普通文本  |  542行  |  17.88 KB

/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "runtime_common.h"

#include <signal.h>

#include <cinttypes>
#include <iostream>
#include <sstream>
#include <string>

#include <android-base/logging.h>
#include <android-base/stringprintf.h>

#include "base/aborting.h"
#include "base/file_utils.h"
#include "base/logging.h"  // For LogHelper, GetCmdLine.
#include "base/macros.h"
#include "base/mutex.h"
#include "native_stack_dump.h"
#include "runtime.h"
#include "thread-current-inl.h"
#include "thread_list.h"

namespace art {

using android::base::StringPrintf;

static constexpr bool kUseSigRTTimeout = true;
static constexpr bool kDumpNativeStackOnTimeout = true;

const char* GetSignalName(int signal_number) {
  switch (signal_number) {
    case SIGABRT: return "SIGABRT";
    case SIGBUS: return "SIGBUS";
    case SIGFPE: return "SIGFPE";
    case SIGILL: return "SIGILL";
    case SIGPIPE: return "SIGPIPE";
    case SIGSEGV: return "SIGSEGV";
#if defined(SIGSTKFLT)
    case SIGSTKFLT: return "SIGSTKFLT";
#endif
    case SIGTRAP: return "SIGTRAP";
  }
  return "??";
}

const char* GetSignalCodeName(int signal_number, int signal_code) {
  // Try the signal-specific codes...
  switch (signal_number) {
    case SIGILL:
      switch (signal_code) {
        case ILL_ILLOPC: return "ILL_ILLOPC";
        case ILL_ILLOPN: return "ILL_ILLOPN";
        case ILL_ILLADR: return "ILL_ILLADR";
        case ILL_ILLTRP: return "ILL_ILLTRP";
        case ILL_PRVOPC: return "ILL_PRVOPC";
        case ILL_PRVREG: return "ILL_PRVREG";
        case ILL_COPROC: return "ILL_COPROC";
        case ILL_BADSTK: return "ILL_BADSTK";
      }
      break;
    case SIGBUS:
      switch (signal_code) {
        case BUS_ADRALN: return "BUS_ADRALN";
        case BUS_ADRERR: return "BUS_ADRERR";
        case BUS_OBJERR: return "BUS_OBJERR";
      }
      break;
    case SIGFPE:
      switch (signal_code) {
        case FPE_INTDIV: return "FPE_INTDIV";
        case FPE_INTOVF: return "FPE_INTOVF";
        case FPE_FLTDIV: return "FPE_FLTDIV";
        case FPE_FLTOVF: return "FPE_FLTOVF";
        case FPE_FLTUND: return "FPE_FLTUND";
        case FPE_FLTRES: return "FPE_FLTRES";
        case FPE_FLTINV: return "FPE_FLTINV";
        case FPE_FLTSUB: return "FPE_FLTSUB";
      }
      break;
    case SIGSEGV:
      switch (signal_code) {
        case SEGV_MAPERR: return "SEGV_MAPERR";
        case SEGV_ACCERR: return "SEGV_ACCERR";
#if defined(SEGV_BNDERR)
        case SEGV_BNDERR: return "SEGV_BNDERR";
#endif
      }
      break;
    case SIGTRAP:
      switch (signal_code) {
        case TRAP_BRKPT: return "TRAP_BRKPT";
        case TRAP_TRACE: return "TRAP_TRACE";
      }
      break;
  }
  // Then the other codes...
  switch (signal_code) {
    case SI_USER:     return "SI_USER";
#if defined(SI_KERNEL)
    case SI_KERNEL:   return "SI_KERNEL";
#endif
    case SI_QUEUE:    return "SI_QUEUE";
    case SI_TIMER:    return "SI_TIMER";
    case SI_MESGQ:    return "SI_MESGQ";
    case SI_ASYNCIO:  return "SI_ASYNCIO";
#if defined(SI_SIGIO)
    case SI_SIGIO:    return "SI_SIGIO";
#endif
#if defined(SI_TKILL)
    case SI_TKILL:    return "SI_TKILL";
#endif
  }
  // Then give up...
  return "?";
}

