// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package hpack implements HPACK, a compression format for // efficiently representing HTTP header fields in the context of HTTP/2. // // See http://tools.ietf.org/html/draft-ietf-httpbis-header-compression-09 package hpack import ( "bytes" "errors" "fmt" ) // A DecodingError is something the spec defines as a decoding error. type DecodingError struct { Err error } func (de DecodingError) Error() string { return fmt.Sprintf("decoding error: %v", de.Err) } // An InvalidIndexError is returned when an encoder references a table // entry before the static table or after the end of the dynamic table. type InvalidIndexError int func (e InvalidIndexError) Error() string { return fmt.Sprintf("invalid indexed representation index %d", int(e)) } // A HeaderField is a name-value pair. Both the name and value are // treated as opaque sequences of octets. type HeaderField struct { Name, Value string // Sensitive means that this header field should never be // indexed. Sensitive bool } // IsPseudo reports whether the header field is an http2 pseudo header. // That is, it reports whether it starts with a colon. // It is not otherwise guaranteed to be a valid pseudo header field, // though. func (hf HeaderField) IsPseudo() bool { return len(hf.Name) != 0 && hf.Name[0] == ':' } func (hf HeaderField) String() string { var suffix string if hf.Sensitive { suffix = " (sensitive)" } return fmt.Sprintf("header field %q = %q%s", hf.Name, hf.Value, suffix) } // Size returns the size of an entry per RFC 7541 section 4.1. func (hf HeaderField) Size() uint32 { // http://http2.github.io/http2-spec/compression.html#rfc.section.4.1 // "The size of the dynamic table is the sum of the size of // its entries. The size of an entry is the sum of its name's // length in octets (as defined in Section 5.2), its value's // length in octets (see Section 5.2), plus 32. The size of // an entry is calculated using the length of the name and // value without any Huffman encoding applied." // This can overflow if somebody makes a large HeaderField // Name and/or Value by hand, but we don't care, because that // won't happen on the wire because the encoding doesn't allow // it. return uint32(len(hf.Name) + len(hf.Value) + 32) } // A Decoder is the decoding context for incremental processing of // header blocks. type Decoder struct { dynTab dynamicTable emit func(f HeaderField) emitEnabled bool // whether calls to emit are enabled maxStrLen int // 0 means unlimited // buf is the unparsed buffer. It's only written to // saveBuf if it was truncated in the middle of a header // block. Because it's usually not owned, we can only // process it under Write. buf []byte // not owned; only valid during Write // saveBuf is previous data passed to Write which we weren't able // to fully parse before. Unlike buf, we own this data. saveBuf bytes.Buffer firstField bool // processing the first field of the header block } // NewDecoder returns a new decoder with the provided maximum dynamic // table size. The emitFunc will be called for each valid field // parsed, in the same goroutine as calls to Write, before Write returns. func NewDecoder(maxDynamicTableSize uint32, emitFunc func(f HeaderField)) *Decoder { d := &Decoder{ emit: emitFunc, emitEnabled: true, firstField: true, } d.dynTab.table.init() d.dynTab.allowedMaxSize = maxDynamicTableSize d.dynTab.setMaxSize(maxDynamicTableSize) return d } // ErrStringLength is returned by Decoder.Write when the max string length // (as configured by Decoder.SetMaxStringLength) would be violated. var ErrStringLength = errors.New("hpack: string too long") // SetMaxStringLength sets the maximum size of a HeaderField name or // value string. If a string exceeds this length (even after any // decompression), Write will return ErrStringLength. // A value of 0 means unlimited and is the default from NewDecoder. func (d *Decoder) SetMaxStringLength(n int) { d.maxStrLen = n } // SetEmitFunc changes the callback used when new header fields // are decoded. // It must be non-nil. It does not affect EmitEnabled. func (d *Decoder) SetEmitFunc(emitFunc func(f HeaderField)) { d.emit = emitFunc } // SetEmitEnabled controls whether the emitFunc provided to NewDecoder // should be called. The default is true. // // This facility exists to let servers enforce MAX_HEADER_LIST_SIZE // while still decoding and keeping in-sync with decoder state, but // without doing unnecessary decompression or generating unnecessary // garbage for header fields past the limit. func (d *Decoder) SetEmitEnabled(v bool) { d.emitEnabled = v } // EmitEnabled reports whether calls to the emitFunc provided to NewDecoder // are currently enabled. The