytetostringtmp)) } if msanenabled && len(b) > 0 { msanread(unsafe.Pointer(&b[0]), uintptr(len(b))) } return *(*string)(unsafe.Pointer(&b)) } func stringtoslicebyte(buf *tmpBuf, s string) []byte { var b []byte if buf != nil && len(s) <= len(buf) { *buf = tmpBuf{} b = buf[:len(s)] } else { b = rawbyteslice(len(s)) } copy(b, s) return b } func stringtoslicerune(buf *[tmpStringBufSize]rune, s string) []rune { // two passes. // unlike slicerunetostring, no race because strings are immutable. n := 0 for range s { n++ } var a []rune if buf != nil && n <= len(buf) { *buf = [tmpStringBufSize]rune{} a = buf[:n] } else { a = rawruneslice(n) } n = 0 for _, r := range s { a[n] = r n++ } return a } func slicerunetostring(buf *tmpBuf, a []rune) string { if raceenabled && len(a) > 0 { racereadrangepc(unsafe.Pointer(&a[0]), uintptr(len(a))*unsafe.Sizeof(a[0]), getcallerpc(), funcPC(slicerunetostring)) } if msanenabled && len(a) > 0 { msanread(unsafe.Pointer(&a[0]), uintptr(len(a))*unsafe.Sizeof(a[0])) } var dum [4]byte size1 := 0 for _, r := range a { size1 += encoderune(dum[:], r) } s, b := rawstringtmp(buf, size1+3) size2 := 0 for _, r := range a { // check for race if size2 >= size1 { break } size2 += encoderune(b[size2:], r) } return s[:size2] } type stringStruct struct { str unsafe.Pointer len int } // Variant with *byte pointer type for DWARF debugging. type stringStructDWARF struct { str *byte len int } func stringStructOf(sp *string) *stringStruct { return (*stringStruct)(unsafe.Pointer(sp)) } func intstring(buf *[4]byte, v int64) (s string) { if v >= 0 && v < runeSelf { stringStructOf(&s).str = unsafe.Pointer(&staticbytes[v]) stringStructOf(&s).len = 1 return } var b []byte if buf != nil { b = buf[:] s = slicebytetostringtmp(b) } else { s, b = rawstring(4) } if int64(rune(v)) != v { v = runeError } n := encoderune(b, rune(v)) return s[:n] } // rawstring allocates storage for a new string. The returned // string and byte slice both refer to the same storage. // The storage is not zeroed. Callers should use // b to set the string contents and then drop b. func rawstring(size int) (s string, b []byte) { p := mallocgc(uintptr(size), nil, false) stringStructOf(&s).str = p stringStructOf(&s).len = size *(*slice)(unsafe.Pointer(&b)) = slice{p, size, size} return } // rawbyteslice allocates a new byte slice. The byte slice is not zeroed. func rawbyteslice(size int) (b []byte) { cap := roundupsize(uintptr(size)) p := mallocgc(cap, nil, false) if cap != uintptr(size) { memclrNoHeapPointers(add(p, uintptr(size)), cap-uintptr(size)) } *(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(cap)} return } // rawruneslice allocates a new rune slice. The rune slice is not zeroed. func rawruneslice(size int) (b []rune) { if uintptr(size) > maxAlloc/4 { throw("out of memory") } mem := roundupsize(uintptr(size) * 4) p := mallocgc(mem, nil, false) if mem != uintptr(size)*4 { memclrNoHeapPointers(add(p, uintptr(size)*4), mem-uintptr(size)*4) } *(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(mem / 4)} return } // used by cmd/cgo func gobytes(p *byte, n int) (b []byte) { if n == 0 { return make([]byte, 0) } if n < 0 || uintptr(n) > maxAlloc { panic(errorString("gobytes: length out of range")) } bp := mallocgc(uintptr(n), nil, false) memmove(bp, unsafe.Pointer(p), uintptr(n)) *(*slice)(unsafe.Pointer(&b)) = slice{bp, n, n} return } func gostring(p *byte) string { l := findnull(p) if l == 0 { return "" } s, b := rawstring(l) memmove(unsafe.Pointer(&b[0]), unsafe.Pointer(p), uintptr(l)) return s } func gostringn(p *byte, l int) string { if l == 0 { return "" } s, b := rawstring(l) memmove(unsafe.Pointer(&b[0]), unsafe.Pointer(p), uintptr(l)) return s } func index(s, t string) int { if len(t) == 0 { return 0 } for i := 0; i < len(s); i++ { if s[i] == t[0] && hasPrefix(s[i:], t) { return i } } return -1 } func contains(s, t string) bool { return index(s, t) >= 0 } func hasPrefix(s, prefix string) bool { return len(s) >= len(prefix) && s[:len(prefix)] == prefix } const ( maxUint = ^uint(0) maxInt = int(maxUint >> 1) ) // atoi parses an int from a string s. // The bool result reports whether s is a number // representable by a value of type int. func atoi(s string) (int, bool) { if s == "" { return 0, false } neg := false if s[0] == '-' { neg = true s = s[1:] } un := uint(0) for i := 0; i < len(s); i++ { c := s[i] if c < '0' || c > '9' { return 0, false } if un > maxUint/10 { // overflow return 0, false } un *= 10 un1 := un + uint(c) - '0' if un1 < un { // overflow return 0, false } un = un1 } if !neg && un > uint(maxInt) { return 0, false } if neg && un > uint(maxInt)+1 { return 0, false } n := int(un) if neg { n = -n } return n, true } // atoi32 is like atoi but for integers // that fit into an int32. func atoi32(s string) (int32, bool) { if n, ok := atoi(s); n == int(int32(n)) { return int32(n), ok } return 0, false } //go:nosplit func findnull(s *byte) int { if s == nil { return 0 } // Avoid IndexByteString on Plan 9 because it uses SSE instructions // on x86 machines, and those are classified as floating point instructions, // which are illegal in a note handler. if GOOS == "plan9" { p := (*[maxAlloc/2 - 1]byte)(unsafe.Pointer(s)) l := 0 for p[l] != 0 { l++ } return l } // pageSize is the unit we scan at a time looking for NULL. // It must be the minimum page size for any architecture Go // runs on. It's okay (just a minor performance loss) if the // actual system page size is larger than this value. const pageSize = 4096 offset := 0 ptr := unsafe.Pointer(s) // IndexByteString uses wide reads, so we need to be careful // with page boundaries. Call IndexByteString on // [ptr, endOfPage) interval. safeLen := int(pageSize - uintptr(ptr)%pageSize) for { t := *(*string)(unsafe.Pointer(&stringStruct{ptr, safeLen})) // Check one page at a time. if i := bytealg.IndexByteString(t, 0); i != -1 { return offset + i } // Move to next page ptr = unsafe.Pointer(uintptr(ptr) + uintptr(safeLen)) offset += safeLen safeLen = pageSize } } func findnullw(s *uint16) int { if s == nil { return 0 } p := (*[maxAlloc/2/2 - 1]uint16)(unsafe.Pointer(s)) l := 0 for p[l] != 0 { l++ } return l } //go:nosplit func gostringnocopy(str *byte) string { ss := stringStruct{str: unsafe.Pointer(str), len: findnull(str)} s := *(*string)(unsafe.Pointer(&ss)) return s } func gostringw(strw *uint16) string { var buf [8]byte str := (*[maxAlloc/2/2 - 1]uint16)(unsafe.Pointer(strw)) n1 := 0 for i := 0; str[i] != 0; i++ { n1 += encoderune(buf[:], rune(str[i])) } s, b := rawstring(n1 + 4) n2 := 0 for i := 0; str[i] != 0; i++ { // check for race if n2 >= n1 { break } n2 += encoderune(b[n2:], rune(str[i])) } b[n2] = 0 // for luck return s[:n2] }