/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include "BionicDeathTest.h"
#include "SignalUtils.h"
#include "utils.h"
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <limits.h>
#include <stdint.h>
#include <sys/capability.h>
#include <sys/param.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>
#include <android-base/file.h>
#include <android-base/strings.h>
#include "private/get_cpu_count_from_string.h"
#if defined(NOFORTIFY)
#define UNISTD_TEST unistd_nofortify
#define UNISTD_DEATHTEST unistd_nofortify_DeathTest
#else
#define UNISTD_TEST unistd
#define UNISTD_DEATHTEST unistd_DeathTest
#endif
static void* get_brk() {
return sbrk(0);
}
static void* page_align(uintptr_t addr) {
uintptr_t mask = sysconf(_SC_PAGE_SIZE) - 1;
return reinterpret_cast<void*>((addr + mask) & ~mask);
}
TEST(UNISTD_TEST, brk) {
void* initial_break = get_brk();
void* new_break = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(initial_break) + 1);
int ret = brk(new_break);
if (ret == -1) {
ASSERT_EQ(errno, ENOMEM);
} else {
ASSERT_EQ(0, ret);
ASSERT_GE(get_brk(), new_break);
}
// Expand by a full page to force the mapping to expand
new_break = page_align(reinterpret_cast<uintptr_t>(initial_break) + sysconf(_SC_PAGE_SIZE));
ret = brk(new_break);
if (ret == -1) {
ASSERT_EQ(errno, ENOMEM);
} else {
ASSERT_EQ(0, ret);
ASSERT_EQ(get_brk(), new_break);
}
}
TEST(UNISTD_TEST, brk_ENOMEM) {
ASSERT_EQ(-1, brk(reinterpret_cast<void*>(-1)));
ASSERT_EQ(ENOMEM, errno);
}
#if defined(__GLIBC__)
#define SBRK_MIN INTPTR_MIN
#define SBRK_MAX INTPTR_MAX
#else
#define SBRK_MIN PTRDIFF_MIN
#define SBRK_MAX PTRDIFF_MAX
#endif
TEST(UNISTD_TEST, sbrk_ENOMEM) {
#if defined(__BIONIC__) && !defined(__LP64__)
// There is no way to guarantee that all overflow conditions can be tested
// without manipulating the underlying values of the current break.
extern void* __bionic_brk;
class ScopedBrk {
public:
ScopedBrk() : saved_brk_(__bionic_brk) {}
virtual ~ScopedBrk() { __bionic_brk = saved_brk_; }
private:
void* saved_brk_;
};
ScopedBrk scope_brk;
// Set the current break to a point that will cause an overflow.
__bionic_brk = reinterpret_cast<void*>(static_cast<uintptr_t>(PTRDIFF_MAX) + 2);
// Can't increase by so much that we'd overflow.
ASSERT_EQ(reinterpret_cast<void*>(-1), sbrk(PTRDIFF_MAX));
ASSERT_EQ(ENOMEM, errno);
// Set the current break to a point that will cause an overflow.
__bionic_brk = reinterpret_cast<void*>(static_cast<uintptr_t>(PTRDIFF_MAX));
ASSERT_EQ(reinterpret_cast<void*>(-1), sbrk(PTRDIFF_MIN));
ASSERT_EQ(ENOMEM, errno);
__bionic_brk = reinterpret_cast<void*>(static_cast<uintptr_t>(PTRDIFF_MAX) - 1);
ASSERT_EQ(reinterpret_cast<void*>(-1), sbrk(PTRDIFF_MIN + 1));
ASSERT_EQ(ENOMEM, errno);
#else
class ScopedBrk {
public:
ScopedBrk() : saved_brk_(get_brk()) {}
virtual ~ScopedBrk() { brk(saved_brk_); }
private:
void* saved_brk_;
};
ScopedBrk scope_brk;
uintptr_t cur_brk = reinterpret_cast<uintptr_t>(get_brk());
if (cur_brk < static_cast<uintptr_t>(-(SBRK_MIN+1))) {
// Do the overflow test for a max negative increment.
ASSERT_EQ(reinterpret_cast<void*>(-1), sbrk(SBRK_MIN));
#if defined(__BIONIC__)
// GLIBC does not set errno in overflow case.
ASSERT_EQ(ENOMEM, errno);
#endif
}
uintptr_t overflow_brk = static_cast<uintptr_t>(SBRK_MAX) + 2;
if (cur_brk < overflow_brk) {
// Try and move the value to PTRDIFF_MAX + 2.
cur_brk = reinterpret_cast<uintptr_t>(sbrk(overflow_brk));
}
if (cur_brk >= overflow_brk) {
ASSERT_EQ(reinterpret_cast<void*>(-1), sbrk(SBRK_MAX));
#if defined(__BIONIC__)
// GLIBC does not set errno in overflow case.
ASSERT_EQ(ENOMEM, errno);
#endif
}
#endif
}
TEST(UNISTD_TEST, truncate) {
TemporaryFile tf;
ASSERT_EQ(0, close(tf.fd));
ASSERT_EQ(0, truncate(tf.path, 123));
struct stat sb;
ASSERT_EQ(0, stat(tf.path, &sb));
ASSERT_EQ(123, sb.st_size);
}
TEST(UNISTD_TEST, truncate64) {
TemporaryFile tf;
ASSERT_EQ(0, close(tf.fd));
ASSERT_EQ(0, truncate64(tf.path, 123));
struct stat sb;
ASSERT_EQ(0, stat(tf.path, &sb));
ASSERT_EQ(123, sb.st_size);
}
TEST(UNISTD_TEST, ftruncate) {
TemporaryFile tf;
ASSERT_EQ(0, ftruncate(tf.fd, 123));
ASSERT_EQ(0, close(tf.fd));
struct stat sb;
ASSERT_EQ(0, stat(tf.path, &sb));
ASSERT_EQ(123, sb.st_size);
}
TEST(UNISTD_TEST, ftruncate64) {
TemporaryFile tf;
ASSERT_EQ(0, ftruncate64(tf.fd, 123));
ASSERT_EQ(0, close(tf.fd));
struct stat sb;
ASSERT_EQ(0, stat(tf.path, &sb));
ASSERT_EQ(123, sb.st_size);
}
TEST(UNISTD_TEST, ftruncate_negative) {
TemporaryFile tf;
errno = 0;
ASSERT_EQ(-1, ftruncate(tf.fd, -123));
ASSERT_EQ(EINVAL, errno);
}
static bool g_pause_test_flag = false;
static void PauseTestSignalHandler(int) {
g_pause_test_flag = true;
}
TEST(UNISTD_TEST, pause) {
ScopedSignalHandler handler(SIGALRM, PauseTestSignalHandler);
alarm(1);
ASSERT_FALSE(g_pause_test_flag);
ASSERT_EQ(-1, pause());
ASSERT_TRUE(g_pause_test_flag);
}
TEST(UNISTD_TEST, read) {
int fd = open("/proc/version", O_RDONLY);
ASSERT_TRUE(fd != -1);
char buf[5];
ASSERT_EQ(5, read(fd, buf, 5));
ASSERT_EQ(buf[0], 'L');
ASSERT_EQ(buf[1], 'i');
ASSERT_EQ(buf[2], 'n');
ASSERT_EQ(buf[3], 'u');
ASSERT_EQ(buf[4], 'x');
close(fd);
}
TEST(UNISTD_TEST, read_EBADF) {
// read returns ssize_t which is 64-bits on LP64, so it's worth explicitly checking that
// our syscall stubs correctly return a 64-bit -1.
char buf[1];
ASSERT_EQ(-1, read(-1, buf, sizeof(buf)));
ASSERT_EQ(EBADF, errno);
}
TEST(UNISTD_TEST, syscall_long) {
// Check that syscall(3) correctly returns long results.
// https://code.google.com/p/android/issues/detail?id=73952
// We assume that the break is > 4GiB, but this is potentially flaky.
