/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <limits.h>
#include <math.h>
#include <pthread.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <limits>
#include <string>
#include <android-base/macros.h>
#include <gtest/gtest.h>
#include "BionicDeathTest.h"
#include "math_data_test.h"
#include "utils.h"
template <typename T = int (*)(char*)>
class GenericTemporaryFile {
public:
explicit GenericTemporaryFile(T mk_fn = mkstemp) : mk_fn_(mk_fn) {
// Since we might be running on the host or the target, and if we're
// running on the host we might be running under bionic or glibc,
// let's just try both possible temporary directories and take the
// first one that works.
init("/data/local/tmp");
if (fd == -1) {
init("/tmp");
}
}
~GenericTemporaryFile() {
close(fd);
unlink(path);
}
int fd;
char path[1024];
private:
T mk_fn_;
void init(const char* tmp_dir) {
snprintf(path, sizeof(path), "%s/TemporaryFile-XXXXXX", tmp_dir);
fd = mk_fn_(path);
}
DISALLOW_COPY_AND_ASSIGN(GenericTemporaryFile);
};
typedef GenericTemporaryFile<> MyTemporaryFile;
// The random number generator tests all set the seed, get four values, reset the seed and check
// that they get the first two values repeated, and then reset the seed and check two more values
// to rule out the possibility that we're just going round a cycle of four values.
// TODO: factor this out.
TEST(stdlib, drand48) {
srand48(0x01020304);
EXPECT_DOUBLE_EQ(0.65619299195623526, drand48());
EXPECT_DOUBLE_EQ(0.18522597229772941, drand48());
EXPECT_DOUBLE_EQ(0.42015087072844537, drand48());
EXPECT_DOUBLE_EQ(0.061637783047395089, drand48());
srand48(0x01020304);
EXPECT_DOUBLE_EQ(0.65619299195623526, drand48());
EXPECT_DOUBLE_EQ(0.18522597229772941, drand48());
srand48(0x01020304);
EXPECT_DOUBLE_EQ(0.65619299195623526, drand48());
EXPECT_DOUBLE_EQ(0.18522597229772941, drand48());
}
TEST(stdlib, erand48) {
const unsigned short seed[3] = { 0x330e, 0xabcd, 0x1234 };
unsigned short xsubi[3];
memcpy(xsubi, seed, sizeof(seed));
EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi));
EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi));
EXPECT_DOUBLE_EQ(0.35333609724524351, erand48(xsubi));
EXPECT_DOUBLE_EQ(0.44658343479654405, erand48(xsubi));
memcpy(xsubi, seed, sizeof(seed));
EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi));
EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi));
memcpy(xsubi, seed, sizeof(seed));
EXPECT_DOUBLE_EQ(0.39646477376027534, erand48(xsubi));
EXPECT_DOUBLE_EQ(0.84048536941142515, erand48(xsubi));
}
TEST(stdlib, lcong48) {
unsigned short p[7] = { 0x0102, 0x0304, 0x0506, 0x0708, 0x090a, 0x0b0c, 0x0d0e };
lcong48(p);
EXPECT_EQ(1531389981, lrand48());
EXPECT_EQ(1598801533, lrand48());
EXPECT_EQ(2080534853, lrand48());
EXPECT_EQ(1102488897, lrand48());
lcong48(p);
EXPECT_EQ(1531389981, lrand48());
EXPECT_EQ(1598801533, lrand48());
lcong48(p);
EXPECT_EQ(1531389981, lrand48());
EXPECT_EQ(1598801533, lrand48());
}
TEST(stdlib, lrand48) {
srand48(0x01020304);
EXPECT_EQ(1409163720, lrand48());
EXPECT_EQ(397769746, lrand48());
EXPECT_EQ(902267124, lrand48());
EXPECT_EQ(132366131, lrand48());
srand48(0x01020304);
EXPECT_EQ(1409163720, lrand48());
EXPECT_EQ(397769746, lrand48());
srand48(0x01020304);
EXPECT_EQ(1409163720, lrand48());
EXPECT_EQ(397769746, lrand48());
}
TEST(stdlib, random) {
srandom(0x01020304);
EXPECT_EQ(55436735, random());
EXPECT_EQ(1399865117, random());
EXPECT_EQ(2032643283, random());
EXPECT_EQ(571329216, random());
srandom(0x01020304);
EXPECT_EQ(55436735, random());
EXPECT_EQ(1399865117, random());
