/*
* Copyright (C) 2013 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <gtest/gtest.h>
#include "private/bionic_allocator.h"
#include <unistd.h>
namespace {
/*
* this one has size below allocator cap which is 2*sizeof(void*)
*/
struct test_struct_small {
char dummy_str[5];
};
struct test_struct_large {
char dummy_str[1009];
};
struct test_struct_huge {
char dummy_str[73939];
};
struct test_struct_512 {
char dummy_str[503];
};
};
static size_t kPageSize = sysconf(_SC_PAGE_SIZE);
TEST(bionic_allocator, test_alloc_0) {
BionicAllocator allocator;
void* ptr = allocator.alloc(0);
ASSERT_TRUE(ptr != nullptr);
allocator.free(ptr);
}
TEST(bionic_allocator, test_free_nullptr) {
BionicAllocator allocator;
allocator.free(nullptr);
}
TEST(bionic_allocator, test_realloc) {
BionicAllocator allocator;
uint32_t* array = reinterpret_cast<uint32_t*>(allocator.alloc(512));
const size_t array_size = 512 / sizeof(uint32_t);
uint32_t model[1000];
model[0] = 1;
model[1] = 1;
for (size_t i = 2; i < 1000; ++i) {
model[i] = model[i - 1] + model[i - 2];
}
memcpy(array, model, array_size);
uint32_t* reallocated_ptr = reinterpret_cast<uint32_t*>(allocator.realloc(array, 1024));
ASSERT_TRUE(reallocated_ptr != nullptr);
ASSERT_TRUE(reallocated_ptr != array);
ASSERT_TRUE(memcmp(reallocated_ptr, model, array_size) == 0);
array = reallocated_ptr;
memcpy(array, model, 2*array_size);
reallocated_ptr = reinterpret_cast<uint32_t*>(allocator.realloc(array, 62));
ASSERT_TRUE(reallocated_ptr == array);
reallocated_ptr = reinterpret_cast<uint32_t*>(allocator.realloc(array, 4000));
ASSERT_TRUE(reallocated_ptr != nullptr);
ASSERT_TRUE(reallocated_ptr != array);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(reallocated_ptr) % 16);
ASSERT_TRUE(memcmp(reallocated_ptr, model, array_size * 2) == 0);
array = reallocated_ptr;
memcpy(array, model, 4000);
reallocated_ptr = reinterpret_cast<uint32_t*>(allocator.realloc(array, 64000));
ASSERT_TRUE(reallocated_ptr != nullptr);
ASSERT_TRUE(reallocated_ptr != array);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(reallocated_ptr) % 16);
ASSERT_TRUE(memcmp(reallocated_ptr, model, 4000) == 0);
ASSERT_EQ(nullptr, allocator.realloc(reallocated_ptr, 0));
}
TEST(bionic_allocator, test_small_smoke) {
BionicAllocator allocator;
uint8_t zeros[16];
memset(zeros, 0, sizeof(zeros));
test_struct_small* ptr1 =
reinterpret_cast<test_struct_small*>(allocator.alloc(sizeof(test_struct_small)));
test_struct_small* ptr2 =
reinterpret_cast<test_struct_small*>(allocator.alloc(sizeof(test_struct_small)));
ASSERT_TRUE(ptr1 != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr1) % 16);
ASSERT_TRUE(ptr2 != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr2) % 16);
ASSERT_EQ(reinterpret_cast<uintptr_t>(ptr1)+16, reinterpret_cast<uintptr_t>(ptr2));
ASSERT_TRUE(memcmp(ptr1, zeros, 16) == 0);
allocator.free(ptr1);
allocator.free(ptr2);
}
TEST(bionic_allocator, test_huge_smoke) {
BionicAllocator allocator;
// this should trigger proxy-to-mmap
test_struct_huge* ptr1 =
reinterpret_cast<test_struct_huge*>(allocator.alloc(sizeof(test_struct_huge)));
test_struct_huge* ptr2 =
reinterpret_cast<test_struct_huge*>(allocator.alloc(sizeof(test_struct_huge)));
ASSERT_TRUE(ptr1 != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr1) % 16);
ASSERT_TRUE(ptr2 != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr2) % 16);
ASSERT_TRUE(
reinterpret_cast<uintptr_t>(ptr1)/kPageSize != reinterpret_cast<uintptr_t>(ptr2)/kPageSize);
allocator.free(ptr2);
allocator.free(ptr1);
}
TEST(bionic_allocator, test_large) {
BionicAllocator allocator;
test_struct_large* ptr1 =
reinterpret_cast<test_struct_large*>(allocator.alloc(sizeof(test_struct_large)));
test_struct_large* ptr2 =
reinterpret_cast<test_struct_large*>(allocator.alloc(1024));
ASSERT_TRUE(ptr1 != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr1) % 16);
ASSERT_TRUE(ptr2 != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr2) % 16);
ASSERT_EQ(reinterpret_cast<uintptr_t>(ptr1) + 1024, reinterpret_cast<uintptr_t>(ptr2));
// let's allocate until we reach the next page.
size_t n = kPageSize / sizeof(test_struct_large) + 1 - 2;
test_struct_large* objects[n];
for (size_t i = 0; i < n; ++i) {
test_struct_large* obj_ptr =
reinterpret_cast<test_struct_large*>(allocator.alloc(sizeof(test_struct_large)));
ASSERT_TRUE(obj_ptr != nullptr);
objects[i] = obj_ptr;
}
test_struct_large* ptr_to_free =
reinterpret_cast<test_struct_large*>(allocator.alloc(sizeof(test_struct_large)));
ASSERT_TRUE(ptr_to_free != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr_to_free) % 16);
allocator.free(ptr1);
for (size_t i=0; i<n; ++i) {
allocator.free(objects[i]);
}
allocator.free(ptr2);
allocator.free(ptr_to_free);
}
TEST(bionic_allocator, test_memalign_small) {
BionicAllocator allocator;
void* ptr;
// simple case
ptr = allocator.memalign(0x100, 0x100);
ASSERT_TRUE(ptr != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % 0x100);
allocator.free(ptr);
// small objects are automatically aligned to their size.
ptr = allocator.alloc(0x200);
ASSERT_TRUE(ptr != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % 0x200);
allocator.free(ptr);
// the size (0x10) is bumped up to the alignment (0x100)
ptr = allocator.memalign(0x100, 0x10);
ASSERT_TRUE(ptr != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % 0x100);
allocator.free(ptr);
}
TEST(bionic_allocator, test_memalign_large) {
BionicAllocator allocator;
void* ptr;
// a large object with alignment < PAGE_SIZE
ptr = allocator.memalign(0x100, 0x2000);
ASSERT_TRUE(ptr != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % 0x100);
allocator.free(ptr);
// a large object with alignment == PAGE_SIZE
ptr = allocator.memalign(0x1000, 0x2000);
ASSERT_TRUE(ptr != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % 0x1000);
allocator.free(ptr);
// A large object with alignment > PAGE_SIZE is only guaranteed to have page
// alignment.
ptr = allocator.memalign(0x2000, 0x4000);
ASSERT_TRUE(ptr != nullptr);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % 0x1000);
allocator.free(ptr);
}