uintptr_t p = reinterpret_cast<uintptr_t>(sbrk(0));
ASSERT_EQ(p, static_cast<uintptr_t>(syscall(__NR_brk, 0)));
}
TEST(UNISTD_TEST, alarm) {
ASSERT_EQ(0U, alarm(0));
}
TEST(UNISTD_TEST, _exit) {
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
_exit(99);
}
AssertChildExited(pid, 99);
}
TEST(UNISTD_TEST, getenv_unsetenv) {
ASSERT_EQ(0, setenv("test-variable", "hello", 1));
ASSERT_STREQ("hello", getenv("test-variable"));
ASSERT_EQ(0, unsetenv("test-variable"));
ASSERT_TRUE(getenv("test-variable") == nullptr);
}
TEST(UNISTD_TEST, unsetenv_EINVAL) {
EXPECT_EQ(-1, unsetenv(""));
EXPECT_EQ(EINVAL, errno);
EXPECT_EQ(-1, unsetenv("a=b"));
EXPECT_EQ(EINVAL, errno);
}
TEST(UNISTD_TEST, setenv_EINVAL) {
EXPECT_EQ(-1, setenv(nullptr, "value", 0));
EXPECT_EQ(EINVAL, errno);
EXPECT_EQ(-1, setenv(nullptr, "value", 1));
EXPECT_EQ(EINVAL, errno);
EXPECT_EQ(-1, setenv("", "value", 0));
EXPECT_EQ(EINVAL, errno);
EXPECT_EQ(-1, setenv("", "value", 1));
EXPECT_EQ(EINVAL, errno);
EXPECT_EQ(-1, setenv("a=b", "value", 0));
EXPECT_EQ(EINVAL, errno);
EXPECT_EQ(-1, setenv("a=b", "value", 1));
EXPECT_EQ(EINVAL, errno);
}
TEST(UNISTD_TEST, setenv) {
ASSERT_EQ(0, unsetenv("test-variable"));
char a[] = "a";
char b[] = "b";
char c[] = "c";
// New value.
EXPECT_EQ(0, setenv("test-variable", a, 0));
EXPECT_STREQ(a, getenv("test-variable"));
// Existing value, no overwrite.
EXPECT_EQ(0, setenv("test-variable", b, 0));
EXPECT_STREQ(a, getenv("test-variable"));
// Existing value, overwrite.
EXPECT_EQ(0, setenv("test-variable", c, 1));
EXPECT_STREQ(c, getenv("test-variable"));
// But the arrays backing the values are unchanged.
EXPECT_EQ('a', a[0]);
EXPECT_EQ('b', b[0]);
EXPECT_EQ('c', c[0]);
ASSERT_EQ(0, unsetenv("test-variable"));
}
TEST(UNISTD_TEST, putenv) {
ASSERT_EQ(0, unsetenv("a"));
char* s1 = strdup("a=b");
ASSERT_EQ(0, putenv(s1));
ASSERT_STREQ("b", getenv("a"));
s1[2] = 'c';
ASSERT_STREQ("c", getenv("a"));
char* s2 = strdup("a=b");
ASSERT_EQ(0, putenv(s2));
ASSERT_STREQ("b", getenv("a"));
ASSERT_EQ('c', s1[2]);
ASSERT_EQ(0, unsetenv("a"));
free(s1);
free(s2);
}
TEST(UNISTD_TEST, clearenv) {
extern char** environ;
// Guarantee that environ is not initially empty...
ASSERT_EQ(0, setenv("test-variable", "a", 1));
// Stash a copy.
std::vector<char*> old_environ;
for (size_t i = 0; environ[i] != nullptr; ++i) {
old_environ.push_back(strdup(environ[i]));
}
ASSERT_EQ(0, clearenv());
EXPECT_TRUE(environ == nullptr || environ[0] == nullptr);
EXPECT_EQ(nullptr, getenv("test-variable"));
EXPECT_EQ(0, setenv("test-variable", "post-clear", 1));
EXPECT_STREQ("post-clear", getenv("test-variable"));
// Put the old environment back.
for (size_t i = 0; i < old_environ.size(); ++i) {
EXPECT_EQ(0, putenv(old_environ[i]));
}
// Check it wasn't overwritten.
EXPECT_STREQ("a", getenv("test-variable"));
EXPECT_EQ(0, unsetenv("test-variable"));
}
static void TestSyncFunction(int (*fn)(int)) {
int fd;
// Can't sync an invalid fd.
errno = 0;
EXPECT_EQ(-1, fn(-1));
EXPECT_EQ(EBADF, errno);
// It doesn't matter whether you've opened a file for write or not.
TemporaryFile tf;
ASSERT_NE(-1, tf.fd);
EXPECT_EQ(0, fn(tf.fd));
ASSERT_NE(-1, fd = open(tf.path, O_RDONLY));
EXPECT_EQ(0, fn(fd));
close(fd);
ASSERT_NE(-1, fd = open(tf.path, O_RDWR));
EXPECT_EQ(0, fn(fd));
close(fd);
// The fd can even be a directory.