srandom(0x01020304);
EXPECT_EQ(55436735, random());
EXPECT_EQ(1399865117, random());
}
TEST(stdlib, rand) {
srand(0x01020304);
EXPECT_EQ(55436735, rand());
EXPECT_EQ(1399865117, rand());
EXPECT_EQ(2032643283, rand());
EXPECT_EQ(571329216, rand());
srand(0x01020304);
EXPECT_EQ(55436735, rand());
EXPECT_EQ(1399865117, rand());
srand(0x01020304);
EXPECT_EQ(55436735, rand());
EXPECT_EQ(1399865117, rand());
}
TEST(stdlib, mrand48) {
srand48(0x01020304);
EXPECT_EQ(-1476639856, mrand48());
EXPECT_EQ(795539493, mrand48());
EXPECT_EQ(1804534249, mrand48());
EXPECT_EQ(264732262, mrand48());
srand48(0x01020304);
EXPECT_EQ(-1476639856, mrand48());
EXPECT_EQ(795539493, mrand48());
srand48(0x01020304);
EXPECT_EQ(-1476639856, mrand48());
EXPECT_EQ(795539493, mrand48());
}
TEST(stdlib, jrand48_distribution) {
const int iterations = 4096;
const int pivot_low = 1536;
const int pivot_high = 2560;
unsigned short xsubi[3];
int bits[32] = {};
for (int iter = 0; iter < iterations; ++iter) {
long rand_val = jrand48(xsubi);
for (int bit = 0; bit < 32; ++bit) {
bits[bit] += (static_cast<unsigned long>(rand_val) >> bit) & 0x01;
}
}
// Check that bit probability is uniform
for (int bit = 0; bit < 32; ++bit) {
EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high));
}
}
TEST(stdlib, mrand48_distribution) {
const int iterations = 4096;
const int pivot_low = 1536;
const int pivot_high = 2560;
int bits[32] = {};
for (int iter = 0; iter < iterations; ++iter) {
long rand_val = mrand48();
for (int bit = 0; bit < 32; ++bit) {
bits[bit] += (static_cast<unsigned long>(rand_val) >> bit) & 0x01;
}
}
// Check that bit probability is uniform
for (int bit = 0; bit < 32; ++bit) {
EXPECT_TRUE((pivot_low <= bits[bit]) && (bits[bit] <= pivot_high));
}
}
TEST(stdlib, posix_memalign_sweep) {
SKIP_WITH_HWASAN;
void* ptr;
// These should all fail.
for (size_t align = 0; align < sizeof(long); align++) {
ASSERT_EQ(EINVAL, posix_memalign(&ptr, align, 256))
<< "Unexpected value at align " << align;
}
// Verify powers of 2 up to 2048 allocate, and verify that all other
// alignment values between the powers of 2 fail.
size_t last_align = sizeof(long);
for (size_t align = sizeof(long); align <= 2048; align <<= 1) {
// Try all of the non power of 2 values from the last until this value.
for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) {
ASSERT_EQ(EINVAL, posix_memalign(&ptr, fail_align, 256))
<< "Unexpected success at align " << fail_align;
}
ASSERT_EQ(0, posix_memalign(&ptr, align, 256))
<< "Unexpected failure at align " << align;
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & (align - 1))
<< "Did not return a valid aligned ptr " << ptr << " expected alignment " << align;
free(ptr);
last_align = align;
}
}
TEST(stdlib, posix_memalign_various_sizes) {
std::vector<size_t> sizes{1, 4, 8, 256, 1024, 65000, 128000, 256000, 1000000};
for (auto size : sizes) {
void* ptr;
ASSERT_EQ(0, posix_memalign(&ptr, 16, 1))
<< "posix_memalign failed at size " << size;
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & 0xf)
<< "Pointer not aligned at size " << size << " ptr " << ptr;
free(ptr);
}
}
TEST(stdlib, posix_memalign_overflow) {
SKIP_WITH_HWASAN;
void* ptr;
ASSERT_NE(0, posix_memalign(&ptr, 16, SIZE_MAX));
}
TEST(stdlib, aligned_alloc_sweep) {
SKIP_WITH_HWASAN;
// Verify powers of 2 up to 2048 allocate, and verify that all other
// alignment values between the powers of 2 fail.
size_t last_align = 1;
for (size_t align = 1; align <= 2048; align <<= 1) {
// Try all of the non power of 2 values from the last until this value.