struct UContext {
  explicit UContext(void* raw_context)
      : context(reinterpret_cast<ucontext_t*>(raw_context)->uc_mcontext) {}

  void Dump(std::ostream& os) const;

  void DumpRegister32(std::ostream& os, const char* name, uint32_t value) const;
  void DumpRegister64(std::ostream& os, const char* name, uint64_t value) const;

  void DumpX86Flags(std::ostream& os, uint32_t flags) const;
  // Print some of the information from the status register (CPSR on ARMv7, PSTATE on ARMv8).
  template <typename RegisterType>
  void DumpArmStatusRegister(std::ostream& os, RegisterType status_register) const;

  mcontext_t& context;
};

void UContext::Dump(std::ostream& os) const {
#if defined(__APPLE__) && defined(__i386__)
  DumpRegister32(os, "eax", context->__ss.__eax);
  DumpRegister32(os, "ebx", context->__ss.__ebx);
  DumpRegister32(os, "ecx", context->__ss.__ecx);
  DumpRegister32(os, "edx", context->__ss.__edx);
  os << '\n';

  DumpRegister32(os, "edi", context->__ss.__edi);
  DumpRegister32(os, "esi", context->__ss.__esi);
  DumpRegister32(os, "ebp", context->__ss.__ebp);
  DumpRegister32(os, "esp", context->__ss.__esp);
  os << '\n';

  DumpRegister32(os, "eip", context->__ss.__eip);
  os << "                   ";
  DumpRegister32(os, "eflags", context->__ss.__eflags);
  DumpX86Flags(os, context->__ss.__eflags);
  os << '\n';

  DumpRegister32(os, "cs",  context->__ss.__cs);
  DumpRegister32(os, "ds",  context->__ss.__ds);
  DumpRegister32(os, "es",  context->__ss.__es);
  DumpRegister32(os, "fs",  context->__ss.__fs);
  os << '\n';
  DumpRegister32(os, "gs",  context->__ss.__gs);
  DumpRegister32(os, "ss",  context->__ss.__ss);
#elif defined(__linux__) && defined(__i386__)
  DumpRegister32(os, "eax", context.gregs[REG_EAX]);
  DumpRegister32(os, "ebx", context.gregs[REG_EBX]);
  DumpRegister32(os, "ecx", context.gregs[REG_ECX]);
  DumpRegister32(os, "edx", context.gregs[REG_EDX]);
  os << '\n';

  DumpRegister32(os, "edi", context.gregs[REG_EDI]);
  DumpRegister32(os, "esi", context.gregs[REG_ESI]);
  DumpRegister32(os, "ebp", context.gregs[REG_EBP]);
  DumpRegister32(os, "esp", context.gregs[REG_ESP]);
  os << '\n';

  DumpRegister32(os, "eip", context.gregs[REG_EIP]);
  os << "                   ";
  DumpRegister32(os, "eflags", context.gregs[REG_EFL]);
  DumpX86Flags(os, context.gregs[REG_EFL]);
  os << '\n';

  DumpRegister32(os, "cs",  context.gregs[REG_CS]);
  DumpRegister32(os, "ds",  context.gregs[REG_DS]);
  DumpRegister32(os, "es",  context.gregs[REG_ES]);
  DumpRegister32(os, "fs",  context.gregs[REG_FS]);
  os << '\n';
  DumpRegister32(os, "gs",  context.gregs[REG_GS]);
  DumpRegister32(os, "ss",  context.gregs[REG_SS]);
#elif defined(__linux__) && defined(__x86_64__)
  DumpRegister64(os, "rax", context.gregs[REG_RAX]);
  DumpRegister64(os, "rbx", context.gregs[REG_RBX]);
  DumpRegister64(os, "rcx", context.gregs[REG_RCX]);
  DumpRegister64(os, "rdx", context.gregs[REG_RDX]);
  os << '\n';

  DumpRegister64(os, "rdi", context.gregs[REG_RDI]);
  DumpRegister64(os, "rsi", context.gregs[REG_RSI]);
  DumpRegister64(os, "rbp", context.gregs[REG_RBP]);
  DumpRegister64(os, "rsp", context.gregs[REG_RSP]);
  os << '\n';

