// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file contains constant-time, 64-bit assembly implementation of // P256. The optimizations performed here are described in detail in: // S.Gueron and V.Krasnov, "Fast prime field elliptic-curve cryptography with // 256-bit primes" // https://link.springer.com/article/10.1007%2Fs13389-014-0090-x // https://eprint.iacr.org/2013/816.pdf #include "textflag.h" #define res_ptr DI #define x_ptr SI #define y_ptr CX #define acc0 R8 #define acc1 R9 #define acc2 R10 #define acc3 R11 #define acc4 R12 #define acc5 R13 #define t0 R14 #define t1 R15 DATA p256const0<>+0x00(SB)/8, $0x00000000ffffffff DATA p256const1<>+0x00(SB)/8, $0xffffffff00000001 DATA p256ordK0<>+0x00(SB)/8, $0xccd1c8aaee00bc4f DATA p256ord<>+0x00(SB)/8, $0xf3b9cac2fc632551 DATA p256ord<>+0x08(SB)/8, $0xbce6faada7179e84 DATA p256ord<>+0x10(SB)/8, $0xffffffffffffffff DATA p256ord<>+0x18(SB)/8, $0xffffffff00000000 DATA p256one<>+0x00(SB)/8, $0x0000000000000001 DATA p256one<>+0x08(SB)/8, $0xffffffff00000000 DATA p256one<>+0x10(SB)/8, $0xffffffffffffffff DATA p256one<>+0x18(SB)/8, $0x00000000fffffffe GLOBL p256const0<>(SB), 8, $8 GLOBL p256const1<>(SB), 8, $8 GLOBL p256ordK0<>(SB), 8, $8 GLOBL p256ord<>(SB), 8, $32 GLOBL p256one<>(SB), 8, $32 /* ---------------------------------------*/ // func p256LittleToBig(res []byte, in []uint64) TEXT ·p256LittleToBig(SB),NOSPLIT,$0 JMP ·p256BigToLittle(SB) /* ---------------------------------------*/ // func p256BigToLittle(res []uint64, in []byte) TEXT ·p256BigToLittle(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ in+24(FP), x_ptr MOVQ (8*0)(x_ptr), acc0 MOVQ (8*1)(x_ptr), acc1 MOVQ (8*2)(x_ptr), acc2 MOVQ (8*3)(x_ptr), acc3 BSWAPQ acc0 BSWAPQ acc1 BSWAPQ acc2 BSWAPQ acc3 MOVQ acc3, (8*0)(res_ptr) MOVQ acc2, (8*1)(res_ptr) MOVQ acc1, (8*2)(res_ptr) MOVQ acc0, (8*3)(res_ptr) RET /* ---------------------------------------*/ // func p256MovCond(res, a, b []uint64, cond int) // If cond == 0 res=b, else res=a TEXT ·p256MovCond(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ a+24(FP), x_ptr MOVQ b+48(FP), y_ptr MOVQ cond+72(FP), X12 PXOR X13, X13 PSHUFD $0, X12, X12 PCMPEQL X13, X12 MOVOU X12, X0 MOVOU (16*0)(x_ptr), X6 PANDN X6, X0 MOVOU X12, X1 MOVOU (16*1)(x_ptr), X7 PANDN X7, X1 MOVOU X12, X2 MOVOU (16*2)(x_ptr), X8 PANDN X8, X2 MOVOU X12, X3 MOVOU (16*3)(x_ptr), X9 PANDN X9, X3 MOVOU X12, X4 MOVOU (16*4)(x_ptr), X10 PANDN X10, X4 MOVOU X12, X5 MOVOU (16*5)(x_ptr), X11 PANDN X11, X5 MOVOU (16*0)(y_ptr), X6 MOVOU (16*1)(y_ptr), X7 MOVOU (16*2)(y_ptr), X8 MOVOU (16*3)(y_ptr), X9 MOVOU (16*4)(y_ptr), X10 MOVOU (16*5)(y_ptr), X11 PAND X12, X6 PAND X12, X7 PAND X12, X8 PAND X12, X9 PAND X12, X10 PAND X12, X11 PXOR X6, X0 PXOR X7, X1 PXOR X8, X2 PXOR X9, X3 PXOR X10, X4 PXOR X11, X5 MOVOU X0, (16*0)(res_ptr) MOVOU X1, (16*1)(res_ptr) MOVOU X2, (16*2)(res_ptr) MOVOU X3, (16*3)(res_ptr) MOVOU X4, (16*4)(res_ptr) MOVOU X5, (16*5)(res_ptr) RET /* ---------------------------------------*/ // func p256NegCond(val []uint64, cond int) TEXT ·p256NegCond(SB),NOSPLIT,$0 MOVQ val+0(FP), res_ptr MOVQ cond+24(FP), t0 // acc = poly MOVQ $-1, acc0 MOVQ p256const0<>(SB), acc1 MOVQ $0, acc2 MOVQ p256const1<>(SB), acc3 // Load the original value MOVQ (8*0)(res_ptr), acc5 MOVQ (8*1)(res_ptr), x_ptr MOVQ (8*2)(res_ptr), y_ptr MOVQ (8*3)(res_ptr), t1 // Speculatively subtract SUBQ acc5, acc0 SBBQ x_ptr, acc1 SBBQ y_ptr, acc2 SBBQ t1, acc3 // If condition is 0, keep original value TESTQ t0, t0 CMOVQEQ acc5, acc0 CMOVQEQ x_ptr, acc1 CMOVQEQ y_ptr, acc2 CMOVQEQ t1, acc3 // Store result MOVQ acc0, (8*0)(res_ptr) MOVQ acc1, (8*1)(res_ptr) MOVQ acc2, (8*2)(res_ptr) MOVQ acc3, (8*3)(res_ptr) RET /* ---------------------------------------*/ // func p256Sqr(res, in []uint64, n int) TEXT ·p256Sqr(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ in+24(FP), x_ptr MOVQ n+48(FP), BX sqrLoop: // y[1:] * y[0] MOVQ (8*0)(x_ptr), t0 MOVQ (8*1)(x_ptr), AX MULQ t0 MOVQ AX, acc1 MOVQ DX, acc2 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, acc3 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, acc4 // y[2:] * y[1] MOVQ (8*1)(x_ptr), t0 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, acc5 // y[3] * y[2] MOVQ (8*2)(x_ptr), t0 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ AX, acc5 ADCQ $0, DX MOVQ DX, y_ptr XORQ t1, t1 // *2 ADDQ acc1, acc1 ADCQ acc2, acc2 ADCQ acc3, acc3 ADCQ acc4, acc4 ADCQ acc5, acc5 ADCQ y_ptr, y_ptr ADCQ $0, t1 // Missing products MOVQ (8*0)(x_ptr), AX MULQ AX MOVQ AX, acc0 MOVQ DX, t0 MOVQ (8*1)(x_ptr), AX