default is true. func (d *Decoder) EmitEnabled() bool { return d.emitEnabled } // TODO: add method *Decoder.Reset(maxSize, emitFunc) to let callers re-use Decoders and their // underlying buffers for garbage reasons. func (d *Decoder) SetMaxDynamicTableSize(v uint32) { d.dynTab.setMaxSize(v) } // SetAllowedMaxDynamicTableSize sets the upper bound that the encoded // stream (via dynamic table size updates) may set the maximum size // to. func (d *Decoder) SetAllowedMaxDynamicTableSize(v uint32) { d.dynTab.allowedMaxSize = v } type dynamicTable struct { // http://http2.github.io/http2-spec/compression.html#rfc.section.2.3.2 table headerFieldTable size uint32 // in bytes maxSize uint32 // current maxSize allowedMaxSize uint32 // maxSize may go up to this, inclusive } func (dt *dynamicTable) setMaxSize(v uint32) { dt.maxSize = v dt.evict() } func (dt *dynamicTable) add(f HeaderField) { dt.table.addEntry(f) dt.size += f.Size() dt.evict() } // If we're too big, evict old stuff. func (dt *dynamicTable) evict() { var n int for dt.size > dt.maxSize && n < dt.table.len() { dt.size -= dt.table.ents[n].Size() n++ } dt.table.evictOldest(n) } func (d *Decoder) maxTableIndex() int { // This should never overflow. RFC 7540 Section 6.5.2 limits the size of // the dynamic table to 2^32 bytes, where each entry will occupy more than // one byte. Further, the staticTable has a fixed, small length. return d.dynTab.table.len() + staticTable.len() } func (d *Decoder) at(i uint64) (hf HeaderField, ok bool) { // See Section 2.3.3. if i == 0 { return } if i <= uint64(staticTable.len()) { return staticTable.ents[i-1], true } if i > uint64(d.maxTableIndex()) { return } // In the dynamic table, newer entries have lower indices. // However, dt.ents[0] is the oldest entry. Hence, dt.ents is // the reversed dynamic table. dt := d.dynTab.table return dt.ents[dt.len()-(int(i)-staticTable.len())], true } // Decode decodes an entire block. // // TODO: remove this method and make it incremental later? This is // easier for debugging now. func (d *Decoder) DecodeFull(p []byte) ([]HeaderField, error) { var hf []HeaderField saveFunc := d.emit defer func() { d.emit = saveFunc }() d.emit = func(f HeaderField) { hf = append(hf, f) } if _, err := d.Write(p); err != nil { return nil, err } if err := d.Close(); err != nil { return nil, err } return hf, nil } // Close declares that the decoding is complete and resets the Decoder // to be reused again for a new header block. If there is any remaining // data in the decoder's buffer, Close returns an error. func (d *Decoder) Close() error { if d.saveBuf.Len() > 0 { d.saveBuf.Reset() return DecodingError{errors.New("truncated headers")} } d.firstField = true return nil } func (d *Decoder) Write(p []byte) (n int, err error) { if len(p) == 0 { // Prevent state machine CPU attacks (making us redo // work up to the point of finding out we don't have // enough data) return } // Only copy the data if we have to. Optimistically assume // that p will contain a complete header block. if d.saveBuf.Len() == 0 { d.buf = p } else { d.saveBuf.Write(p) d.buf = d.saveBuf.Bytes() d.saveBuf.Reset() } for len(d.buf) > 0 { err = d.parseHeaderFieldRepr() if err == errNeedMore { // Extra paranoia, making sure saveBuf won't // get too large. All the varint and string // reading code earlier should already catch // overlong things and return ErrStringLength, // but keep this as a last resort. const varIntOverhead = 8 // conservative if d.maxStrLen != 0 && int64(len(d.buf)) > 2*(int64(d.maxStrLen)+varIntOverhead) { return 0, ErrStringLength } d.saveBuf.Write(d.buf) return len(p), nil } d.firstField = false if err != nil { break } } return len(p), err } // errNeedMore is an internal sentinel error value that means the // buffer is truncated and we need to read more data before we can // continue parsing. var errNeedMore = errors.New("need more data") type indexType int const ( indexedTrue indexType = iota indexedFalse indexedNever ) func (v indexType) indexed() bool { return v == indexedTrue } func (v indexType) sensitive() bool { return v == indexedNever } // returns errNeedMore if there isn't enough data available. // any other error is fatal. // consumes d.buf iff it returns nil. // precondition: must be called with len(d.buf) > 0 func (d *Decoder) parseHeaderFieldRepr() error { b := d.buf[0] switch { case b&128 != 0: // Indexed representation. // High bit set? // http://http2.github.io/http2-spec/compression.html#rfc.section.6.1 return d.parseFieldIndexed() case b&192 == 64: // 6.2.1 Literal Header Field with Incremental Indexing // 0b10xxxxxx: top two bits are 10 // http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.1 return