/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Keymaster.h" #include <android-base/logging.h> #include <keymasterV4_0/authorization_set.h> #include <keymasterV4_0/keymaster_utils.h> namespace android { namespace vold { using ::android::hardware::hidl_string; using ::android::hardware::hidl_vec; using ::android::hardware::keymaster::V4_0::SecurityLevel; KeymasterOperation::~KeymasterOperation() { if (mDevice) mDevice->abort(mOpHandle); } bool KeymasterOperation::updateCompletely(const char* input, size_t inputLen, const std::function<void(const char*, size_t)> consumer) { uint32_t inputConsumed = 0; km::ErrorCode km_error; auto hidlCB = [&](km::ErrorCode ret, uint32_t inputConsumedDelta, const hidl_vec<km::KeyParameter>& /*ignored*/, const hidl_vec<uint8_t>& _output) { km_error = ret; if (km_error != km::ErrorCode::OK) return; inputConsumed += inputConsumedDelta; consumer(reinterpret_cast<const char*>(&_output[0]), _output.size()); }; while (inputConsumed != inputLen) { size_t toRead = static_cast<size_t>(inputLen - inputConsumed); auto inputBlob = km::support::blob2hidlVec( reinterpret_cast<const uint8_t*>(&input[inputConsumed]), toRead); auto error = mDevice->update(mOpHandle, hidl_vec<km::KeyParameter>(), inputBlob, km::HardwareAuthToken(), km::VerificationToken(), hidlCB); if (!error.isOk()) { LOG(ERROR) << "update failed: " << error.description(); mDevice = nullptr; return false; } if (km_error != km::ErrorCode::OK) { LOG(ERROR) << "update failed, code " << int32_t(km_error); mDevice = nullptr; return false; } if (inputConsumed > inputLen) { LOG(ERROR) << "update reported too much input consumed"; mDevice = nullptr; return false; } } return true; } bool KeymasterOperation::finish(std::string* output) { km::ErrorCode km_error; auto hidlCb = [&](km::ErrorCode ret, const hidl_vec<km::KeyParameter>& /*ignored*/, const hidl_vec<uint8_t>& _output) { km_error = ret; if (km_error != km::ErrorCode::OK) return; if (output) output->assign(reinterpret_cast<const char*>(&_output[0]), _output.size()); }; auto error = mDevice->finish(mOpHandle, hidl_vec<km::KeyParameter>(), hidl_vec<uint8_t>(), hidl_vec<uint8_t>(), km::HardwareAuthToken(), km::VerificationToken(), hidlCb); mDevice = nullptr; if (!error.isOk()) { LOG(ERROR) << "finish failed: " << error.description(); return false; } if (km_error != km::ErrorCode::OK) { LOG(ERROR) << "finish failed, code " << int32_t(km_error); return false; } return true; } /* static */ bool Keymaster::hmacKeyGenerated = false; Keymaster::Keymaster() { auto devices = KmDevice::enumerateAvailableDevices(); if (!hmacKeyGenerated) { KmDevice::performHmacKeyAgreement(devices); hmacKeyGenerated = true; } for (auto& dev : devices) { // Do not use StrongBox for device encryption / credential encryption. If a security chip // is present it will have Weaver, which already strengthens CE. We get no additional // benefit from using StrongBox here, so skip it. if (dev->halVersion().securityLevel != SecurityLevel::STRONGBOX) { mDevice = std::move(dev); break; } } if (!mDevice) return; auto& version = mDevice->halVersion(); LOG(INFO) << "Using " << version.keymasterName << " from " << version.authorName << " for encryption. Security level: " << toString(version.securityLevel) << ", HAL: " << mDevice->descriptor() << "/" << mDevice->instanceName(); } bool Keymaster::generateKey(const km::AuthorizationSet& inParams, std::string* key) { km::ErrorCode km_error; auto hidlCb = [&](km::ErrorCode ret, const hidl_vec<uint8_t>& keyBlob, const