MULQ AX ADDQ t0, acc1 ADCQ AX, acc2 ADCQ $0, DX MOVQ DX, t0 MOVQ (8*2)(x_ptr), AX MULQ AX ADDQ t0, acc3 ADCQ AX, acc4 ADCQ $0, DX MOVQ DX, t0 MOVQ (8*3)(x_ptr), AX MULQ AX ADDQ t0, acc5 ADCQ AX, y_ptr ADCQ DX, t1 MOVQ t1, x_ptr // First reduction step MOVQ acc0, AX MOVQ acc0, t1 SHLQ $32, acc0 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc0, acc1 ADCQ t1, acc2 ADCQ AX, acc3 ADCQ $0, DX MOVQ DX, acc0 // Second reduction step MOVQ acc1, AX MOVQ acc1, t1 SHLQ $32, acc1 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc1, acc2 ADCQ t1, acc3 ADCQ AX, acc0 ADCQ $0, DX MOVQ DX, acc1 // Third reduction step MOVQ acc2, AX MOVQ acc2, t1 SHLQ $32, acc2 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc2, acc3 ADCQ t1, acc0 ADCQ AX, acc1 ADCQ $0, DX MOVQ DX, acc2 // Last reduction step XORQ t0, t0 MOVQ acc3, AX MOVQ acc3, t1 SHLQ $32, acc3 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc3, acc0 ADCQ t1, acc1 ADCQ AX, acc2 ADCQ $0, DX MOVQ DX, acc3 // Add bits [511:256] of the sqr result ADCQ acc4, acc0 ADCQ acc5, acc1 ADCQ y_ptr, acc2 ADCQ x_ptr, acc3 ADCQ $0, t0 MOVQ acc0, acc4 MOVQ acc1, acc5 MOVQ acc2, y_ptr MOVQ acc3, t1 // Subtract p256 SUBQ $-1, acc0 SBBQ p256const0<>(SB) ,acc1 SBBQ $0, acc2 SBBQ p256const1<>(SB), acc3 SBBQ $0, t0 CMOVQCS acc4, acc0 CMOVQCS acc5, acc1 CMOVQCS y_ptr, acc2 CMOVQCS t1, acc3 MOVQ acc0, (8*0)(res_ptr) MOVQ acc1, (8*1)(res_ptr) MOVQ acc2, (8*2)(res_ptr) MOVQ acc3, (8*3)(res_ptr) MOVQ res_ptr, x_ptr DECQ BX JNE sqrLoop RET /* ---------------------------------------*/ // func p256Mul(res, in1, in2 []uint64) TEXT ·p256Mul(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ in1+24(FP), x_ptr MOVQ in2+48(FP), y_ptr // x * y[0] MOVQ (8*0)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 MOVQ AX, acc0 MOVQ DX, acc1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, acc2 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, acc3 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, acc4 XORQ acc5, acc5 // First reduction step MOVQ acc0, AX MOVQ acc0, t1 SHLQ $32, acc0 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc0, acc1 ADCQ t1, acc2 ADCQ AX, acc3 ADCQ DX, acc4 ADCQ $0, acc5 XORQ acc0, acc0 // x * y[1] MOVQ (8*1)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ t1, acc2 ADCQ $0, DX ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ DX, acc5 ADCQ $0, acc0 // Second reduction step MOVQ acc1, AX MOVQ acc1, t1 SHLQ $32, acc1 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc1, acc2 ADCQ t1, acc3 ADCQ AX, acc4 ADCQ DX, acc5 ADCQ $0, acc0 XORQ acc1, acc1 // x * y[2] MOVQ (8*2)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc5 ADCQ $0, DX ADDQ AX, acc5 ADCQ DX, acc0 ADCQ $0, acc1 // Third reduction step MOVQ acc2, AX MOVQ acc2, t1 SHLQ $32, acc2 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc2, acc3 ADCQ t1, acc4 ADCQ AX, acc5 ADCQ DX, acc0 ADCQ $0, acc1 XORQ acc2, acc2 // x * y[3] MOVQ (8*3)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ t1, acc5 ADCQ $0, DX ADDQ AX, acc5 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc0 ADCQ $0, DX ADDQ AX, acc0 ADCQ DX, acc1 ADCQ $0, acc2 // Last reduction step MOVQ acc3, AX MOVQ acc3, t1 SHLQ $32, acc3 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc3, acc4 ADCQ t1, acc5 ADCQ AX, acc0 ADCQ DX, acc1 ADCQ $0, acc2 // Copy result [255:0] MOVQ acc4, x_ptr MOVQ acc5, acc3 MOVQ acc0, t0 MOVQ acc1, t1 // Subtract p256 SUBQ $-1, acc4 SBBQ p256const0<>(SB) ,acc5 SBBQ $0, acc0 SBBQ p256const1<>(SB), acc1 SBBQ $0, acc2 CMOVQCS x_ptr, acc4 CMOVQCS acc3, acc5 CMOVQCS t0, acc0 CMOVQCS t1, acc1 MOVQ acc4, (8*0)(res_ptr) MOVQ acc5, (8*1)(res_ptr) MOVQ acc0, (8*2)(res_ptr) MOVQ acc1, (8*3)(res_ptr) RET /* ---------------------------------------*/ // func p256FromMont(res, in []uint64) TEXT ·p256FromMont(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ in+24(FP), x_ptr MOVQ (8*0)(x_ptr), acc0 MOVQ (8*1)(x_ptr), acc1 MOVQ (8*2)(x_ptr), acc2 MOVQ (8*3)(x_ptr), acc3 XORQ acc4, acc4 // Only reduce, no multiplications are needed // First stage MOVQ acc0, AX MOVQ acc0, t1 SHLQ $32, acc0 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc0, acc1 ADCQ t1, acc2 ADCQ AX, acc3 ADCQ DX, acc4 XORQ acc5, acc5 // Second stage MOVQ acc1, AX MOVQ acc1, t1 SHLQ $32, acc1 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc1, acc2 ADCQ t1, acc3 ADCQ AX, acc4 ADCQ DX, acc5 XORQ acc0, acc0 // Third stage MOVQ acc2, AX MOVQ acc2, t1 SHLQ $32, acc2 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc2, acc3 ADCQ t1, acc4 ADCQ AX, acc5 ADCQ DX, acc0 XORQ acc1, acc1 // Last stage MOVQ acc3, AX MOVQ acc3, t1 SHLQ $32, acc3 MULQ p256const1<>(SB) SHRQ $32, t1 ADDQ acc3, acc4 ADCQ t1, acc5 ADCQ AX, acc0 ADCQ DX, acc1 MOVQ acc4, x_ptr MOVQ acc5, acc3 MOVQ acc0, t0 MOVQ acc1, t1 SUBQ $-1, acc4 SBBQ p256const0<>(SB), acc5 SBBQ $0, acc0 SBBQ p256const1<>(SB), acc1 CMOVQCS x_ptr, acc4 CMOVQCS acc3, acc5 CMOVQCS t0, acc0 CMOVQCS t1, acc1 MOVQ acc4, (8*0)(res_ptr) MOVQ acc5, (8*1)(res_ptr) MOVQ acc0, (8*2)(res_ptr) MOVQ acc1, (8*3)(res_ptr) RET /* ---------------------------------------*/ // Constant time point access to arbitrary point table. // Indexed from 1 to 15, with -1 offset // (index 0 is implicitly point at infinity) // func p256Select(point, table []uint64, idx int) TEXT ·p256Select(SB),NOSPLIT,$0 MOVQ idx+48(FP),AX MOVQ table+24(FP),DI MOVQ point+0(FP),DX PXOR X15, X15 // X15 = 0 PCMPEQL X14, X14 // X14 = -1 PSUBL X14, X15 // X15 = 1 MOVL AX, X14 PSHUFD $0, X14, X14 PXOR X0, X0 PXOR X1, X1 PXOR X2, X2 PXOR X3, X3 PXOR X4, X4 PXOR X5, X5 MOVQ $16, AX MOVOU X15, X13 loop_select: MOVOU X13, X12 PADDL X15, X13 PCMPEQL X14, X12 MOVOU (16*0)(DI), X6 MOVOU (16*1)(DI), X7 MOVOU (16*2)(DI), X8 MOVOU (16*3)(DI), X9 MOVOU (16*4)(DI), X10 MOVOU (16*5)(DI), X11 ADDQ $(16*6), DI PAND X12, X6 PAND X12, X7 PAND X12, X8 PAND X12, X9 PAND X12, X10 PAND X12, X11 PXOR X6, X0 PXOR X7, X1 PXOR X8, X2 PXOR X9, X3 PXOR X10, X4 PXOR X11, X5 DECQ AX JNE loop_select MOVOU X0, (16*0)(DX) MOVOU X1, (16*1)(DX) MOVOU X2, (16*2)(DX) MOVOU X3, (16*3)(DX) MOVOU X4, (16*4)(DX) MOVOU X5, (16*5)(DX) RET /* ---------------------------------------*/ // Constant time point access to base point table. // func p256SelectBase(point, table []uint64, idx int) TEXT ·p256SelectBase(SB),NOSPLIT,$0 MOVQ idx+48(FP),AX MOVQ table+24(FP),DI MOVQ point+0(FP),DX PXOR X15, X15 // X15 = 0 PCMPEQL X14, X14 // X14 = -1 PSUBL X14, X15 // X15 = 1 MOVL AX, X14 PSHUFD $0, X14, X14 PXOR X0, X0 PXOR X1, X1 PXOR X2, X2 PXOR X3, X3 MOVQ $16, AX MOVOU X15, X13 loop_select_base: MOVOU X13, X12 PADDL X15, X13 PCMPEQL X14, X12 MOVOU (16*0)(DI), X4 MOVOU (16*1)(DI), X5 MOVOU (16*2)(DI), X6 MOVOU (16*3)(DI), X7 MOVOU (16*4)(DI), X8 MOVOU (16*5)(DI), X9 MOVOU (16*6)(DI), X10 MOVOU (16*7)(DI), X11 ADDQ $(16*8), DI PAND X12, X4 PAND X12, X5 PAND X12, X6 PAND X12, X7 MOVOU X13, X12 PADDL X15, X13 PCMPEQL X14, X12 PAND X12, X8 PAND X12, X9 PAND X12, X10 PAND X12, X11 PXOR X4, X0 PXOR X5, X1 PXOR X6, X2 PXOR X7, X3 PXOR X8, X0 PXOR X9, X1 PXOR X10, X2 PXOR X11, X3 DECQ AX JNE loop_select_base MOVOU X0, (16*0)(DX) MOVOU X1, (16*1)(DX) MOVOU X2, (16*2)(DX) MOVOU X3, (16*3)(DX) RET /* ---------------------------------------*/ // func p256OrdMul(res, in1, in2 []uint64) TEXT ·p256OrdMul(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ in1+24(FP), x_ptr MOVQ in2+48(FP), y_ptr // x * y[0] MOVQ (8*0)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 MOVQ AX, acc0 MOVQ DX, acc1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, acc2 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, acc3 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, acc4 XORQ acc5, acc5 // First reduction step MOVQ acc0, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc0 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc1 ADCQ $0, DX ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x10(SB), AX MULQ t0 ADDQ t1, acc2 ADCQ $0, DX ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x18(SB), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ DX, acc4 ADCQ $0, acc5 // x * y[1] MOVQ (8*1)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ t1, acc2 ADCQ $0, DX ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ DX, acc5 ADCQ $0, acc0 // Second reduction step MOVQ acc1, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc2 ADCQ $0, DX ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x10(SB), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x18(SB), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ DX, acc5 ADCQ $0, acc0 // x * y[2] MOVQ (8*2)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc5 ADCQ $0, DX ADDQ AX, acc5 ADCQ DX, acc0 ADCQ $0, acc1 // Third reduction step MOVQ acc2, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x10(SB), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x18(SB), AX MULQ t0 ADDQ t1, acc5 ADCQ $0, DX ADDQ AX, acc5 ADCQ DX, acc0 ADCQ $0, acc1 // x * y[3] MOVQ (8*3)(y_ptr), t0 MOVQ (8*0)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*1)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ t1, acc5 ADCQ $0, DX ADDQ AX, acc5 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc0 