for (size_t fail_align = last_align + 1; fail_align < align; fail_align++) {
ASSERT_TRUE(aligned_alloc(fail_align, fail_align) == nullptr)
<< "Unexpected success at align " << fail_align;
ASSERT_EQ(EINVAL, errno) << "Unexpected errno at align " << fail_align;
}
void* ptr = aligned_alloc(align, 2 * align);
ASSERT_TRUE(ptr != nullptr) << "Unexpected failure at align " << align;
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) & (align - 1))
<< "Did not return a valid aligned ptr " << ptr << " expected alignment " << align;
free(ptr);
last_align = align;
}
}
TEST(stdlib, aligned_alloc_overflow) {
SKIP_WITH_HWASAN;
ASSERT_TRUE(aligned_alloc(16, SIZE_MAX) == nullptr);
}
TEST(stdlib, aligned_alloc_size_not_multiple_of_alignment) {
SKIP_WITH_HWASAN;
ASSERT_TRUE(aligned_alloc(2048, 1) == nullptr);
ASSERT_TRUE(aligned_alloc(4, 3) == nullptr);
ASSERT_TRUE(aligned_alloc(4, 7) == nullptr);
ASSERT_TRUE(aligned_alloc(16, 8) == nullptr);
}
TEST(stdlib, realpath__NULL_filename) {
errno = 0;
// Work around the compile-time error generated by FORTIFY here.
const char* path = nullptr;
char* p = realpath(path, nullptr);
ASSERT_TRUE(p == nullptr);
ASSERT_EQ(EINVAL, errno);
}
TEST(stdlib, realpath__empty_filename) {
errno = 0;
char* p = realpath("", nullptr);
ASSERT_TRUE(p == nullptr);
ASSERT_EQ(ENOENT, errno);
}
TEST(stdlib, realpath__ENOENT) {
errno = 0;
char* p = realpath("/this/directory/path/almost/certainly/does/not/exist", nullptr);
ASSERT_TRUE(p == nullptr);
ASSERT_EQ(ENOENT, errno);
}
TEST(stdlib, realpath__component_after_non_directory) {
errno = 0;
char* p = realpath("/dev/null/.", nullptr);
ASSERT_TRUE(p == nullptr);
ASSERT_EQ(ENOTDIR, errno);
errno = 0;
p = realpath("/dev/null/..", nullptr);
ASSERT_TRUE(p == nullptr);
ASSERT_EQ(ENOTDIR, errno);
}
TEST(stdlib, realpath) {
// Get the name of this executable.
char executable_path[PATH_MAX];
int rc = readlink("/proc/self/exe", executable_path, sizeof(executable_path));
ASSERT_NE(rc, -1);
executable_path[rc] = '\0';
char buf[PATH_MAX + 1];
char* p = realpath("/proc/self/exe", buf);
ASSERT_STREQ(executable_path, p);
p = realpath("/proc/self/exe", nullptr);
ASSERT_STREQ(executable_path, p);
free(p);
}
TEST(stdlib, qsort) {
struct s {
char name[16];
static int comparator(const void* lhs, const void* rhs) {
return strcmp(reinterpret_cast<const s*>(lhs)->name, reinterpret_cast<const s*>(rhs)->name);
}
};
s entries[3];
strcpy(entries[0].name, "charlie");
strcpy(entries[1].name, "bravo");
strcpy(entries[2].name, "alpha");
qsort(entries, 3, sizeof(s), s::comparator);
ASSERT_STREQ("alpha", entries[0].name);
ASSERT_STREQ("bravo", entries[1].name);
ASSERT_STREQ("charlie", entries[2].name);
qsort(entries, 3, sizeof(s), s::comparator);
ASSERT_STREQ("alpha", entries[0].name);
ASSERT_STREQ("bravo", entries[1].name);
ASSERT_STREQ("charlie", entries[2].name);
}
static void* TestBug57421_child(void* arg) {
pthread_t main_thread = reinterpret_cast<pthread_t>(arg);
pthread_join(main_thread, nullptr);
char* value = getenv("ENVIRONMENT_VARIABLE");
if (value == nullptr) {
setenv("ENVIRONMENT_VARIABLE", "value", 1);
}
return nullptr;
}
static void TestBug57421_main() {
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug57421_child, reinterpret_cast<void*>(pthread_self())));
pthread_exit(nullptr);
}
// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
// run this test (which exits normally) in its own process.