d.parseFieldLiteral(6, indexedTrue) case b&240 == 0: // 6.2.2 Literal Header Field without Indexing // 0b0000xxxx: top four bits are 0000 // http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.2 return d.parseFieldLiteral(4, indexedFalse) case b&240 == 16: // 6.2.3 Literal Header Field never Indexed // 0b0001xxxx: top four bits are 0001 // http://http2.github.io/http2-spec/compression.html#rfc.section.6.2.3 return d.parseFieldLiteral(4, indexedNever) case b&224 == 32: // 6.3 Dynamic Table Size Update // Top three bits are '001'. // http://http2.github.io/http2-spec/compression.html#rfc.section.6.3 return d.parseDynamicTableSizeUpdate() } return DecodingError{errors.New("invalid encoding")} } // (same invariants and behavior as parseHeaderFieldRepr) func (d *Decoder) parseFieldIndexed() error { buf := d.buf idx, buf, err := readVarInt(7, buf) if err != nil { return err } hf, ok := d.at(idx) if !ok { return DecodingError{InvalidIndexError(idx)} } d.buf = buf return d.callEmit(HeaderField{Name: hf.Name, Value: hf.Value}) } // (same invariants and behavior as parseHeaderFieldRepr) func (d *Decoder) parseFieldLiteral(n uint8, it indexType) error { buf := d.buf nameIdx, buf, err := readVarInt(n, buf) if err != nil { return err } var hf HeaderField wantStr := d.emitEnabled || it.indexed() if nameIdx > 0 { ihf, ok := d.at(nameIdx) if !ok { return DecodingError{InvalidIndexError(nameIdx)} } hf.Name = ihf.Name } else { hf.Name, buf, err = d.readString(buf, wantStr) if err != nil { return err } } hf.Value, buf, err = d.readString(buf, wantStr) if err != nil { return err } d.buf = buf if it.indexed() { d.dynTab.add(hf) } hf.Sensitive = it.sensitive() return d.callEmit(hf) } func (d *Decoder) callEmit(hf HeaderField) error { if d.maxStrLen != 0 { if len(hf.Name) > d.maxStrLen || len(hf.Value) > d.maxStrLen { return ErrStringLength } } if d.emitEnabled { d.emit(hf) } return nil } // (same invariants and behavior as parseHeaderFieldRepr) func (d *Decoder) parseDynamicTableSizeUpdate() error { // RFC 7541, sec 4.2: This dynamic table size update MUST occur at the // beginning of the first header block following the change to the dynamic table size. if !d.firstField && d.dynTab.size > 0 { return DecodingError{errors.New("dynamic table size update MUST occur at the beginning of a header block")} } buf := d.buf size, buf, err := readVarInt(5, buf) if err != nil { return err } if size > uint64(d.dynTab.allowedMaxSize) { return DecodingError{errors.New("dynamic table size update too large")} } d.dynTab.setMaxSize(uint32(size)) d.buf = buf return nil } var errVarintOverflow = DecodingError{errors.New("varint integer overflow")} // readVarInt reads an unsigned variable length integer off the // beginning of p. n is the parameter as described in // http://http2.github.io/http2-spec/compression.html#rfc.section.5.1. // // n must always be between 1 and 8. // // The returned remain buffer is either a smaller suffix of p, or err != nil. // The error is errNeedMore if p doesn't contain a complete integer. func readVarInt(n byte, p []byte) (i uint64, remain []byte, err error) { if n < 1 || n > 8 { panic("bad n") } if len(p) == 0 { return 0, p, errNeedMore } i = uint64(p[0]) if n < 8 { i &= (1 << uint64(n)) - 1 } if i < (1<<uint64(n))-1 { return i, p[1:], nil } origP := p p = p[1:] var m uint64 for len(p) > 0 { b := p[0] p = p[1:] i += uint64(b&127) << m if b&128 == 0 { return i, p, nil } m += 7 if m >= 63 { // TODO: proper overflow check. making this up. return 0, origP, errVarintOverflow } } return 0, origP, errNeedMore } // readString decodes an hpack string from p. // // wantStr is whether s will be used. If false, decompression and // []byte->string garbage are skipped if s will be ignored // anyway. This does mean that huffman decoding errors for non-indexed // strings past the MAX_HEADER_LIST_SIZE are ignored, but the server // is returning an error anyway, and because they're not indexed, the error // won't affect the decoding state. func (d *Decoder) readString(p []byte, wantStr bool) (s string, remain []byte, err error) { if len(p) == 0 { return "", p, errNeedMore } isHuff := p[0]&128 != 0 strLen, p, err := readVarInt(7, p) if err != nil { return "", p, err } if d.maxStrLen != 0 && strLen > uint64(d.maxStrLen) { return "", nil, ErrStringLength } if uint64(len(p)) < strLen { return "", p, errNeedMore } if !isHuff { if wantStr { s = string(p[:strLen]) } return s, p[strLen:], nil } if wantStr { buf := bufPool.Get().(*bytes.Buffer) buf.Reset() // don't trust others defer bufPool.Put(buf) if err := huffmanDecode(buf, d.maxStrLen, p[:strLen]); err != nil { buf.Reset() return "", nil, err } s = buf.String() buf.Reset() // be nice to GC } return s, p[strLen:], nil }