  DumpRegister64(os, "r8 ", context.gregs[REG_R8]);
  DumpRegister64(os, "r9 ", context.gregs[REG_R9]);
  DumpRegister64(os, "r10", context.gregs[REG_R10]);
  DumpRegister64(os, "r11", context.gregs[REG_R11]);
  os << '\n';

  DumpRegister64(os, "r12", context.gregs[REG_R12]);
  DumpRegister64(os, "r13", context.gregs[REG_R13]);
  DumpRegister64(os, "r14", context.gregs[REG_R14]);
  DumpRegister64(os, "r15", context.gregs[REG_R15]);
  os << '\n';

  DumpRegister64(os, "rip", context.gregs[REG_RIP]);
  os << "   ";
  DumpRegister32(os, "eflags", context.gregs[REG_EFL]);
  DumpX86Flags(os, context.gregs[REG_EFL]);
  os << '\n';

  DumpRegister32(os, "cs",  (context.gregs[REG_CSGSFS]) & 0x0FFFF);
  DumpRegister32(os, "gs",  (context.gregs[REG_CSGSFS] >> 16) & 0x0FFFF);
  DumpRegister32(os, "fs",  (context.gregs[REG_CSGSFS] >> 32) & 0x0FFFF);
  os << '\n';
#elif defined(__linux__) && defined(__arm__)
  DumpRegister32(os, "r0", context.arm_r0);
  DumpRegister32(os, "r1", context.arm_r1);
  DumpRegister32(os, "r2", context.arm_r2);
  DumpRegister32(os, "r3", context.arm_r3);
  os << '\n';

  DumpRegister32(os, "r4", context.arm_r4);
  DumpRegister32(os, "r5", context.arm_r5);
  DumpRegister32(os, "r6", context.arm_r6);
  DumpRegister32(os, "r7", context.arm_r7);
  os << '\n';

  DumpRegister32(os, "r8", context.arm_r8);
  DumpRegister32(os, "r9", context.arm_r9);
  DumpRegister32(os, "r10", context.arm_r10);
  DumpRegister32(os, "fp", context.arm_fp);
  os << '\n';

  DumpRegister32(os, "ip", context.arm_ip);
  DumpRegister32(os, "sp", context.arm_sp);
  DumpRegister32(os, "lr", context.arm_lr);
  DumpRegister32(os, "pc", context.arm_pc);
  os << '\n';

  DumpRegister32(os, "cpsr", context.arm_cpsr);
  DumpArmStatusRegister(os, context.arm_cpsr);
  os << '\n';
#elif defined(__linux__) && defined(__aarch64__)
  for (size_t i = 0; i <= 30; ++i) {
    std::string reg_name = "x" + std::to_string(i);
    DumpRegister64(os, reg_name.c_str(), context.regs[i]);
    if (i % 4 == 3) {
      os << '\n';
    }
  }
  os << '\n';

  DumpRegister64(os, "sp", context.sp);
  DumpRegister64(os, "pc", context.pc);
  os << '\n';

  DumpRegister64(os, "pstate", context.pstate);
  DumpArmStatusRegister(os, context.pstate);
  os << '\n';
#else
  // TODO: Add support for MIPS32 and MIPS64.
  os << "Unknown architecture/word size/OS in ucontext dump";
#endif
}

void UContext::DumpRegister32(std::ostream& os, const char* name, uint32_t value) const {
  os << StringPrintf(" %6s: 0x%08x", name, value);
}

void UContext::DumpRegister64(std::ostream& os, const char* name, uint64_t value) const {
  os << StringPrintf(" %6s: 0x%016" PRIx64, name, value);
}

void UContext::DumpX86Flags(std::ostream& os, uint32_t flags) const {
  os << " [";
  if ((flags & (1 << 0)) != 0) {
    os << " CF";
  }
  if ((flags & (1 << 2)) != 0) {
    os << " PF";
  }
  if ((flags & (1 << 4)) != 0) {
    os << " AF";
  }
  if ((flags & (1 << 6)) != 0) {
    os << " ZF";
  }
  if ((flags & (1 << 7)) != 0) {
    os << " SF";
  }
  if ((flags & (1 << 8)) != 0) {
    os << " TF";
  }
  if ((flags & (1 << 9)) != 0) {
    os << " IF";
  }
  if ((flags & (1 << 10)) != 0) {
    os << " DF";
  }
  if ((flags & (1 << 11)) != 0) {
    os << " OF";
  }
  os << " ]";
}