ADCQ $0, DX ADDQ AX, acc0 ADCQ DX, acc1 ADCQ $0, acc2 // Last reduction step MOVQ acc3, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x10(SB), AX MULQ t0 ADDQ t1, acc5 ADCQ $0, DX ADDQ AX, acc5 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x18(SB), AX MULQ t0 ADDQ t1, acc0 ADCQ $0, DX ADDQ AX, acc0 ADCQ DX, acc1 ADCQ $0, acc2 // Copy result [255:0] MOVQ acc4, x_ptr MOVQ acc5, acc3 MOVQ acc0, t0 MOVQ acc1, t1 // Subtract p256 SUBQ p256ord<>+0x00(SB), acc4 SBBQ p256ord<>+0x08(SB) ,acc5 SBBQ p256ord<>+0x10(SB), acc0 SBBQ p256ord<>+0x18(SB), acc1 SBBQ $0, acc2 CMOVQCS x_ptr, acc4 CMOVQCS acc3, acc5 CMOVQCS t0, acc0 CMOVQCS t1, acc1 MOVQ acc4, (8*0)(res_ptr) MOVQ acc5, (8*1)(res_ptr) MOVQ acc0, (8*2)(res_ptr) MOVQ acc1, (8*3)(res_ptr) RET /* ---------------------------------------*/ // func p256OrdSqr(res, in []uint64, n int) TEXT ·p256OrdSqr(SB),NOSPLIT,$0 MOVQ res+0(FP), res_ptr MOVQ in+24(FP), x_ptr MOVQ n+48(FP), BX ordSqrLoop: // y[1:] * y[0] MOVQ (8*0)(x_ptr), t0 MOVQ (8*1)(x_ptr), AX MULQ t0 MOVQ AX, acc1 MOVQ DX, acc2 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, acc3 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, acc4 // y[2:] * y[1] MOVQ (8*1)(x_ptr), t0 MOVQ (8*2)(x_ptr), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ t1, acc4 ADCQ $0, DX ADDQ AX, acc4 ADCQ $0, DX MOVQ DX, acc5 // y[3] * y[2] MOVQ (8*2)(x_ptr), t0 MOVQ (8*3)(x_ptr), AX MULQ t0 ADDQ AX, acc5 ADCQ $0, DX MOVQ DX, y_ptr XORQ t1, t1 // *2 ADDQ acc1, acc1 ADCQ acc2, acc2 ADCQ acc3, acc3 ADCQ acc4, acc4 ADCQ acc5, acc5 ADCQ y_ptr, y_ptr ADCQ $0, t1 // Missing products MOVQ (8*0)(x_ptr), AX MULQ AX MOVQ AX, acc0 MOVQ DX, t0 MOVQ (8*1)(x_ptr), AX MULQ AX ADDQ t0, acc1 ADCQ AX, acc2 ADCQ $0, DX MOVQ DX, t0 MOVQ (8*2)(x_ptr), AX MULQ AX ADDQ t0, acc3 ADCQ AX, acc4 ADCQ $0, DX MOVQ DX, t0 MOVQ (8*3)(x_ptr), AX MULQ AX ADDQ t0, acc5 ADCQ AX, y_ptr ADCQ DX, t1 MOVQ t1, x_ptr // First reduction step MOVQ acc0, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc0 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc1 ADCQ $0, DX ADDQ AX, acc1 MOVQ t0, t1 ADCQ DX, acc2 ADCQ $0, t1 SUBQ t0, acc2 SBBQ $0, t1 MOVQ t0, AX MOVQ t0, DX MOVQ t0, acc0 SHLQ $32, AX SHRQ $32, DX ADDQ t1, acc3 ADCQ $0, acc0 SUBQ AX, acc3 SBBQ DX, acc0 // Second reduction step MOVQ acc1, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc1 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc2 ADCQ $0, DX ADDQ AX, acc2 MOVQ t0, t1 ADCQ DX, acc3 ADCQ $0, t1 SUBQ t0, acc3 SBBQ $0, t1 MOVQ t0, AX MOVQ t0, DX MOVQ t0, acc1 SHLQ $32, AX SHRQ $32, DX ADDQ t1, acc0 ADCQ $0, acc1 SUBQ AX, acc0 SBBQ DX, acc1 // Third reduction step MOVQ acc2, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc2 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc3 ADCQ $0, DX ADDQ AX, acc3 MOVQ t0, t1 ADCQ DX, acc0 ADCQ $0, t1 SUBQ t0, acc0 SBBQ $0, t1 MOVQ t0, AX MOVQ t0, DX MOVQ t0, acc2 SHLQ $32, AX SHRQ $32, DX ADDQ t1, acc1 ADCQ $0, acc2 SUBQ AX, acc1 SBBQ DX, acc2 // Last reduction step MOVQ acc3, AX MULQ p256ordK0<>(SB) MOVQ AX, t0 MOVQ p256ord<>+0x00(SB), AX MULQ t0 ADDQ AX, acc3 ADCQ $0, DX MOVQ DX, t1 MOVQ p256ord<>+0x08(SB), AX MULQ t0 ADDQ t1, acc0 ADCQ $0, DX ADDQ AX, acc0 ADCQ $0, DX MOVQ DX, t1 MOVQ t0, t1 ADCQ DX, acc1 ADCQ $0, t1 SUBQ t0, acc1 SBBQ $0, t1 MOVQ t0, AX MOVQ t0, DX MOVQ t0, acc3 SHLQ $32, AX SHRQ $32, DX ADDQ t1, acc2 ADCQ $0, acc3 SUBQ AX, acc2 SBBQ DX, acc3 XORQ t0, t0 // Add bits [511:256] of the sqr result ADCQ acc4, acc0 ADCQ acc5, acc1 ADCQ y_ptr, acc2 ADCQ x_ptr, acc3 ADCQ $0, t0 MOVQ acc0, acc4 MOVQ acc1, acc5 MOVQ acc2, y_ptr MOVQ acc3, t1 // Subtract p256 SUBQ p256ord<>+0x00(SB), acc0 SBBQ p256ord<>+0x08(SB) ,acc1 SBBQ p256ord<>+0x10(SB), acc2 SBBQ p256ord<>+0x18(SB), acc3 SBBQ $0, t0 CMOVQCS acc4, acc0 CMOVQCS acc5, acc1 CMOVQCS y_ptr, acc2 CMOVQCS t1, acc3 MOVQ acc0, (8*0)(res_ptr) MOVQ acc1, (8*1)(res_ptr) MOVQ acc2, (8*2)(res_ptr) MOVQ acc3, (8*3)(res_ptr) MOVQ res_ptr, x_ptr DECQ BX JNE ordSqrLoop RET /* ---------------------------------------*/ #undef res_ptr #undef x_ptr #undef y_ptr #undef acc0 #undef acc1 #undef acc2 #undef acc3 #undef acc4 #undef acc5 #undef t0 #undef t1 /* ---------------------------------------*/ #define mul0 AX #define mul1 DX #define acc0 BX #define acc1 CX #define acc2 R8 #define acc3 R9 #define acc4 R10 #define acc5 R11 #define acc6 R12 #define acc7 R13 #define t0 R14 #define t1 R15 #define t2 DI #define t3 SI #define hlp BP /* ---------------------------------------*/ TEXT p256SubInternal(SB),NOSPLIT,$0 XORQ mul0, mul0 