ASSERT_NE(-1, fd = open("/data/local/tmp", O_RDONLY));
EXPECT_EQ(0, fn(fd));
close(fd);
}
static void TestFsyncFunction(int (*fn)(int)) {
TestSyncFunction(fn);
// But some file systems are fussy about fsync/fdatasync...
errno = 0;
int fd = open("/proc/version", O_RDONLY);
ASSERT_NE(-1, fd);
EXPECT_EQ(-1, fn(fd));
EXPECT_EQ(EINVAL, errno);
close(fd);
}
TEST(UNISTD_TEST, fdatasync) {
TestFsyncFunction(fdatasync);
}
TEST(UNISTD_TEST, fsync) {
TestFsyncFunction(fsync);
}
TEST(UNISTD_TEST, syncfs) {
TestSyncFunction(syncfs);
}
static void AssertGetPidCorrect() {
// The loop is just to make manual testing/debugging with strace easier.
pid_t getpid_syscall_result = syscall(__NR_getpid);
for (size_t i = 0; i < 128; ++i) {
ASSERT_EQ(getpid_syscall_result, getpid());
}
}
static void TestGetPidCachingWithFork(int (*fork_fn)(), void (*exit_fn)(int)) {
pid_t parent_pid = getpid();
ASSERT_EQ(syscall(__NR_getpid), parent_pid);
pid_t fork_result = fork_fn();
ASSERT_NE(fork_result, -1);
if (fork_result == 0) {
// We're the child.
ASSERT_NO_FATAL_FAILURE(AssertGetPidCorrect());
ASSERT_EQ(parent_pid, getppid());
exit_fn(123);
} else {
// We're the parent.
ASSERT_EQ(parent_pid, getpid());
AssertChildExited(fork_result, 123);
}
}
// gettid() is marked as __attribute_const__, which will have the compiler
// optimize out multiple calls to gettid in the same function. This wrapper
// defeats that optimization.
static __attribute__((__noinline__)) pid_t GetTidForTest() {
__asm__("");
return gettid();
}
static void AssertGetTidCorrect() {
// The loop is just to make manual testing/debugging with strace easier.
pid_t gettid_syscall_result = syscall(__NR_gettid);
for (size_t i = 0; i < 128; ++i) {
ASSERT_EQ(gettid_syscall_result, GetTidForTest());
}
}
static void TestGetTidCachingWithFork(int (*fork_fn)(), void (*exit_fn)(int)) {
pid_t parent_tid = GetTidForTest();
ASSERT_EQ(syscall(__NR_gettid), parent_tid);
pid_t fork_result = fork_fn();
ASSERT_NE(fork_result, -1);
if (fork_result == 0) {
// We're the child.
EXPECT_EQ(syscall(__NR_getpid), syscall(__NR_gettid));
EXPECT_EQ(getpid(), GetTidForTest()) << "real tid is " << syscall(__NR_gettid)
<< ", pid is " << syscall(__NR_getpid);
ASSERT_NO_FATAL_FAILURE(AssertGetTidCorrect());
exit_fn(123);
} else {
// We're the parent.
ASSERT_EQ(parent_tid, GetTidForTest());
AssertChildExited(fork_result, 123);
}
}
TEST(UNISTD_TEST, getpid_caching_and_fork) {
TestGetPidCachingWithFork(fork, exit);
}
TEST(UNISTD_TEST, gettid_caching_and_fork) {
TestGetTidCachingWithFork(fork, exit);
}
TEST(UNISTD_TEST, getpid_caching_and_vfork) {
TestGetPidCachingWithFork(vfork, _exit);
}
static int CloneLikeFork() {
return clone(nullptr, nullptr, SIGCHLD, nullptr);
}
TEST(UNISTD_TEST, getpid_caching_and_clone_process) {
TestGetPidCachingWithFork(CloneLikeFork, exit);
}
TEST(UNISTD_TEST, gettid_caching_and_clone_process) {
TestGetTidCachingWithFork(CloneLikeFork, exit);
}
static int CloneAndSetTid() {
pid_t child_tid = 0;
pid_t parent_tid = GetTidForTest();
int rv = clone(nullptr, nullptr, CLONE_CHILD_SETTID | SIGCHLD, nullptr, nullptr, nullptr, &child_tid);
EXPECT_NE(-1, rv);
if (rv == 0) {
// Child.