class stdlib_DeathTest : public BionicDeathTest {};
TEST_F(stdlib_DeathTest, getenv_after_main_thread_exits) {
// https://code.google.com/p/android/issues/detail?id=57421
ASSERT_EXIT(TestBug57421_main(), ::testing::ExitedWithCode(0), "");
}
TEST(stdlib, mkostemp64) {
MyTemporaryFile tf([](char* path) { return mkostemp64(path, O_CLOEXEC); });
AssertCloseOnExec(tf.fd, true);
}
TEST(stdlib, mkostemp) {
MyTemporaryFile tf([](char* path) { return mkostemp(path, O_CLOEXEC); });
AssertCloseOnExec(tf.fd, true);
}
TEST(stdlib, mkstemp64) {
MyTemporaryFile tf(mkstemp64);
struct stat64 sb;
ASSERT_EQ(0, fstat64(tf.fd, &sb));
ASSERT_EQ(O_LARGEFILE, fcntl(tf.fd, F_GETFL) & O_LARGEFILE);
}
TEST(stdlib, mkstemp) {
MyTemporaryFile tf(mkstemp);
struct stat sb;
ASSERT_EQ(0, fstat(tf.fd, &sb));
}
TEST(stdlib, system) {
int status;
status = system("exit 0");
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(0, WEXITSTATUS(status));
status = system("exit 1");
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(1, WEXITSTATUS(status));
}
TEST(stdlib, atof) {
ASSERT_DOUBLE_EQ(1.23, atof("1.23"));
}
template <typename T>
static void CheckStrToFloat(T fn(const char* s, char** end)) {
FpUlpEq<0, T> pred;
EXPECT_PRED_FORMAT2(pred, 9.0, fn("9.0", nullptr));
EXPECT_PRED_FORMAT2(pred, 9.0, fn("0.9e1", nullptr));
EXPECT_PRED_FORMAT2(pred, 9.0, fn("0x1.2p3", nullptr));
const char* s = " \t\v\f\r\n9.0";
char* p;
EXPECT_PRED_FORMAT2(pred, 9.0, fn(s, &p));
EXPECT_EQ(s + strlen(s), p);
EXPECT_TRUE(isnan(fn("+nan", nullptr)));
EXPECT_TRUE(isnan(fn("nan", nullptr)));
EXPECT_TRUE(isnan(fn("-nan", nullptr)));
EXPECT_TRUE(isnan(fn("+nan(0xff)", nullptr)));
EXPECT_TRUE(isnan(fn("nan(0xff)", nullptr)));
EXPECT_TRUE(isnan(fn("-nan(0xff)", nullptr)));
EXPECT_TRUE(isnan(fn("+nanny", &p)));
EXPECT_STREQ("ny", p);
EXPECT_TRUE(isnan(fn("nanny", &p)));
EXPECT_STREQ("ny", p);
EXPECT_TRUE(isnan(fn("-nanny", &p)));
EXPECT_STREQ("ny", p);
EXPECT_EQ(0, fn("muppet", &p));
EXPECT_STREQ("muppet", p);
EXPECT_EQ(0, fn(" muppet", &p));
EXPECT_STREQ(" muppet", p);
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+inf", nullptr));
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("inf", nullptr));
EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-inf", nullptr));
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+infinity", nullptr));
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("infinity", nullptr));
EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-infinity", nullptr));
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("+infinitude", &p));
EXPECT_STREQ("initude", p);
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("infinitude", &p));
EXPECT_STREQ("initude", p);
EXPECT_EQ(-std::numeric_limits<T>::infinity(), fn("-infinitude", &p));
EXPECT_STREQ("initude", p);
// Check case-insensitivity.
EXPECT_EQ(std::numeric_limits<T>::infinity(), fn("InFiNiTy", nullptr));
EXPECT_TRUE(isnan(fn("NaN", nullptr)));
}
TEST(stdlib, strtod) {
CheckStrToFloat(strtod);
}
TEST(stdlib, strtof) {
CheckStrToFloat(strtof);
}
TEST(stdlib, strtold) {
CheckStrToFloat(strtold);
}
TEST(stdlib, strtof_2206701) {
ASSERT_EQ(0.0f, strtof("7.0064923216240853546186479164495e-46", nullptr));
ASSERT_EQ(1.4e-45f, strtof("7.0064923216240853546186479164496e-46", nullptr));
}
TEST(stdlib, strtod_largest_subnormal) {
// This value has been known to cause javac and java to infinite loop.