SUBQ t0, acc4 SBBQ t1, acc5 SBBQ t2, acc6 SBBQ t3, acc7 SBBQ $0, mul0 MOVQ acc4, acc0 MOVQ acc5, acc1 MOVQ acc6, acc2 MOVQ acc7, acc3 ADDQ $-1, acc4 ADCQ p256const0<>(SB), acc5 ADCQ $0, acc6 ADCQ p256const1<>(SB), acc7 ANDQ $1, mul0 CMOVQEQ acc0, acc4 CMOVQEQ acc1, acc5 CMOVQEQ acc2, acc6 CMOVQEQ acc3, acc7 RET /* ---------------------------------------*/ TEXT p256MulInternal(SB),NOSPLIT,$0 MOVQ acc4, mul0 MULQ t0 MOVQ mul0, acc0 MOVQ mul1, acc1 MOVQ acc4, mul0 MULQ t1 ADDQ mul0, acc1 ADCQ $0, mul1 MOVQ mul1, acc2 MOVQ acc4, mul0 MULQ t2 ADDQ mul0, acc2 ADCQ $0, mul1 MOVQ mul1, acc3 MOVQ acc4, mul0 MULQ t3 ADDQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, acc4 MOVQ acc5, mul0 MULQ t0 ADDQ mul0, acc1 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc5, mul0 MULQ t1 ADDQ hlp, acc2 ADCQ $0, mul1 ADDQ mul0, acc2 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc5, mul0 MULQ t2 ADDQ hlp, acc3 ADCQ $0, mul1 ADDQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc5, mul0 MULQ t3 ADDQ hlp, acc4 ADCQ $0, mul1 ADDQ mul0, acc4 ADCQ $0, mul1 MOVQ mul1, acc5 MOVQ acc6, mul0 MULQ t0 ADDQ mul0, acc2 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc6, mul0 MULQ t1 ADDQ hlp, acc3 ADCQ $0, mul1 ADDQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc6, mul0 MULQ t2 ADDQ hlp, acc4 ADCQ $0, mul1 ADDQ mul0, acc4 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc6, mul0 MULQ t3 ADDQ hlp, acc5 ADCQ $0, mul1 ADDQ mul0, acc5 ADCQ $0, mul1 MOVQ mul1, acc6 MOVQ acc7, mul0 MULQ t0 ADDQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc7, mul0 MULQ t1 ADDQ hlp, acc4 ADCQ $0, mul1 ADDQ mul0, acc4 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc7, mul0 MULQ t2 ADDQ hlp, acc5 ADCQ $0, mul1 ADDQ mul0, acc5 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc7, mul0 MULQ t3 ADDQ hlp, acc6 ADCQ $0, mul1 ADDQ mul0, acc6 ADCQ $0, mul1 MOVQ mul1, acc7 // First reduction step MOVQ acc0, mul0 MOVQ acc0, hlp SHLQ $32, acc0 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc0, acc1 ADCQ hlp, acc2 ADCQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, acc0 // Second reduction step MOVQ acc1, mul0 MOVQ acc1, hlp SHLQ $32, acc1 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc1, acc2 ADCQ hlp, acc3 ADCQ mul0, acc0 ADCQ $0, mul1 MOVQ mul1, acc1 // Third reduction step MOVQ acc2, mul0 MOVQ acc2, hlp SHLQ $32, acc2 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc2, acc3 ADCQ hlp, acc0 ADCQ mul0, acc1 ADCQ $0, mul1 MOVQ mul1, acc2 // Last reduction step MOVQ acc3, mul0 MOVQ acc3, hlp SHLQ $32, acc3 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc3, acc0 ADCQ hlp, acc1 ADCQ mul0, acc2 ADCQ $0, mul1 MOVQ mul1, acc3 MOVQ $0, BP // Add bits [511:256] of the result ADCQ acc0, acc4 ADCQ acc1, acc5 ADCQ acc2, acc6 ADCQ acc3, acc7 ADCQ $0, hlp // Copy result MOVQ acc4, acc0 MOVQ acc5, acc1 MOVQ acc6, acc2 MOVQ acc7, acc3 // Subtract p256 SUBQ $-1, acc4 SBBQ p256const0<>(SB) ,acc5 SBBQ $0, acc6 SBBQ p256const1<>(SB), acc7 SBBQ $0, hlp // If the result of the subtraction is negative, restore the previous result CMOVQCS acc0, acc4 CMOVQCS acc1, acc5 CMOVQCS acc2, acc6 CMOVQCS acc3, acc7 RET /* ---------------------------------------*/ TEXT p256SqrInternal(SB),NOSPLIT,$0 MOVQ acc4, mul0 MULQ acc5 MOVQ mul0, acc1 MOVQ mul1, acc2 MOVQ acc4, mul0 MULQ acc6 ADDQ mul0, acc2 ADCQ $0, mul1 MOVQ mul1, acc3 MOVQ acc4, mul0 MULQ acc7 ADDQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, t0 MOVQ acc5, mul0 MULQ acc6 ADDQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, hlp MOVQ acc5, mul0 MULQ acc7 ADDQ hlp, t0 ADCQ $0, mul1 ADDQ mul0, t0 ADCQ $0, mul1 MOVQ mul1, t1 MOVQ acc6, mul0 MULQ acc7 ADDQ mul0, t1 ADCQ $0, mul1 MOVQ mul1, t2 XORQ t3, t3 // *2 ADDQ acc1, acc1 ADCQ acc2, acc2 ADCQ acc3, acc3 ADCQ t0, t0 ADCQ t1, t1 ADCQ t2, t2 ADCQ $0, t3 // Missing products MOVQ acc4, mul0 MULQ mul0 MOVQ mul0, acc0 MOVQ DX, acc4 MOVQ acc5, mul0 MULQ mul0 ADDQ acc4, acc1 ADCQ mul0, acc2 ADCQ $0, DX MOVQ DX, acc4 MOVQ acc6, mul0 MULQ mul0 ADDQ acc4, acc3 ADCQ mul0, t0 ADCQ $0, DX MOVQ DX, acc4 MOVQ acc7, mul0 MULQ mul0 ADDQ acc4, t1 ADCQ mul0, t2 ADCQ DX, t3 // First reduction step MOVQ acc0, mul0 MOVQ acc0, hlp SHLQ $32, acc0 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc0, acc1 ADCQ hlp, acc2 ADCQ mul0, acc3 ADCQ $0, mul1 MOVQ mul1, acc0 // Second reduction step MOVQ acc1, mul0 MOVQ acc1, hlp SHLQ $32, acc1 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc1, acc2 ADCQ hlp, acc3 ADCQ mul0, acc0 ADCQ $0, mul1 MOVQ mul1, acc1 // Third reduction step MOVQ acc2, mul0 MOVQ acc2, hlp SHLQ $32, acc2 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc2, acc3 ADCQ hlp, acc0 ADCQ mul0, acc1 ADCQ $0, mul1 MOVQ mul1, acc2 // Last reduction step MOVQ acc3, mul0 MOVQ acc3, hlp SHLQ $32, acc3 MULQ p256const1<>(SB) SHRQ $32, hlp ADDQ acc3, acc0 ADCQ hlp, acc1 ADCQ mul0, acc2 ADCQ $0, mul1 MOVQ mul1, acc3 MOVQ $0, BP // Add bits [511:256] of the result ADCQ acc0, t0 ADCQ acc1, t1 ADCQ acc2, t2 ADCQ acc3, t3 ADCQ $0, hlp // Copy result MOVQ t0, acc4 MOVQ t1, acc5 MOVQ t2, acc6 MOVQ t3, acc7 // Subtract p256 SUBQ $-1, acc4 SBBQ p256const0<>(SB) ,acc5 SBBQ $0, acc6 SBBQ p256const1<>(SB), acc7 SBBQ $0, hlp // If the result of the subtraction is negative, restore the previous result CMOVQCS t0, acc4 CMOVQCS t1, acc5 CMOVQCS t2, acc6 CMOVQCS t3, acc7 RET /* ---------------------------------------*/ #define p256MulBy2Inline\ XORQ mul0, mul0;\ ADDQ acc4, acc4;\ ADCQ acc5, acc5;\ ADCQ acc6, acc6;\ ADCQ acc7, acc7;\ ADCQ $0, mul0;\ MOVQ acc4, t0;\ MOVQ acc5, t1;\ MOVQ acc6, t2;\ MOVQ acc7, t3;\ SUBQ $-1, t0;\ SBBQ p256const0<>(SB), t1;\ SBBQ $0, t2;\ SBBQ p256const1<>(SB), t3;\ SBBQ $0, mul0;\ CMOVQCS acc4, t0;\ CMOVQCS acc5, t1;\ CMOVQCS acc6, t2;\ CMOVQCS acc7, t3; /* ---------------------------------------*/ #define p256AddInline \ XORQ mul0, mul0;\ ADDQ t0, acc4;\ ADCQ t1, acc5;\ ADCQ t2, acc6;\ ADCQ t3, acc7;\ ADCQ $0, mul0;\ MOVQ acc4, t0;\ MOVQ acc5, t1;\ MOVQ acc6, t2;\ MOVQ acc7, t3;\ SUBQ $-1, t0;\ SBBQ p256const0<>(SB), t1;\ SBBQ $0, t2;\ SBBQ p256const1<>(SB), t3;\ SBBQ $0, mul0;\ CMOVQCS acc4, t0;\ CMOVQCS acc5, t1;\ CMOVQCS acc6, t2;\ CMOVQCS acc7, t3; /* ---------------------------------------*/ #define LDacc(src) MOVQ src(8*0), acc4; MOVQ src(8*1), acc5; MOVQ src(8*2), acc6; MOVQ src(8*3), acc7 #define LDt(src) MOVQ src(8*0), t0; MOVQ src(8*1), t1; MOVQ src(8*2), t2; MOVQ src(8*3), t3 #define ST(dst) MOVQ acc4, dst(8*0); MOVQ acc5, dst(8*1); MOVQ acc6, dst(8*2); MOVQ acc7, dst(8*3) #define STt(dst) MOVQ t0, dst(8*0); MOVQ t1, dst(8*1); MOVQ t2, dst(8*2); MOVQ t3, dst(8*3) #define acc2t MOVQ acc4, t0; MOVQ acc5, t1; MOVQ acc6, t2; MOVQ acc7, t3 #define t2acc MOVQ t0, acc4; MOVQ t1, acc5; MOVQ t2, acc6; MOVQ t3, acc7 /* ---------------------------------------*/ #define x1in(off) (32*0 + off)(SP) #define y1in(off) (32*1 + off)(SP) #define z1in(off) (32*2 + off)(SP) #define x2in(off) (32*3 + off)(SP) #define y2in(off) (32*4 + off)(SP) #define xout(off) (32*5 + off)(SP) #define yout(off) (32*6 + off)(SP) #define zout(off) (32*7 + off)(SP) #define s2(off) (32*8 + off)(SP) #define z1sqr(off) (32*9 + off)(SP) #define h(off) (32*10 + off)(SP) #define r(off) (32*11 + off)(SP) #define hsqr(off) (32*12 + off)(SP) #define rsqr(off) (32*13 + off)(SP) #define hcub(off) (32*14 + off)(SP) #define rptr (32*15)(SP) #define sel_save (32*15 + 8)(SP) #define zero_save (32*15 + 8 + 4)(SP) // func p256PointAddAffineAsm(res, in1, in2 []uint64, sign, sel, zero int) TEXT ·p256PointAddAffineAsm(SB),0,$512-96 // Move input to stack in order to free registers MOVQ res+0(FP), AX MOVQ in1+24(FP), BX MOVQ in2+48(FP), CX MOVQ sign+72(FP), DX MOVQ sel+80(FP), t1 MOVQ zero+88(FP), t2 MOVOU (16*0)(BX), X0 MOVOU (16*1)(BX), X1 MOVOU (16*2)(BX), X2 MOVOU (16*3)(BX), X3 MOVOU (16*4)(BX), X4 MOVOU (16*5)(BX), X5 MOVOU X0, x1in(16*0) MOVOU X1, x1in(16*1) MOVOU X2, y1in(16*0) MOVOU X3, y1in(16*1) MOVOU X4, z1in(16*0) MOVOU X5, z1in(16*1) MOVOU (16*0)(CX), X0 MOVOU (16*1)(CX), X1 MOVOU X0, x2in(16*0) MOVOU X1, x2in(16*1) // Store pointer to result MOVQ mul0, rptr MOVL t1, sel_save MOVL t2, zero_save // Negate y2in based on sign MOVQ (16*2 + 8*0)(CX), acc4 MOVQ (16*2 + 8*1)(CX), acc5 MOVQ (16*2 + 8*2)(CX), acc6 MOVQ (16*2 + 8*3)(CX), acc7 MOVQ $-1, acc0 MOVQ p256const0<>(SB), acc1 MOVQ $0, acc2 MOVQ p256const1<>(SB), acc3 XORQ mul0, mul0 // Speculatively subtract SUBQ acc4, acc0 SBBQ acc5, acc1 SBBQ acc6, acc2 SBBQ acc7, acc3 SBBQ $0, mul0 MOVQ acc0, t0 MOVQ acc1, t1 MOVQ acc2, t2 MOVQ acc3, t3 // Add in case the operand was > p256 ADDQ $-1, acc0 ADCQ p256const0<>(SB), acc1 ADCQ $0, acc2 ADCQ p256const1<>(SB), acc3 ADCQ $0, mul0 CMOVQNE t0, acc0 CMOVQNE t1, acc1 CMOVQNE t2, acc2 CMOVQNE t3, acc3 // If condition is 0, keep original value TESTQ DX, DX CMOVQEQ acc4, acc0 CMOVQEQ acc5, acc1 CMOVQEQ acc6, acc2 CMOVQEQ acc7, acc3 // Store result MOVQ acc0, y2in(8*0) MOVQ acc1, y2in(8*1) MOVQ acc2, y2in(8*2) MOVQ acc3, y2in(8*3) // Begin point add LDacc (z1in) CALL p256SqrInternal(SB) // z1ˆ2 ST (z1sqr) LDt (x2in) CALL p256MulInternal(SB) // x2 * z1ˆ2 LDt (x1in) CALL