km::KeyCharacteristics& /*ignored*/) { km_error = ret; if (km_error != km::ErrorCode::OK) return; if (key) key->assign(reinterpret_cast<const char*>(&keyBlob[0]), keyBlob.size()); }; auto error = mDevice->generateKey(inParams.hidl_data(), hidlCb); if (!error.isOk()) { LOG(ERROR) << "generate_key failed: " << error.description(); return false; } if (km_error != km::ErrorCode::OK) { LOG(ERROR) << "generate_key failed, code " << int32_t(km_error); return false; } return true; } bool Keymaster::deleteKey(const std::string& key) { auto keyBlob = km::support::blob2hidlVec(key); auto error = mDevice->deleteKey(keyBlob); if (!error.isOk()) { LOG(ERROR) << "delete_key failed: " << error.description(); return false; } if (error != km::ErrorCode::OK) { LOG(ERROR) << "delete_key failed, code " << int32_t(km::ErrorCode(error)); return false; } return true; } bool Keymaster::upgradeKey(const std::string& oldKey, const km::AuthorizationSet& inParams, std::string* newKey) { auto oldKeyBlob = km::support::blob2hidlVec(oldKey); km::ErrorCode km_error; auto hidlCb = [&](km::ErrorCode ret, const hidl_vec<uint8_t>& upgradedKeyBlob) { km_error = ret; if (km_error != km::ErrorCode::OK) return; if (newKey) newKey->assign(reinterpret_cast<const char*>(&upgradedKeyBlob[0]), upgradedKeyBlob.size()); }; auto error = mDevice->upgradeKey(oldKeyBlob, inParams.hidl_data(), hidlCb); if (!error.isOk()) { LOG(ERROR) << "upgrade_key failed: " << error.description(); return false; } if (km_error != km::ErrorCode::OK) { LOG(ERROR) << "upgrade_key failed, code " << int32_t(km_error); return false; } return true; } KeymasterOperation Keymaster::begin(km::KeyPurpose purpose, const std::string& key, const km::AuthorizationSet& inParams, const km::HardwareAuthToken& authToken, km::AuthorizationSet* outParams) { auto keyBlob = km::support::blob2hidlVec(key); uint64_t mOpHandle; km::ErrorCode km_error; auto hidlCb = [&](km::ErrorCode ret, const hidl_vec<km::KeyParameter>& _outParams, uint64_t operationHandle) { km_error = ret; if (km_error != km::ErrorCode::OK) return; if (outParams) *outParams = _outParams; mOpHandle = operationHandle; }; auto error = mDevice->begin(purpose, keyBlob, inParams.hidl_data(), authToken, hidlCb); if (!error.isOk()) { LOG(ERROR) << "begin failed: " << error.description(); return KeymasterOperation(km::ErrorCode::UNKNOWN_ERROR); } if (km_error != km::ErrorCode::OK) { LOG(ERROR) << "begin failed, code " << int32_t(km_error); return KeymasterOperation(km_error); } return KeymasterOperation(mDevice.get(), mOpHandle); } bool Keymaster::isSecure() { return mDevice->halVersion().securityLevel != km::SecurityLevel::SOFTWARE; } } // namespace vold } // namespace android using namespace ::android::vold; int keymaster_compatibility_cryptfs_scrypt() { Keymaster dev; if (!dev) { LOG(ERROR) << "Failed to initiate keymaster session"; return -1; } return dev.isSecure(); } static bool write_string_to_buf(const std::string& towrite, uint8_t* buffer, uint32_t buffer_size, uint32_t* out_size) { if (!buffer || !out_size) { LOG(ERROR) << "Missing target pointers"; return false; } *out_size = towrite.size(); if (buffer_size < towrite.size()) { LOG(ERROR) << "Buffer too small " << buffer_size << " < " << towrite.size(); return false; } memset(buffer, '\0', buffer_size); std::copy(towrite.begin(), towrite.end(), buffer); return true; } static km::AuthorizationSet keyParams(uint32_t rsa_key_size, uint64_t rsa_exponent, uint32_t ratelimit) { return