// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Binary to decimal floating point conversion. // Algorithm: // 1) store mantissa in multiprecision decimal // 2) shift decimal by exponent // 3) read digits out & format package strconv import "math" // TODO: move elsewhere? type floatInfo struct { mantbits uint expbits uint bias int } var float32info = floatInfo{23, 8, -127} var float64info = floatInfo{52, 11, -1023} // FormatFloat converts the floating-point number f to a string, // according to the format fmt and precision prec. It rounds the // result assuming that the original was obtained from a floating-point // value of bitSize bits (32 for float32, 64 for float64). // // The format fmt is one of // 'b' (-ddddp±ddd, a binary exponent), // 'e' (-d.dddde±dd, a decimal exponent), // 'E' (-d.ddddE±dd, a decimal exponent), // 'f' (-ddd.dddd, no exponent), // 'g' ('e' for large exponents, 'f' otherwise), or // 'G' ('E' for large exponents, 'f' otherwise). // // The precision prec controls the number of digits (excluding the exponent) // printed by the 'e', 'E', 'f', 'g', and 'G' formats. // For 'e', 'E', and 'f' it is the number of digits after the decimal point. // For 'g' and 'G' it is the maximum number of significant digits (trailing // zeros are removed). // The special precision -1 uses the smallest number of digits // necessary such that ParseFloat will return f exactly. func FormatFloat(f float64, fmt byte, prec, bitSize int) string { return string(genericFtoa(make([]byte, 0, max(prec+4, 24)), f, fmt, prec, bitSize)) } // AppendFloat appends the string form of the floating-point number f, // as generated by FormatFloat, to dst and returns the extended buffer. func AppendFloat(dst []byte, f float64, fmt byte, prec, bitSize int) []byte { return genericFtoa(dst, f, fmt, prec, bitSize) } func genericFtoa(dst []byte, val float64, fmt byte, prec, bitSize int) []byte { var bits uint64 var flt *floatInfo switch bitSize { case 32: bits = uint64(math.Float32bits(float32(val))) flt = &float32info case 64: bits = math.Float64bits(val) flt = &float64info default: panic("strconv: illegal AppendFloat/FormatFloat bitSize") } neg := bits>>(flt.expbits+flt.mantbits) != 0 exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1) mant := bits & (uint64(1)<<flt.mantbits - 1) switch exp { case 1<<flt.expbits - 1: // Inf, NaN var s string switch { case mant != 0: s = "NaN" case neg: s = "-Inf" default: s = "+Inf" } return append(dst, s...) case 0: // denormalized exp++ default: // add implicit top bit mant |= uint64(1) << flt.mantbits } exp += flt.bias // Pick off easy binary format. if fmt == 'b' { return fmtB(dst, neg, mant, exp, flt) } if !optimize { return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) } var digs decimalSlice ok := false // Negative precision means "only as much as needed to be exact." shortest := prec < 0 if shortest { // Try Grisu3 algorithm. f := new(extFloat) lower, upper := f.AssignComputeBounds(mant, exp, neg, flt) var buf [32]byte digs.d = buf[:] ok = f.ShortestDecimal(&digs, &lower, &upper) if !ok { return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) } // Precision for shortest representation mode. switch fmt { case 'e', 'E': prec = max(digs.nd-1, 0) case 'f': prec = max(digs.nd-digs.dp, 0) case 'g', 'G': prec = digs.nd } } else if fmt != 'f' { // Fixed number of digits. digits := prec switch fmt { case 'e', 'E': digits++ case 'g', 'G': if prec == 0 { prec = 1 } digits = prec } if digits <= 15 { // try fast algorithm when the number of digits is reasonable. var buf [24]byte digs.d = buf[:] f := extFloat{mant, exp - int(flt.mantbits), neg} ok = f.FixedDecimal(&digs, digits) } } if !ok { return bigFtoa(dst, prec, fmt, neg, mant, exp, flt) } return formatDigits(dst, shortest, neg, digs, prec, fmt) } // bigFtoa uses multiprecision computations to format a float. func bigFtoa(dst []byte, prec int, fmt byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { d := new(decimal) d.Assign(mant) d.Shift(exp - int(flt.mantbits)) var digs decimalSlice shortest := prec < 0 if shortest { roundShortest(d, mant, exp, flt) digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} // Precision for shortest representation mode. switch fmt { case 'e', 'E': prec = digs.nd - 1 case 'f': prec = max(digs.nd-digs.dp, 0) case 'g', 'G': prec = digs.nd } } else { // Round appropriately. switch fmt { case 'e', 'E': d.Round(prec + 1) case 'f': d.Round(d.dp + prec) case 'g', 'G': if prec == 0 { prec = 1 } d.Round(prec) } digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp} } return formatDigits(dst, shortest, neg, digs, prec, fmt) } func formatDigits(dst []byte, shortest bool, neg bool, digs decimalSlice, prec int, fmt byte) []byte { switch fmt { case 'e', 'E': return fmtE(dst, neg, digs, prec, fmt) case 'f': return fmtF(dst, neg, digs, prec) case 'g', 'G': // trailing fractional zeros in 'e' form will be trimmed. eprec := prec if eprec > digs.nd && digs.nd >= digs.dp { eprec = digs.nd } // %e is used if the exponent from the conversion // is less than -4 or greater than or equal to the precision. // if precision was the shortest possible, use precision 6 for this decision. if shortest { eprec = 6 } exp := digs.dp - 1 if exp < -4 || exp >= eprec { if prec > digs.nd { prec = digs.nd } return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g') } if prec > digs.dp { prec = digs.nd } return fmtF(dst, neg, digs, max(prec-digs.dp, 0)) } // unknown format return append(dst, '%', fmt) } // roundShortest rounds d (= mant * 2^exp) to the shortest number of digits // that will let the original floating point value be precisely reconstructed. func roundShortest(d *decimal, mant uint64, exp int, flt *floatInfo) { // If mantissa is zero, the number is zero; stop now. if mant == 0 { d.nd = 0 return } // Compute upper and lower such that any decimal number // between upper and lower (possibly inclusive) // will round to the original floating point number. // We may see at once that the number is already shortest. // // Suppose d is not denormal, so that 2^exp <= d < 10^dp. // The closest shorter number is at least 10^(dp-nd) away. // The lower/upper bounds computed below are at distance // at most 2^(exp-mantbits). // // So the number is already shortest if 10^(dp-nd) > 2^(exp-mantbits), // or equivalently log2(10)*(dp-nd) > exp-mantbits. // It is true if 332/100*(dp-nd) >= exp-mantbits (log2(10) > 3.32). minexp := flt.bias + 1 // minimum possible exponent if exp > minexp && 332*(d.dp-d.nd) >= 100*(exp-int(flt.mantbits)) { // The number is already shortest. return } // d = mant << (exp - mantbits) // Next highest floating point number is mant+1 << exp-mantbits. // Our upper bound is halfway between, mant*2+1 << exp-mantbits-1. upper := new(decimal) upper.Assign(mant*2 + 1) upper.Shift(exp - int(flt.mantbits) - 1) // d = mant << (exp - mantbits) // Next lowest floating point number is mant-1 << exp-mantbits, // unless mant-1 drops the significant bit and exp is not the minimum exp, // in which case the next lowest is mant*2-1 << exp-mantbits-1. // Either way, call it mantlo << explo-mantbits. // Our lower bound is halfway between, mantlo*2+1 << explo-mantbits-1. var mantlo uint64 var explo int if mant > 1<<flt.mantbits || exp == minexp { mantlo = mant - 1 explo = exp } else { mantlo = mant*2 - 1 explo = exp - 1 } lower := new(decimal) lower.Assign(mantlo*2 + 1) lower.Shift(explo - int(flt.mantbits) - 1) // The upper and lower bounds are possible outputs only if // the original mantissa is even, so that IEEE round-to-even // would round to the original mantissa and not the neighbors. inclusive := mant%2 == 0 // Now we can figure out the minimum number of digits required. // Walk along until d has distinguished itself from upper and lower. for i := 0; i < d.nd; i++ { l := byte('0') // lower digit if i < lower.nd { l = lower.d[i] } m := d.d[i] // middle digit u := byte('0') // upper digit if i < upper.nd { u = upper.d[i] } // Okay to round down (truncate) if lower has a different digit // or if lower is inclusive and is exactly the result of rounding // down (i.e., and we have reached the final digit of lower). okdown := l != m || inclusive && i+1 == lower.nd // Okay to round up if upper has a different digit and either upper // is inclusive or upper is bigger than the result of rounding up. okup := m != u && (inclusive || m+1 < u || i+1 < upper.nd) // If it's okay to do either, then round to the nearest one. // If it's okay to do only one, do it. switch { case okdown && okup: d.Round(i + 1) return case okdown: d.RoundDown(i + 1) return case okup: d.RoundUp(i + 1) return } } } type decimalSlice struct { d []byte nd, dp int neg bool } // %e: -d.ddddde±dd func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte { // sign if neg { dst = append(dst, '-') } // first digit ch := byte('0') if d.nd != 0 { ch = d.d[0] } dst = append(dst, ch) // .moredigits if prec > 0 { dst = append(dst, '.') i := 1 m := min(d.nd, prec+1) if i < m { dst = append(dst, d.d[i:m]...) i = m } for ; i <= prec; i++ { dst = append(dst, '0') } } // e± dst = append(dst, fmt) exp := d.dp - 1 if d.nd == 0 { // special case: 0 has exponent 0 exp = 0 } if exp < 0 { ch = '-' exp = -exp } else { ch = '+' } dst = append(dst, ch) // dd or ddd switch { case exp < 10: dst = append(dst, '0', byte(exp)+'0') case exp < 100: dst = append(dst, byte(exp/10)+'0', byte(exp%10)+'0') default: dst = append(dst, byte(exp/100)+'0', byte(exp/10)%10+'0', byte(exp%10)+'0') } return dst } // %f: -ddddddd.ddddd func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte { // sign if neg { dst = append(dst, '-') } // integer, padded with zeros as needed. if d.dp > 0 { m := min(d.nd, d.dp) dst = append(dst, d.d[:m]...) for ; m < d.dp; m++ { dst = append(dst, '0') } } else { dst = append(dst, '0') } // fraction if prec > 0 { dst = append(dst, '.') for i := 0; i < prec; i++ { ch := byte('0') if j := d.dp + i; 0 <= j && j < d.nd { ch = d.d[j] } dst = append(dst, ch) } } return dst } // %b: -ddddddddp±ddd func fmtB(dst []byte, neg bool, mant uint64, exp int, flt *floatInfo) []byte { // sign if neg { dst = append(dst, '-') } // mantissa dst, _ = formatBits(dst, mant, 10, false, true) // p dst = append(dst, 'p') // ±exponent exp -= int(flt.mantbits) if exp >= 0 { dst = append(dst, '+') } dst, _ = formatBits(dst, uint64(exp), 10, exp < 0, true) return dst } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b }