p256SubInternal(SB) // h = u2 - u1 ST (h) LDt (z1in) CALL p256MulInternal(SB) // z3 = h * z1 ST (zout) LDacc (z1sqr) CALL p256MulInternal(SB) // z1ˆ3 LDt (y2in) CALL p256MulInternal(SB) // s2 = y2 * z1ˆ3 ST (s2) LDt (y1in) CALL p256SubInternal(SB) // r = s2 - s1 ST (r) CALL p256SqrInternal(SB) // rsqr = rˆ2 ST (rsqr) LDacc (h) CALL p256SqrInternal(SB) // hsqr = hˆ2 ST (hsqr) LDt (h) CALL p256MulInternal(SB) // hcub = hˆ3 ST (hcub) LDt (y1in) CALL p256MulInternal(SB) // y1 * hˆ3 ST (s2) LDacc (x1in) LDt (hsqr) CALL p256MulInternal(SB) // u1 * hˆ2 ST (h) p256MulBy2Inline // u1 * hˆ2 * 2, inline LDacc (rsqr) CALL p256SubInternal(SB) // rˆ2 - u1 * hˆ2 * 2 LDt (hcub) CALL p256SubInternal(SB) ST (xout) MOVQ acc4, t0 MOVQ acc5, t1 MOVQ acc6, t2 MOVQ acc7, t3 LDacc (h) CALL p256SubInternal(SB) LDt (r) CALL p256MulInternal(SB) LDt (s2) CALL p256SubInternal(SB) ST (yout) // Load stored values from stack MOVQ rptr, AX MOVL sel_save, BX MOVL zero_save, CX // The result is not valid if (sel == 0), conditional choose MOVOU xout(16*0), X0 MOVOU xout(16*1), X1 MOVOU yout(16*0), X2 MOVOU yout(16*1), X3 MOVOU zout(16*0), X4 MOVOU zout(16*1), X5 MOVL BX, X6 MOVL CX, X7 PXOR X8, X8 PCMPEQL X9, X9 PSHUFD $0, X6, X6 PSHUFD $0, X7, X7 PCMPEQL X8, X6 PCMPEQL X8, X7 MOVOU X6, X15 PANDN X9, X15 MOVOU x1in(16*0), X9 MOVOU x1in(16*1), X10 MOVOU y1in(16*0), X11 MOVOU y1in(16*1), X12 MOVOU z1in(16*0), X13 MOVOU z1in(16*1), X14 PAND X15, X0 PAND X15, X1 PAND X15, X2 PAND X15, X3 PAND X15, X4 PAND X15, X5 PAND X6, X9 PAND X6, X10 PAND X6, X11 PAND X6, X12 PAND X6, X13 PAND X6, X14 PXOR X9, X0 PXOR X10, X1 PXOR X11, X2 PXOR X12, X3 PXOR X13, X4 PXOR X14, X5 // Similarly if zero == 0 PCMPEQL X9, X9 MOVOU X7, X15 PANDN X9, X15 MOVOU x2in(16*0), X9 MOVOU x2in(16*1), X10 MOVOU y2in(16*0), X11 MOVOU y2in(16*1), X12 MOVOU p256one<>+0x00(SB), X13 MOVOU p256one<>+0x10(SB), X14 PAND X15, X0 PAND X15, X1 PAND X15, X2 PAND X15, X3 PAND X15, X4 PAND X15, X5 PAND X7, X9 PAND X7, X10 PAND X7, X11 PAND X7, X12 PAND X7, X13 PAND X7, X14 PXOR X9, X0 PXOR X10, X1 PXOR X11, X2 PXOR X12, X3 PXOR X13, X4 PXOR X14, X5 // Finally output the result MOVOU X0, (16*0)(AX) MOVOU X1, (16*1)(AX) MOVOU X2, (16*2)(AX) MOVOU X3, (16*3)(AX) MOVOU X4, (16*4)(AX) MOVOU X5, (16*5)(AX) MOVQ $0, rptr RET #undef x1in #undef y1in #undef z1in #undef x2in #undef y2in #undef xout #undef yout #undef zout #undef s2 #undef z1sqr #undef h #undef r #undef hsqr #undef rsqr #undef hcub #undef rptr #undef sel_save #undef zero_save // p256IsZero returns 1 in AX if [acc4..acc7] represents zero and zero // otherwise. It writes to [acc4..acc7], t0 and t1. TEXT p256IsZero(SB),NOSPLIT,$0 // AX contains a flag that is set if the input is zero. XORQ AX, AX MOVQ $1, t1 // Check whether [acc4..acc7] are all zero. MOVQ acc4, t0 ORQ acc5, t0 ORQ acc6, t0 ORQ acc7, t0 // Set the zero flag if so. (CMOV of a constant to a register doesn't // appear to be supported in Go. Thus t1 = 1.) CMOVQEQ t1, AX // XOR [acc4..acc7] with P and compare with zero again. XORQ $-1, acc4 XORQ p256const0<>(SB), acc5 XORQ p256const1<>(SB), acc7 ORQ acc5, acc4 ORQ acc6, acc4 ORQ acc7, acc4 // Set the zero flag if so. CMOVQEQ t1, AX RET /* ---------------------------------------*/ #define x1in(off) (32*0 + off)(SP) #define y1in(off) (32*1 + off)(SP) #define z1in(off) (32*2 + off)(SP) #define x2in(off) (32*3 + off)(SP) #define y2in(off) (32*4 + off)(SP) #define z2in(off) (32*5 + off)(SP) #define xout(off) (32*6 + off)(SP) #define yout(off) (32*7 + off)(SP) #define zout(off) (32*8 + off)(SP) #define u1(off) (32*9 + off)(SP) #define u2(off) (32*10 + off)(SP) #define s1(off) (32*11 + off)(SP) #define s2(off) (32*12 + off)(SP) #define z1sqr(off) (32*13 + off)(SP) #define z2sqr(off) (32*14 + off)(SP) #define h(off) (32*15 + off)(SP) #define r(off) (32*16 + off)(SP) #define hsqr(off) (32*17 + off)(SP) #define rsqr(off) (32*18 + off)(SP) #define hcub(off) (32*19 + off)(SP) #define rptr (32*20)(SP) #define points_eq (32*20+8)(SP) //func p256PointAddAsm(res, in1, in2 []uint64) int TEXT ·p256PointAddAsm(SB),0,$680-80 // See https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl // Move input to stack in order to free registers MOVQ res+0(FP), AX MOVQ in1+24(FP), BX MOVQ in2+48(FP), CX MOVOU (16*0)(BX), X0 MOVOU (16*1)(BX), X1 MOVOU (16*2)(BX), X2 MOVOU (16*3)(BX), X3 MOVOU (16*4)(BX), X4 MOVOU (16*5)(BX), X5 MOVOU X0, x1in(16*0) MOVOU X1, x1in(16*1) MOVOU X2, y1in(16*0) MOVOU X3, y1in(16*1) MOVOU X4, z1in(16*0) MOVOU X5, z1in(16*1) MOVOU (16*0)(CX), X0 MOVOU (16*1)(CX), X1 MOVOU (16*2)(CX), X2 