km::AuthorizationSetBuilder() .RsaSigningKey(rsa_key_size, rsa_exponent) .NoDigestOrPadding() .Authorization(km::TAG_BLOB_USAGE_REQUIREMENTS, km::KeyBlobUsageRequirements::STANDALONE) .Authorization(km::TAG_NO_AUTH_REQUIRED) .Authorization(km::TAG_MIN_SECONDS_BETWEEN_OPS, ratelimit); } int keymaster_create_key_for_cryptfs_scrypt(uint32_t rsa_key_size, uint64_t rsa_exponent, uint32_t ratelimit, uint8_t* key_buffer, uint32_t key_buffer_size, uint32_t* key_out_size) { if (key_out_size) { *key_out_size = 0; } Keymaster dev; if (!dev) { LOG(ERROR) << "Failed to initiate keymaster session"; return -1; } std::string key; if (!dev.generateKey(keyParams(rsa_key_size, rsa_exponent, ratelimit), &key)) return -1; if (!write_string_to_buf(key, key_buffer, key_buffer_size, key_out_size)) return -1; return 0; } int keymaster_upgrade_key_for_cryptfs_scrypt(uint32_t rsa_key_size, uint64_t rsa_exponent, uint32_t ratelimit, const uint8_t* key_blob, size_t key_blob_size, uint8_t* key_buffer, uint32_t key_buffer_size, uint32_t* key_out_size) { if (key_out_size) { *key_out_size = 0; } Keymaster dev; if (!dev) { LOG(ERROR) << "Failed to initiate keymaster session"; return -1; } std::string old_key(reinterpret_cast<const char*>(key_blob), key_blob_size); std::string new_key; if (!dev.upgradeKey(old_key, keyParams(rsa_key_size, rsa_exponent, ratelimit), &new_key)) return -1; if (!write_string_to_buf(new_key, key_buffer, key_buffer_size, key_out_size)) return -1; return 0; } KeymasterSignResult keymaster_sign_object_for_cryptfs_scrypt( const uint8_t* key_blob, size_t key_blob_size, uint32_t ratelimit, const uint8_t* object, const size_t object_size, uint8_t** signature_buffer, size_t* signature_buffer_size) { Keymaster dev; if (!dev) { LOG(ERROR) << "Failed to initiate keymaster session"; return KeymasterSignResult::error; } if (!key_blob || !object || !signature_buffer || !signature_buffer_size) { LOG(ERROR) << __FILE__ << ":" << __LINE__ << ":Invalid argument"; return KeymasterSignResult::error; } km::AuthorizationSet outParams; std::string key(reinterpret_cast<const char*>(key_blob), key_blob_size); std::string input(reinterpret_cast<const char*>(object), object_size); std::string output; KeymasterOperation op; auto paramBuilder = km::AuthorizationSetBuilder().NoDigestOrPadding(); while (true) { op = dev.begin(km::KeyPurpose::SIGN, key, paramBuilder, km::HardwareAuthToken(), &outParams); if (op.errorCode() == km::ErrorCode::KEY_RATE_LIMIT_EXCEEDED) { sleep(ratelimit); continue; } else break; } if (op.errorCode() == km::ErrorCode::KEY_REQUIRES_UPGRADE) { LOG(ERROR) << "Keymaster key requires upgrade"; return KeymasterSignResult::upgrade; } if (op.errorCode() != km::ErrorCode::OK) { LOG(ERROR) << "Error starting keymaster signature transaction: " << int32_t(op.errorCode()); return KeymasterSignResult::error; } if (!op.updateCompletely(input, &output)) { LOG(ERROR) << "Error sending data to keymaster signature transaction: " << uint32_t(op.errorCode()); return KeymasterSignResult::error; } if (!op.finish(&output)) { LOG(ERROR) << "Error finalizing keymaster signature transaction: " << int32_t(op.errorCode()); return KeymasterSignResult::error; } *signature_buffer = reinterpret_cast<uint8_t*>(malloc(output.size())); if (*signature_buffer == nullptr) { LOG(ERROR) << "Error allocation buffer for keymaster signature"; return KeymasterSignResult::error; } *signature_buffer_size = output.size(); std::copy(output.data(), output.data() + output.size(), *signature_buffer); return KeymasterSignResult::ok; }