// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This Go implementation is derived in part from the reference // ANSI C implementation, which carries the following notice: // // rijndael-alg-fst.c // // @version 3.0 (December 2000) // // Optimised ANSI C code for the Rijndael cipher (now AES) // // @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be> // @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be> // @author Paulo Barreto <paulo.barreto@terra.com.br> // // This code is hereby placed in the public domain. // // THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS // OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR // BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE // OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // See FIPS 197 for specification, and see Daemen and Rijmen's Rijndael submission // for implementation details. // https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf // https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf package aes import ( "encoding/binary" ) // Encrypt one block from src into dst, using the expanded key xk. func encryptBlockGo(xk []uint32, dst, src []byte) { _ = src[15] // early bounds check s0 := binary.BigEndian.Uint32(src[0:4]) s1 := binary.BigEndian.Uint32(src[4:8]) s2 := binary.BigEndian.Uint32(src[8:12]) s3 := binary.BigEndian.Uint32(src[12:16]) // First round just XORs input with key. s0 ^= xk[0] s1 ^= xk[1] s2 ^= xk[2] s3 ^= xk[3] // Middle rounds shuffle using tables. // Number of rounds is set by length of expanded key. nr := len(xk)/4 - 2 // - 2: one above, one more below k := 4 var t0, t1, t2, t3 uint32 for r := 0; r < nr; r++ { t0 = xk[k+0] ^ te0[uint8(s0>>24)] ^ te1[uint8(s1>>16)] ^ te2[uint8(s2>>8)] ^ te3[uint8(s3)] t1 = xk[k+1] ^ te0[uint8(s1>>24)] ^ te1[uint8(s2>>16)] ^ te2[uint8(s3>>8)] ^ te3[uint8(s0)] t2 = xk[k+2] ^ te0[uint8(s2>>24)] ^ te1[uint8(s3>>16)] ^ te2[uint8(s0>>8)] ^ te3[uint8(s1)] t3 = xk[k+3] ^ te0[uint8(s3>>24)] ^ te1[uint8(s0>>16)] ^ te2[uint8(s1>>8)] ^ te3[uint8(s2)] k += 4 s0, s1, s2, s3 = t0, t1, t2, t3 } // Last round uses s-box directly and XORs to produce output. s0 = uint32(sbox0[t0>>24])<<24 | uint32(sbox0[t1>>16&0xff])<<16 | uint32(sbox0[t2>>8&0xff])<<8 | uint32(sbox0[t3&0xff]) s1 = uint32(sbox0[t1>>24])<<24 | uint32(sbox0[t2>>16&0xff])<<16 | uint32(sbox0[t3>>8&0xff])<<8 | uint32(sbox0[t0&0xff]) s2 = uint32(sbox0[t2>>24])<<24 | uint32(sbox0[t3>>16&0xff])<<16 | uint32(sbox0[t0>>8&0xff])<<8 | uint32(sbox0[t1&0xff]) s3 = uint32(sbox0[t3>>24])<<24 | uint32(sbox0[t0>>16&0xff])<<16 | uint32(sbox0[t1>>8&0xff])<<8 | uint32(sbox0[t2&0xff]) s0 ^= xk[k+0] s1 ^= xk[k+1] s2 ^= xk[k+2] s3 ^= xk[k+3] _ = dst[15] // early bounds check binary.BigEndian.PutUint32(dst[0:4], s0) binary.BigEndian.PutUint32(dst[4:8], s1) binary.BigEndian.PutUint32(dst[8:12], s2) binary.BigEndian.PutUint32(dst[12:16], s3) } // Decrypt one block from src into