MOVOU (16*3)(CX), X3 MOVOU (16*4)(CX), X4 MOVOU (16*5)(CX), X5 MOVOU X0, x2in(16*0) MOVOU X1, x2in(16*1) MOVOU X2, y2in(16*0) MOVOU X3, y2in(16*1) MOVOU X4, z2in(16*0) MOVOU X5, z2in(16*1) // Store pointer to result MOVQ AX, rptr // Begin point add LDacc (z2in) CALL p256SqrInternal(SB) // z2ˆ2 ST (z2sqr) LDt (z2in) CALL p256MulInternal(SB) // z2ˆ3 LDt (y1in) CALL p256MulInternal(SB) // s1 = z2ˆ3*y1 ST (s1) LDacc (z1in) CALL p256SqrInternal(SB) // z1ˆ2 ST (z1sqr) LDt (z1in) CALL p256MulInternal(SB) // z1ˆ3 LDt (y2in) CALL p256MulInternal(SB) // s2 = z1ˆ3*y2 ST (s2) LDt (s1) CALL p256SubInternal(SB) // r = s2 - s1 ST (r) CALL p256IsZero(SB) MOVQ AX, points_eq LDacc (z2sqr) LDt (x1in) CALL p256MulInternal(SB) // u1 = x1 * z2ˆ2 ST (u1) LDacc (z1sqr) LDt (x2in) CALL p256MulInternal(SB) // u2 = x2 * z1ˆ2 ST (u2) LDt (u1) CALL p256SubInternal(SB) // h = u2 - u1 ST (h) CALL p256IsZero(SB) ANDQ points_eq, AX MOVQ AX, points_eq LDacc (r) CALL p256SqrInternal(SB) // rsqr = rˆ2 ST (rsqr) LDacc (h) CALL p256SqrInternal(SB) // hsqr = hˆ2 ST (hsqr) LDt (h) CALL p256MulInternal(SB) // hcub = hˆ3 ST (hcub) LDt (s1) CALL p256MulInternal(SB) ST (s2) LDacc (z1in) LDt (z2in) CALL p256MulInternal(SB) // z1 * z2 LDt (h) CALL p256MulInternal(SB) // z1 * z2 * h ST (zout) LDacc (hsqr) LDt (u1) CALL p256MulInternal(SB) // hˆ2 * u1 ST (u2) p256MulBy2Inline // u1 * hˆ2 * 2, inline LDacc (rsqr) CALL p256SubInternal(SB) // rˆ2 - u1 * hˆ2 * 2 LDt (hcub) CALL p256SubInternal(SB) ST (xout) MOVQ acc4, t0 MOVQ acc5, t1 MOVQ acc6, t2 MOVQ acc7, t3 LDacc (u2) CALL p256SubInternal(SB) LDt (r) CALL p256MulInternal(SB) LDt (s2) CALL p256SubInternal(SB) ST (yout) MOVOU xout(16*0), X0 MOVOU xout(16*1), X1 MOVOU yout(16*0), X2 MOVOU yout(16*1), X3 MOVOU zout(16*0), X4 MOVOU zout(16*1), X5 // Finally output the result MOVQ rptr, AX MOVQ $0, rptr MOVOU X0, (16*0)(AX) MOVOU X1, (16*1)(AX) MOVOU X2, (16*2)(AX) MOVOU X3, (16*3)(AX) MOVOU X4, (16*4)(AX) MOVOU X5, (16*5)(AX) MOVQ points_eq, AX MOVQ AX, ret+72(FP) RET #undef x1in #undef y1in #undef z1in #undef x2in #undef y2in #undef z2in #undef xout #undef yout #undef zout #undef s1 #undef s2 #undef u1 #undef u2 #undef z1sqr #undef z2sqr #undef h #undef r #undef hsqr #undef rsqr #undef hcub #undef rptr /* ---------------------------------------*/ #define x(off) (32*0 + off)(SP) #define y(off) (32*1 + off)(SP) #define z(off) (32*2 + off)(SP) #define s(off) (32*3 + off)(SP) #define m(off) (32*4 + off)(SP) #define zsqr(off) (32*5 + off)(SP) #define tmp(off) (32*6 + off)(SP) #define rptr (32*7)(SP) //func p256PointDoubleAsm(res, in []uint64) TEXT ·p256PointDoubleAsm(SB),NOSPLIT,$256-48 // Move input to stack in order to free registers MOVQ res+0(FP), AX MOVQ in+24(FP), BX MOVOU (16*0)(BX), X0 MOVOU (16*1)(BX), X1 MOVOU (16*2)(BX), X2 MOVOU (16*3)(BX), X3 MOVOU (16*4)(BX), X4 MOVOU (16*5)(BX), X5 MOVOU X0, x(16*0) MOVOU X1, x(16*1) MOVOU X2, y(16*0) MOVOU X3, y(16*1) MOVOU X4, z(16*0) MOVOU X5, z(16*1) // Store pointer to result MOVQ AX, rptr // Begin point double LDacc (z) CALL p256SqrInternal(SB) ST (zsqr) LDt (x) p256AddInline STt (m) LDacc (z) LDt (y) CALL p256MulInternal(SB) p256MulBy2Inline MOVQ rptr, AX // Store z MOVQ t0, (16*4 + 8*0)(AX) MOVQ t1, (16*4 + 8*1)(AX) MOVQ t2, (16*4 + 8*2)(AX) MOVQ t3, (16*4 + 8*3)(AX) LDacc (x) LDt (zsqr) CALL p256SubInternal(SB) LDt (m) CALL p256MulInternal(SB) ST (m) // Multiply by 3 p256MulBy2Inline LDacc (m) p256AddInline STt (m) //////////////////////// LDacc (y) p256MulBy2Inline t2acc CALL p256SqrInternal(SB) ST (s) CALL p256SqrInternal(SB) // Divide by 2 XORQ mul0, mul0 MOVQ acc4, t0 MOVQ acc5, t1 MOVQ acc6, t2 MOVQ acc7, t3 ADDQ $-1, acc4 ADCQ p256const0<>(SB), acc5 ADCQ $0, acc6 ADCQ p256const1<>(SB), acc7 ADCQ $0, mul0 TESTQ $1, t0 CMOVQEQ t0, acc4 CMOVQEQ t1, acc5 CMOVQEQ t2, acc6 CMOVQEQ t3, acc7 ANDQ t0, mul0 SHRQ $1, acc4:acc5 SHRQ $1, acc5:acc6 SHRQ $1, acc6:acc7 SHRQ $1, acc7:mul0 ST (y) ///////////////////////// LDacc (x) LDt (s) CALL p256MulInternal(SB) ST (s) p256MulBy2Inline STt (tmp) LDacc (m) CALL p256SqrInternal(SB) LDt (tmp) CALL p256SubInternal(SB) MOVQ rptr, AX // Store x MOVQ acc4, (16*0 + 8*0)(AX) MOVQ acc5, (16*0 + 8*1)(AX) MOVQ acc6, (16*0 + 8*2)(AX) MOVQ acc7, (16*0 + 8*3)(AX) acc2t LDacc (s) CALL p256SubInternal(SB) LDt (m) CALL p256MulInternal(SB) LDt (y) CALL p256SubInternal(SB) MOVQ rptr, AX // Store y MOVQ acc4, (16*2 + 8*0)(AX) MOVQ acc5, (16*2 + 8*1)(AX) MOVQ acc6, (16*2 + 8*2)(AX) MOVQ acc7, (16*2 + 8*3)(AX) /////////////////////// MOVQ $0, rptr RET /* ---------------------------------------*/