#ifndef KISSFFT_CLASS_HH #include <complex> #include <vector> namespace kissfft_utils { template <typename T_scalar> struct traits { typedef T_scalar scalar_type; typedef std::complex<scalar_type> cpx_type; void fill_twiddles( std::complex<T_scalar> * dst ,int nfft,bool inverse) { T_scalar phinc = (inverse?2:-2)* acos( (T_scalar) -1) / nfft; for (int i=0;i<nfft;++i) dst[i] = exp( std::complex<T_scalar>(0,i*phinc) ); } void prepare( std::vector< std::complex<T_scalar> > & dst, int nfft,bool inverse, std::vector<int> & stageRadix, std::vector<int> & stageRemainder ) { _twiddles.resize(nfft); fill_twiddles( &_twiddles[0],nfft,inverse); dst = _twiddles; //factorize //start factoring out 4's, then 2's, then 3,5,7,9,... int n= nfft; int p=4; do { while (n % p) { switch (p) { case 4: p = 2; break; case 2: p = 3; break; default: p += 2; break; } if (p*p>n) p=n;// no more factors } n /= p; stageRadix.push_back(p); stageRemainder.push_back(n); }while(n>1); } std::vector<cpx_type> _twiddles; const cpx_type twiddle(int i) { return _twiddles[i]; } }; } template <typename T_Scalar, typename T_traits=kissfft_utils::traits<T_Scalar> > class kissfft { public: typedef T_traits traits_type; typedef typename traits_type::scalar_type scalar_type; typedef typename traits_type::cpx_type cpx_type; kissfft(int nfft,bool inverse,const traits_type & traits=traits_type() ) :_nfft(nfft),_inverse(inverse),_traits(traits) { _traits.prepare(_twiddles, _nfft,_inverse ,_stageRadix, _stageRemainder); } void transform(const cpx_type * src , cpx_type * dst) { kf_work(0, dst, src, 1,1); } private: void kf_work( int stage,cpx_type * Fout, const cpx_type * f, size_t fstride,size_t in_stride) { int p = _stageRadix[stage]; int m = _stageRemainder[stage]; cpx_type * Fout_beg = Fout; cpx_type * Fout_end = Fout + p*m; if (m==1) { do{ *Fout = *f; f += fstride*in_stride; }while(++Fout != Fout_end ); }else{ do{ // recursive call: // DFT of size m*p performed by doing // p instances of smaller DFTs of size m, // each one takes a decimated version of the input kf_work(stage+1, Fout , f, fstride*p,in_stride); f += fstride*in_stride; }while( (Fout += m) != Fout_end ); } Fout=Fout_beg; // recombine the p smaller DFTs switch (p) { case 2: kf_bfly2(Fout,fstride,m); break; case 3: kf_bfly3(Fout,fstride,m); break; case 4: kf_bfly4(Fout,fstride,m); break; case 5: kf_bfly5(Fout,fstride,m); break; default: kf_bfly_generic(Fout,fstride,m,p); break; } } // these were #define macros in the original kiss_fft void C_ADD( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a+b;} void C_MUL( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a*b;} void C_SUB( cpx_type & c,const cpx_type & a,const cpx_type & b) { c=a-b;} void C_ADDTO( cpx_type & c,const cpx_type & a) { c+=a;} void C_FIXDIV( cpx_type & ,int ) {} // NO-OP for float types scalar_type S_MUL( const scalar_type & a,const scalar_type & b) { return a*b;} scalar_type HALF_OF( const scalar_type & a) { return a*.5;} void C_MULBYSCALAR(cpx_type & c,const scalar_type & a) {c*=a;} void kf_bfly2( cpx_type * Fout, const size_t fstride, int m) { for (int k=0;k<m;++k) { cpx_type t = Fout[m+k] * _traits.twiddle(k*fstride); Fout[m+k] = Fout[k] - t; Fout[k] += t; } } void kf_bfly4( cpx_type * Fout, const size_t fstride, const size_t m) { cpx_type scratch[7]; int negative_if_inverse = _inverse * -2 +1; for (size_t k=0;k<m;++k) { scratch[0] = Fout[k+m] * _traits.twiddle(k*fstride); scratch[1] = Fout[k+2*m] * _traits.twiddle(k*fstride*2); scratch[2] = Fout[k+3*m] * _traits.twiddle(k*fstride*3); scratch[5] = Fout[k] - scratch[1]; Fout[k] += scratch[1]; scratch[3] = scratch[0] + scratch[2]; scratch[4] = scratch[0] - scratch[2]; scratch[4] = cpx_type( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse ); Fout[k+2*m] = Fout[k] - scratch[3]; Fout[k] += scratch[3]; Fout[k+m] = scratch[5] + scratch[4]; Fout[k+3*m] = scratch[5] - scratch[4]; } } void kf_bfly3( cpx_type * Fout, const size_t fstride, const size_t m) { size_t k=m; const size_t m2 = 2*m; cpx_type *tw1,*tw2; cpx_type scratch[5]; cpx_type epi3; epi3 = _twiddles[fstride*m]; tw1=tw2=&_twiddles[0]; do{ C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3); C_MUL(scratch[1],Fout[m] , *tw1); C_MUL(scratch[2],Fout[m2] , *tw2); C_ADD(scratch[3],scratch[1],scratch[2]); C_SUB(scratch[0],scratch[1],scratch[2]); tw1 += fstride; tw2 += fstride*2; Fout[m] = cpx_type( Fout->real() - HALF_OF(scratch[3].real() ) , Fout->imag() - HALF_OF(scratch[3].imag() ) ); C_MULBYSCALAR( scratch[0] , epi3.imag() ); C_ADDTO(*Fout,scratch[3]); Fout[m2] = cpx_type( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() ); C_ADDTO( Fout[m] , cpx_type( -scratch[0].imag(),scratch[0].real() ) ); ++Fout; }while(--k); } void kf_bfly5( cpx_type * Fout, const size_t fstride, const size_t m) { cpx_type *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; size_t u; cpx_type scratch[13]; cpx_type * twiddles = &_twiddles[0]; cpx_type *tw; cpx_type ya,yb; ya = twiddles[fstride*m]; yb = twiddles[fstride*2*m]; Fout0=Fout; Fout1=Fout0+m; Fout2=Fout0+2*m; Fout3=Fout0+3*m; Fout4=Fout0+4*m; tw=twiddles; for ( u=0; u<m; ++u ) { C_FIXDIV( *Fout0,5); C_FIXDIV( *Fout1,5); C_FIXDIV( *Fout2,5); C_FIXDIV( *Fout3,5); C_FIXDIV( *Fout4,5); scratch[0] = *Fout0; C_MUL(scratch[1] ,*Fout1, tw[u*fstride]); C_MUL(scratch[2] ,*Fout2, tw[2*u*fstride]); C_MUL(scratch[3] ,*Fout3, tw[3*u*fstride]); C_MUL(scratch[4] ,*Fout4, tw[4*u*fstride]); C_ADD( scratch[7],scratch[1],scratch[4]); C_SUB( scratch[10],scratch[1],scratch[4]); C_ADD( scratch[8],scratch[2],scratch[3]); C_SUB( scratch[9],scratch[2],scratch[3]); C_ADDTO( *Fout0, scratch[7]); C_ADDTO( *Fout0, scratch[8]); scratch[5] = scratch[0] + cpx_type( S_MUL(scratch[7].real(),ya.real() ) + S_MUL(scratch[8].real() ,yb.real() ), S_MUL(scratch[7].imag(),ya.real()) + S_MUL(scratch[8].imag(),yb.real()) ); scratch[6] = cpx_type( S_MUL(scratch[10].imag(),ya.imag()) + S_MUL(scratch[9].imag(),yb.imag()), -S_MUL(scratch[10].real(),ya.imag()) - S_MUL(scratch[9].real(),yb.imag()) ); C_SUB(*Fout1,scratch[5],scratch[6]); C_ADD(*Fout4,scratch[5],scratch[6]); scratch[11] = scratch[0] + cpx_type( S_MUL(scratch[7].real(),yb.real()) + S_MUL(scratch[8].real(),ya.real()), S_MUL(scratch[7].imag(),yb.real()) + S_MUL(scratch[8].imag(),ya.real()) ); scratch[12] = cpx_type( -S_MUL(scratch[10].imag(),yb.imag()) + S_MUL(scratch[9].imag(),ya.imag()), S_MUL(scratch[10].real(),yb.imag()) - S_MUL(scratch[9].real(),ya.imag()) ); C_ADD(*Fout2,scratch[11],scratch[12]); C_SUB(*Fout3,scratch[11],scratch[12]); ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; } } /* perform the butterfly for one stage of a mixed radix FFT */ void kf_bfly_generic( cpx_type * Fout, const size_t fstride, int m, int p ) { int u,k,q1,q; cpx_type * twiddles = &_twiddles[0]; cpx_type t; int Norig = _nfft; cpx_type scratchbuf[p]; for ( u=0; u<m; ++u ) { k=u; for ( q1=0 ; q1<p ; ++q1 ) { scratchbuf[q1] = Fout[ k ]; C_FIXDIV(scratchbuf[q1],p); k += m; } k=u; for ( q1=0 ; q1<p ; ++q1 ) { int twidx=0; Fout[ k ] = scratchbuf[0]; for (q=1;q<p;++q ) { twidx += fstride * k; if (twidx>=Norig) twidx-=Norig; C_MUL(t,scratchbuf[q] , twiddles[twidx] ); C_ADDTO( Fout[ k ] ,t); } k += m; } } } int _nfft; bool _inverse; std::vector<cpx_type> _twiddles; std::vector<int> _stageRadix; std::vector<int> _stageRemainder; traits_type _traits; }; #endif