dst, using the expanded key xk. func decryptBlockGo(xk []uint32, dst, src []byte) { _ = src[15] // early bounds check s0 := binary.BigEndian.Uint32(src[0:4]) s1 := binary.BigEndian.Uint32(src[4:8]) s2 := binary.BigEndian.Uint32(src[8:12]) s3 := binary.BigEndian.Uint32(src[12:16]) // First round just XORs input with key. s0 ^= xk[0] s1 ^= xk[1] s2 ^= xk[2] s3 ^= xk[3] // Middle rounds shuffle using tables. // Number of rounds is set by length of expanded key. nr := len(xk)/4 - 2 // - 2: one above, one more below k := 4 var t0, t1, t2, t3 uint32 for r := 0; r < nr; r++ { t0 = xk[k+0] ^ td0[uint8(s0>>24)] ^ td1[uint8(s3>>16)] ^ td2[uint8(s2>>8)] ^ td3[uint8(s1)] t1 = xk[k+1] ^ td0[uint8(s1>>24)] ^ td1[uint8(s0>>16)] ^ td2[uint8(s3>>8)] ^ td3[uint8(s2)] t2 = xk[k+2] ^ td0[uint8(s2>>24)] ^ td1[uint8(s1>>16)] ^ td2[uint8(s0>>8)] ^ td3[uint8(s3)] t3 = xk[k+3] ^ td0[uint8(s3>>24)] ^ td1[uint8(s2>>16)] ^ td2[uint8(s1>>8)] ^ td3[uint8(s0)] k += 4 s0, s1, s2, s3 = t0, t1, t2, t3 } // Last round uses s-box directly and XORs to produce output. s0 = uint32(sbox1[t0>>24])<<24 | uint32(sbox1[t3>>16&0xff])<<16 | uint32(sbox1[t2>>8&0xff])<<8 | uint32(sbox1[t1&0xff]) s1 = uint32(sbox1[t1>>24])<<24 | uint32(sbox1[t0>>16&0xff])<<16 | uint32(sbox1[t3>>8&0xff])<<8 | uint32(sbox1[t2&0xff]) s2 = uint32(sbox1[t2>>24])<<24 | uint32(sbox1[t1>>16&0xff])<<16 | uint32(sbox1[t0>>8&0xff])<<8 | uint32(sbox1[t3&0xff]) s3 = uint32(sbox1[t3>>24])<<24 | uint32(sbox1[t2>>16&0xff])<<16 | uint32(sbox1[t1>>8&0xff])<<8 | uint32(sbox1[t0&0xff]) s0 ^= xk[k+0] s1 ^= xk[k+1] s2 ^= xk[k+2] s3 ^= xk[k+3] _ = dst[15] // early bounds check binary.BigEndian.PutUint32(dst[0:4], s0) binary.BigEndian.PutUint32(dst[4:8], s1) binary.BigEndian.PutUint32(dst[8:12], s2) binary.BigEndian.PutUint32(dst[12:16], s3) } // Apply sbox0 to each byte in w. func subw(w uint32) uint32 { return uint32(sbox0[w>>24])<<24 | uint32(sbox0[w>>16&0xff])<<16 | uint32(sbox0[w>>8&0xff])<<8 | uint32(sbox0[w&0xff]) } // Rotate func rotw(w uint32) uint32 { return w<<8 | w>>24 } // Key expansion algorithm. See FIPS-197, Figure 11. // Their rcon[i] is our powx[i-1] << 24. func expandKeyGo(key []byte, enc, dec []uint32) { // Encryption key setup. var i int nk := len(key) / 4 for i = 0; i < nk; i++ { enc[i] = binary.BigEndian.Uint32(key[4*i:]) } for ; i < len(enc); i++ { t := enc[i-1] if i%nk == 0 { t = subw(rotw(t)) ^ (uint32(powx[i/nk-1]) << 24) } else if nk > 6 && i%nk == 4 { t = subw(t) } enc[i] = enc[i-nk] ^ t } // Derive decryption key from encryption key. // Reverse the 4-word round key sets from enc to produce dec. // All sets but the first and last get the MixColumn transform applied. if dec == nil { return } n := len(enc) for i := 0; i < n; i += 4 { ei := n - i - 4 for j := 0; j < 4; j++ { x := enc[ei+j] if i > 0 && i+4 < n { x = td0[sbox0[x>>24]] ^ td1[sbox0[x>>16&0xff]] ^ td2[sbox0[x>>8&0xff]] ^ td3[sbox0[x&0xff]] } dec[i+j] = x } } }