// http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-308", nullptr));
ASSERT_EQ(2.2250738585072014e-308, strtod("0.00022250738585072012e-304", nullptr));
ASSERT_EQ(2.2250738585072014e-308, strtod("00000002.2250738585072012e-308", nullptr));
ASSERT_EQ(2.2250738585072014e-308, strtod("2.225073858507201200000e-308", nullptr));
ASSERT_EQ(2.2250738585072014e-308, strtod("2.2250738585072012e-00308", nullptr));
ASSERT_EQ(2.2250738585072014e-308, strtod("2.22507385850720129978001e-308", nullptr));
ASSERT_EQ(-2.2250738585072014e-308, strtod("-2.2250738585072012e-308", nullptr));
}
TEST(stdlib, quick_exit) {
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
quick_exit(99);
}
AssertChildExited(pid, 99);
}
static int quick_exit_status = 0;
static void quick_exit_1(void) {
ASSERT_EQ(quick_exit_status, 0);
quick_exit_status = 1;
}
static void quick_exit_2(void) {
ASSERT_EQ(quick_exit_status, 1);
}
static void not_run(void) {
FAIL();
}
TEST(stdlib, at_quick_exit) {
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
ASSERT_EQ(at_quick_exit(quick_exit_2), 0);
ASSERT_EQ(at_quick_exit(quick_exit_1), 0);
atexit(not_run);
quick_exit(99);
}
AssertChildExited(pid, 99);
}
TEST(unistd, _Exit) {
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
_Exit(99);
}
AssertChildExited(pid, 99);
}
TEST(stdlib, pty_smoke) {
// getpt returns a pty with O_RDWR|O_NOCTTY.
int fd = getpt();
ASSERT_NE(-1, fd);
// grantpt is a no-op.
ASSERT_EQ(0, grantpt(fd));
// ptsname_r should start "/dev/pts/".
char name_r[128];
ASSERT_EQ(0, ptsname_r(fd, name_r, sizeof(name_r)));
name_r[9] = 0;
ASSERT_STREQ("/dev/pts/", name_r);
close(fd);
}
TEST(stdlib, posix_openpt) {
int fd = posix_openpt(O_RDWR|O_NOCTTY|O_CLOEXEC);
ASSERT_NE(-1, fd);
close(fd);
}
TEST(stdlib, ptsname_r_ENOTTY) {
errno = 0;
char buf[128];
ASSERT_EQ(ENOTTY, ptsname_r(STDOUT_FILENO, buf, sizeof(buf)));
ASSERT_EQ(ENOTTY, errno);
}
TEST(stdlib, ptsname_r_EINVAL) {
int fd = getpt();
ASSERT_NE(-1, fd);
errno = 0;
char* buf = nullptr;
ASSERT_EQ(EINVAL, ptsname_r(fd, buf, 128));
ASSERT_EQ(EINVAL, errno);
close(fd);
}
TEST(stdlib, ptsname_r_ERANGE) {
int fd = getpt();
ASSERT_NE(-1, fd);
errno = 0;
char buf[1];
ASSERT_EQ(ERANGE, ptsname_r(fd, buf, sizeof(buf)));
ASSERT_EQ(ERANGE, errno);
close(fd);
}
TEST(stdlib, ttyname) {
int fd = getpt();
ASSERT_NE(-1, fd);
// ttyname returns "/dev/ptmx" for a pty.
ASSERT_STREQ("/dev/ptmx", ttyname(fd));
close(fd);
}
TEST(stdlib, ttyname_r) {
int fd = getpt();
ASSERT_NE(-1, fd);
// ttyname_r returns "/dev/ptmx" for a pty.