template <typename RegisterType>
void UContext::DumpArmStatusRegister(std::ostream& os, RegisterType status_register) const {
  // Condition flags.
  constexpr RegisterType kFlagV = 1U << 28;
  constexpr RegisterType kFlagC = 1U << 29;
  constexpr RegisterType kFlagZ = 1U << 30;
  constexpr RegisterType kFlagN = 1U << 31;

  os << " [";
  if ((status_register & kFlagN) != 0) {
    os << " N";
  }
  if ((status_register & kFlagZ) != 0) {
    os << " Z";
  }
  if ((status_register & kFlagC) != 0) {
    os << " C";
  }
  if ((status_register & kFlagV) != 0) {
    os << " V";
  }
  os << " ]";
}

int GetTimeoutSignal() {
#if defined(__APPLE__)
  // Mac does not support realtime signals.
  UNUSED(kUseSigRTTimeout);
  return -1;
#else
  return kUseSigRTTimeout ? (SIGRTMIN + 2) : -1;
#endif
}

static bool IsTimeoutSignal(int signal_number) {
  return signal_number == GetTimeoutSignal();
}

#if defined(__APPLE__)
// On macOS, clang complains about art::HandleUnexpectedSignalCommon's
// stack frame size being too large; disable that warning locally.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wframe-larger-than="
#endif

std::string GetFaultMessageForAbortLogging() {
  Runtime* runtime = Runtime::Current();
  return  (runtime != nullptr) ? runtime->GetFaultMessage() : "";
}

static void HandleUnexpectedSignalCommonDump(int signal_number,
                                             siginfo_t* info,
                                             void* raw_context,
                                             bool handle_timeout_signal,
                                             bool dump_on_stderr) {
  auto logger = [&](auto& stream) {
    bool has_address = (signal_number == SIGILL || signal_number == SIGBUS ||
                        signal_number == SIGFPE || signal_number == SIGSEGV);
    OsInfo os_info;
    const char* cmd_line = GetCmdLine();
    if (cmd_line == nullptr) {
      cmd_line = "<unset>";  // Because no-one called InitLogging.
    }
    pid_t tid = GetTid();
    std::string thread_name(GetThreadName(tid));
    UContext thread_context(raw_context);
    Backtrace thread_backtrace(raw_context);

    stream << "*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***" << std::endl
           << StringPrintf("Fatal signal %d (%s), code %d (%s)",
                             signal_number,
                             GetSignalName(signal_number),
                             info->si_code,
                             GetSignalCodeName(signal_number, info->si_code))
           << (has_address ? StringPrintf(" fault addr %p", info->si_addr) : "") << std::endl
           << "OS: " << Dumpable<OsInfo>(os_info) << std::endl
           << "Cmdline: " << cmd_line << std::endl
           << "Thread: " << tid << " \"" << thread_name << "\"" << std::endl
           << "Registers:\n" << Dumpable<UContext>(thread_context) << std::endl
           << "Backtrace:\n" << Dumpable<Backtrace>(thread_backtrace) << std::endl;
    stream << std::flush;
  };

  if (dump_on_stderr) {
    // Note: We are using cerr directly instead of LOG macros to ensure even just partial output
    //       makes it out. That means we lose the "dalvikvm..." prefix, but that is acceptable
    //       considering this is an abort situation.
    logger(std::cerr);
  } else {
    logger(LOG_STREAM(FATAL_WITHOUT_ABORT));
  }
  if (kIsDebugBuild && signal_number == SIGSEGV) {
    PrintFileToLog("/proc/self/maps", android::base::LogSeverity::FATAL_WITHOUT_ABORT);
  }

