// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This file implements encoding/decoding of Floats. package big import ( "encoding/binary" "fmt" ) // Gob codec version. Permits backward-compatible changes to the encoding. const floatGobVersion byte = 1 // GobEncode implements the gob.GobEncoder interface. // The Float value and all its attributes (precision, // rounding mode, accuracy) are marshaled. func (x *Float) GobEncode() ([]byte, error) { if x == nil { return nil, nil } // determine max. space (bytes) required for encoding sz := 1 + 1 + 4 // version + mode|acc|form|neg (3+2+2+1bit) + prec n := 0 // number of mantissa words if x.form == finite { // add space for mantissa and exponent n = int((x.prec + (_W - 1)) / _W) // required mantissa length in words for given precision // actual mantissa slice could be shorter (trailing 0's) or longer (unused bits): // - if shorter, only encode the words present // - if longer, cut off unused words when encoding in bytes // (in practice, this should never happen since rounding // takes care of it, but be safe and do it always) if len(x.mant) < n { n = len(x.mant) } // len(x.mant) >= n sz += 4 + n*_S // exp + mant } buf := make([]byte, sz) buf[0] = floatGobVersion b := byte(x.mode&7)<<5 | byte((x.acc+1)&3)<<3 | byte(x.form&3)<<1 if x.neg { b |= 1 } buf[1] = b binary.BigEndian.PutUint32(buf[2:], x.prec) if x.form == finite { binary.BigEndian.PutUint32(buf[6:], uint32(x.exp)) x.mant[len(x.mant)-n:].bytes(buf[10:]) // cut off unused trailing words } return buf, nil } // GobDecode implements the gob.GobDecoder interface. // The result is rounded per the precision and rounding mode of // z unless z's precision is 0, in which case z is set exactly // to the decoded value. func (z *Float) GobDecode(buf []byte) error { if len(buf) == 0 { // Other side sent a nil or default value. *z = Float{} return nil } if buf[0] != floatGobVersion { return fmt.Errorf("Float.GobDecode: encoding version %d not supported", buf[0]) } oldPrec := z.prec oldMode := z.mode b := buf[1] z.mode = RoundingMode((b >> 5) & 7) z.acc = Accuracy((b>>3)&3) - 1 z.form = form((b >> 1) & 3) z.neg = b&1 != 0 z.prec = binary.BigEndian.Uint32(buf[2:]) if z.form == finite { z.exp = int32(binary.BigEndian.Uint32(buf[6:])) z.mant = z.mant.setBytes(buf[10:]) } if oldPrec != 0 { z.mode = oldMode z.SetPrec(uint(oldPrec)) } return nil } // MarshalText implements the encoding.TextMarshaler interface. // Only the Float value is marshaled (in full precision), other // attributes such as precision or accuracy are ignored. func (x *Float) MarshalText() (text []byte, err error) { if x == nil { return []byte("<nil>"), nil } var buf []byte return x.Append(buf, 'g', -1), nil } // UnmarshalText implements the encoding.TextUnmarshaler interface. // The result is rounded per the precision and rounding mode of z. // If z's precision is 0, it is changed to 64 before rounding takes // effect. func (z *Float) UnmarshalText(text []byte) error { // TODO(gri): get rid of the []byte/string conversion _, _, err := z.Parse(string(text), 0) if err != nil { err = fmt.Errorf("math/big: cannot unmarshal %q into a *big.Float (%v)", text, err) } return err }