char name_r[128];
ASSERT_EQ(0, ttyname_r(fd, name_r, sizeof(name_r)));
ASSERT_STREQ("/dev/ptmx", name_r);
close(fd);
}
TEST(stdlib, ttyname_r_ENOTTY) {
int fd = open("/dev/null", O_WRONLY);
errno = 0;
char buf[128];
ASSERT_EQ(ENOTTY, ttyname_r(fd, buf, sizeof(buf)));
ASSERT_EQ(ENOTTY, errno);
close(fd);
}
TEST(stdlib, ttyname_r_EINVAL) {
int fd = getpt();
ASSERT_NE(-1, fd);
errno = 0;
char* buf = nullptr;
ASSERT_EQ(EINVAL, ttyname_r(fd, buf, 128));
ASSERT_EQ(EINVAL, errno);
close(fd);
}
TEST(stdlib, ttyname_r_ERANGE) {
int fd = getpt();
ASSERT_NE(-1, fd);
errno = 0;
char buf[1];
ASSERT_EQ(ERANGE, ttyname_r(fd, buf, sizeof(buf)));
ASSERT_EQ(ERANGE, errno);
close(fd);
}
TEST(stdlib, unlockpt_ENOTTY) {
int fd = open("/dev/null", O_WRONLY);
errno = 0;
ASSERT_EQ(-1, unlockpt(fd));
ASSERT_EQ(ENOTTY, errno);
close(fd);
}
TEST(stdlib, getsubopt) {
char* const tokens[] = {
const_cast<char*>("a"),
const_cast<char*>("b"),
const_cast<char*>("foo"),
nullptr
};
std::string input = "a,b,foo=bar,a,unknown";
char* subopts = &input[0];
char* value = nullptr;
ASSERT_EQ(0, getsubopt(&subopts, tokens, &value));
ASSERT_EQ(nullptr, value);
ASSERT_EQ(1, getsubopt(&subopts, tokens, &value));
ASSERT_EQ(nullptr, value);
ASSERT_EQ(2, getsubopt(&subopts, tokens, &value));
ASSERT_STREQ("bar", value);
ASSERT_EQ(0, getsubopt(&subopts, tokens, &value));
ASSERT_EQ(nullptr, value);
ASSERT_EQ(-1, getsubopt(&subopts, tokens, &value));
}
TEST(stdlib, mblen) {
// "If s is a null pointer, mblen() shall return a non-zero or 0 value, if character encodings,
// respectively, do or do not have state-dependent encodings." We're always UTF-8.
EXPECT_EQ(0, mblen(nullptr, 1));
ASSERT_STREQ("C.UTF-8", setlocale(LC_ALL, "C.UTF-8"));
// 1-byte UTF-8.
EXPECT_EQ(1, mblen("abcdef", 6));
// 2-byte UTF-8.
EXPECT_EQ(2, mblen("\xc2\xa2" "cdef", 6));
// 3-byte UTF-8.
EXPECT_EQ(3, mblen("\xe2\x82\xac" "def", 6));
// 4-byte UTF-8.
EXPECT_EQ(4, mblen("\xf0\xa4\xad\xa2" "ef", 6));
// Illegal over-long sequence.
ASSERT_EQ(-1, mblen("\xf0\x82\x82\xac" "ef", 6));
// "mblen() shall ... return 0 (if s points to the null byte)".
EXPECT_EQ(0, mblen("", 1));
}
template <typename T>
static void CheckStrToInt(T fn(const char* s, char** end, int base)) {
char* end_p;
// Negative base => invalid.
errno = 0;
ASSERT_EQ(T(0), fn("123", &end_p, -1));
ASSERT_EQ(EINVAL, errno);
// Base 1 => invalid (base 0 means "please guess").
errno = 0;
ASSERT_EQ(T(0), fn("123", &end_p, 1));
ASSERT_EQ(EINVAL, errno);
// Base > 36 => invalid.
errno = 0;
ASSERT_EQ(T(0), fn("123", &end_p, 37));
ASSERT_EQ(EINVAL, errno);
// If we see "0x" *not* followed by a hex digit, we shouldn't swallow the 'x'.
ASSERT_EQ(T(0), fn("0xy", &end_p, 16));
ASSERT_EQ('x', *end_p);
if (std::numeric_limits<T>::is_signed) {
// Minimum (such as -128).
std::string min{std::to_string(std::numeric_limits<T>::min())};
end_p = nullptr;
errno = 0;
ASSERT_EQ(std::numeric_limits<T>::min(), fn(min.c_str(), &end_p, 0));
ASSERT_EQ(0, errno);
ASSERT_EQ('\0', *end_p);
// Too negative (such as -129).
min.back() = (min.back() + 1);
end_p = nullptr;
errno = 0;
ASSERT_EQ(std::numeric_limits<T>::min(), fn(min.c_str(), &end_p, 0));
ASSERT_EQ(ERANGE, errno);
ASSERT_EQ('\0', *end_p);
}
// Maximum (such as 127).