  Runtime* runtime = Runtime::Current();
  if (runtime != nullptr) {
    if (handle_timeout_signal && IsTimeoutSignal(signal_number)) {
      // Special timeout signal. Try to dump all threads.
      // Note: Do not use DumpForSigQuit, as that might disable native unwind, but the native parts
      //       are of value here.
      runtime->GetThreadList()->Dump(std::cerr, kDumpNativeStackOnTimeout);
      std::cerr << std::endl;
    }

    if (dump_on_stderr) {
      std::cerr << "Fault message: " << GetFaultMessageForAbortLogging() << std::endl;
    } else {
      LOG(FATAL_WITHOUT_ABORT) << "Fault message: " << GetFaultMessageForAbortLogging();
    }
  }
}

void HandleUnexpectedSignalCommon(int signal_number,
                                  siginfo_t* info,
                                  void* raw_context,
                                  bool handle_timeout_signal,
                                  bool dump_on_stderr) {
  // Local _static_ storing the currently handled signal (or -1).
  static int handling_unexpected_signal = -1;

  // Whether the dump code should be run under the unexpected-signal lock. For diagnostics we
  // allow recursive unexpected-signals in certain cases - avoid a deadlock.
  bool grab_lock = true;

  if (handling_unexpected_signal != -1) {
    LogHelper::LogLineLowStack(__FILE__,
                               __LINE__,
                               ::android::base::FATAL_WITHOUT_ABORT,
                               "HandleUnexpectedSignal reentered\n");
    // Print the signal number. Don't use any standard functions, just some arithmetic. Just best
    // effort, with a minimal buffer.
    if (0 < signal_number && signal_number < 100) {
      char buf[] = { ' ',
                     'S',
                     static_cast<char>('0' + (signal_number / 10)),
                     static_cast<char>('0' + (signal_number % 10)),
                     '\n',
                     0 };
      LogHelper::LogLineLowStack(__FILE__,
                                 __LINE__,
                                 ::android::base::FATAL_WITHOUT_ABORT,
                                 buf);
    }
    if (handle_timeout_signal) {
      if (IsTimeoutSignal(signal_number)) {
        // Ignore a recursive timeout.
        return;
      }
    }
    // If we were handling a timeout signal, try to go on. Otherwise hard-exit.
    // This relies on the expectation that we'll only ever get one timeout signal.
    if (!handle_timeout_signal || handling_unexpected_signal != GetTimeoutSignal()) {
      _exit(1);
    }
    grab_lock = false;  // The "outer" handling instance already holds the lock.
  }
  handling_unexpected_signal = signal_number;

  gAborting++;  // set before taking any locks

  if (grab_lock) {
    MutexLock mu(Thread::Current(), *Locks::unexpected_signal_lock_);

    HandleUnexpectedSignalCommonDump(signal_number,
                                     info,
                                     raw_context,
                                     handle_timeout_signal,
                                     dump_on_stderr);
  } else {
    HandleUnexpectedSignalCommonDump(signal_number,
                                     info,
                                     raw_context,
                                     handle_timeout_signal,
                                     dump_on_stderr);
  }
}

#if defined(__APPLE__)
#pragma GCC diagnostic pop
#endif

void InitPlatformSignalHandlersCommon(void (*newact)(int, siginfo_t*, void*),
                                      struct sigaction* oldact,
                                      bool handle_timeout_signal) {
  struct sigaction action;
  memset(&action, 0, sizeof(action));
  sigemptyset(&action.sa_mask);
  action.sa_sigaction = newact;
  // Use the three-argument sa_sigaction handler.
  action.sa_flags |= SA_SIGINFO;
  // Use the alternate signal stack so we can catch stack overflows.
  action.sa_flags |= SA_ONSTACK;

  int rc = 0;
  rc += sigaction(SIGABRT, &action, oldact);
  rc += sigaction(SIGBUS, &action, oldact);
  rc += sigaction(SIGFPE, &action, oldact);
  rc += sigaction(SIGILL, &action, oldact);
  rc += sigaction(SIGPIPE, &action, oldact);
  rc += sigaction(SIGSEGV, &action, oldact);
#if defined(SIGSTKFLT)
  rc += sigaction(SIGSTKFLT, &action, oldact);
#endif
  rc += sigaction(SIGTRAP, &action, oldact);
  // Special dump-all timeout.
  if (handle_timeout_signal && GetTimeoutSignal() != -1) {
    rc += sigaction(GetTimeoutSignal(), &action, oldact);
  }
  CHECK_EQ(rc, 0);
}

}  // namespace art