std::string max{std::to_string(std::numeric_limits<T>::max())};
end_p = nullptr;
errno = 0;
ASSERT_EQ(std::numeric_limits<T>::max(), fn(max.c_str(), &end_p, 0));
ASSERT_EQ(0, errno);
ASSERT_EQ('\0', *end_p);
// Too positive (such as 128).
max.back() = (max.back() + 1);
end_p = nullptr;
errno = 0;
ASSERT_EQ(std::numeric_limits<T>::max(), fn(max.c_str(), &end_p, 0));
ASSERT_EQ(ERANGE, errno);
ASSERT_EQ('\0', *end_p);
// In case of overflow, strto* leaves us pointing past the end of the number,
// not at the digit that overflowed.
end_p = nullptr;
errno = 0;
ASSERT_EQ(std::numeric_limits<T>::max(),
fn("99999999999999999999999999999999999999999999999999999abc", &end_p, 0));
ASSERT_EQ(ERANGE, errno);
ASSERT_STREQ("abc", end_p);
if (std::numeric_limits<T>::is_signed) {
end_p = nullptr;
errno = 0;
ASSERT_EQ(std::numeric_limits<T>::min(),
fn("-99999999999999999999999999999999999999999999999999999abc", &end_p, 0));
ASSERT_EQ(ERANGE, errno);
ASSERT_STREQ("abc", end_p);
}
}
TEST(stdlib, strtol_smoke) {
CheckStrToInt(strtol);
}
TEST(stdlib, strtoll_smoke) {
CheckStrToInt(strtoll);
}
TEST(stdlib, strtoul_smoke) {
CheckStrToInt(strtoul);
}
TEST(stdlib, strtoull_smoke) {
CheckStrToInt(strtoull);
}
TEST(stdlib, strtoimax_smoke) {
CheckStrToInt(strtoimax);
}
TEST(stdlib, strtoumax_smoke) {
CheckStrToInt(strtoumax);
}
TEST(stdlib, abs) {
ASSERT_EQ(INT_MAX, abs(-INT_MAX));
ASSERT_EQ(INT_MAX, abs(INT_MAX));
}
TEST(stdlib, labs) {
ASSERT_EQ(LONG_MAX, labs(-LONG_MAX));
ASSERT_EQ(LONG_MAX, labs(LONG_MAX));
}
TEST(stdlib, llabs) {
ASSERT_EQ(LLONG_MAX, llabs(-LLONG_MAX));
ASSERT_EQ(LLONG_MAX, llabs(LLONG_MAX));
}
TEST(stdlib, getloadavg) {
double load[3];
// The second argument should have been size_t.
ASSERT_EQ(-1, getloadavg(load, -1));
ASSERT_EQ(-1, getloadavg(load, INT_MIN));
// Zero is a no-op.
ASSERT_EQ(0, getloadavg(load, 0));
// The Linux kernel doesn't support more than 3 (but you can ask for fewer).
ASSERT_EQ(1, getloadavg(load, 1));
ASSERT_EQ(2, getloadavg(load, 2));
ASSERT_EQ(3, getloadavg(load, 3));
ASSERT_EQ(3, getloadavg(load, 4));
ASSERT_EQ(3, getloadavg(load, INT_MAX));
// Read /proc/loadavg and check that it's "close enough".
double expected[3];
std::unique_ptr<FILE, decltype(&fclose)> fp{fopen("/proc/loadavg", "re"), fclose};
ASSERT_EQ(3, fscanf(fp.get(), "%lf %lf %lf", &expected[0], &expected[1], &expected[2]));
load[0] = load[1] = load[2] = nan("");
ASSERT_EQ(3, getloadavg(load, 3));
// Check that getloadavg(3) at least overwrote the NaNs.
ASSERT_FALSE(isnan(load[0]));
ASSERT_FALSE(isnan(load[1]));
ASSERT_FALSE(isnan(load[2]));
// And that the difference between /proc/loadavg and getloadavg(3) is "small".
ASSERT_TRUE(fabs(expected[0] - load[0]) < 0.5) << expected[0] << ' ' << load[0];
ASSERT_TRUE(fabs(expected[1] - load[1]) < 0.5) << expected[1] << ' ' << load[1];
ASSERT_TRUE(fabs(expected[2] - load[2]) < 0.5) << expected[2] << ' ' << load[2];
}