EXPECT_EQ(child_tid, GetTidForTest());
EXPECT_NE(child_tid, parent_tid);
} else {
EXPECT_NE(child_tid, GetTidForTest());
EXPECT_NE(child_tid, parent_tid);
EXPECT_EQ(GetTidForTest(), parent_tid);
}
return rv;
}
TEST(UNISTD_TEST, gettid_caching_and_clone_process_settid) {
TestGetTidCachingWithFork(CloneAndSetTid, exit);
}
static int CloneStartRoutine(int (*start_routine)(void*)) {
void* child_stack[1024];
return clone(start_routine, untag_address(&child_stack[1024]), SIGCHLD, nullptr);
}
static int GetPidCachingCloneStartRoutine(void*) {
AssertGetPidCorrect();
return 123;
}
TEST(UNISTD_TEST, getpid_caching_and_clone) {
pid_t parent_pid = getpid();
ASSERT_EQ(syscall(__NR_getpid), parent_pid);
int clone_result = CloneStartRoutine(GetPidCachingCloneStartRoutine);
ASSERT_NE(clone_result, -1);
ASSERT_EQ(parent_pid, getpid());
AssertChildExited(clone_result, 123);
}
static int GetTidCachingCloneStartRoutine(void*) {
AssertGetTidCorrect();
return 123;
}
TEST(UNISTD_TEST, gettid_caching_and_clone) {
pid_t parent_tid = GetTidForTest();
ASSERT_EQ(syscall(__NR_gettid), parent_tid);
int clone_result = CloneStartRoutine(GetTidCachingCloneStartRoutine);
ASSERT_NE(clone_result, -1);
ASSERT_EQ(parent_tid, GetTidForTest());
AssertChildExited(clone_result, 123);
}
static int CloneChildExit(void*) {
AssertGetPidCorrect();
AssertGetTidCorrect();
exit(33);
}
TEST(UNISTD_TEST, clone_fn_and_exit) {
int clone_result = CloneStartRoutine(CloneChildExit);
ASSERT_NE(-1, clone_result);
AssertGetPidCorrect();
AssertGetTidCorrect();
AssertChildExited(clone_result, 33);
}
static void* GetPidCachingPthreadStartRoutine(void*) {
AssertGetPidCorrect();
return nullptr;
}
TEST(UNISTD_TEST, getpid_caching_and_pthread_create) {
pid_t parent_pid = getpid();
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, GetPidCachingPthreadStartRoutine, nullptr));
ASSERT_EQ(parent_pid, getpid());
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_EQ(nullptr, result);
}
static void* GetTidCachingPthreadStartRoutine(void*) {
AssertGetTidCorrect();
uint64_t tid = GetTidForTest();
return reinterpret_cast<void*>(tid);
}
TEST(UNISTD_TEST, gettid_caching_and_pthread_create) {
pid_t parent_tid = GetTidForTest();
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, GetTidCachingPthreadStartRoutine, &parent_tid));
ASSERT_EQ(parent_tid, GetTidForTest());
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_NE(static_cast<uint64_t>(parent_tid), reinterpret_cast<uint64_t>(result));
}
static void optimization_barrier(void* arg) {
asm volatile("" : : "r"(arg) : "memory");
}
__attribute__((noinline)) static void HwasanVforkTestChild() {
// Allocate a tagged region on stack and leave it there.
char x[10000];
optimization_barrier(x);
_exit(0);
}
__attribute__((noinline)) static void HwasanReadMemory(const char* p, size_t size) {
// Read memory byte-by-byte. This will blow up if the pointer tag in p does not match any memory
// tag in [p, p+size).
volatile char z;
for (size_t i = 0; i < size; ++i) {
z = p[i];
}
}
__attribute__((noinline, no_sanitize("hwaddress"))) static void HwasanVforkTestParent() {
// Allocate a region on stack, but don't tag it (see the function attribute).
// This depends on unallocated stack space at current function entry being untagged.
char x[10000];
optimization_barrier(x);
// Verify that contents of x[] are untagged.
HwasanReadMemory(x, sizeof(x));
}
TEST(UNISTD_TEST, hwasan_vfork) {
// Test hwasan annotation in vfork. This test is only interesting when built with hwasan, but it
// is supposed to work correctly either way.
if (vfork()) {
HwasanVforkTestParent();
} else {
HwasanVforkTestChild();
}
}
class UNISTD_DEATHTEST : public BionicDeathTest {};
TEST_F(UNISTD_DEATHTEST, abort) {
ASSERT_EXIT(abort(), testing::KilledBySignal(SIGABRT), "");
}
TEST(UNISTD_TEST, sethostname) {
// The permissions check happens before the argument check, so this will
// fail for a different reason if you're running as root than if you're
// not, but it'll fail either way. Checking that we have the symbol is about
// all we can do for sethostname(2).
ASSERT_EQ(-1, sethostname("", -1));
}
TEST(UNISTD_TEST, gethostname) {
char hostname[HOST_NAME_MAX + 1];
memset(hostname, 0, sizeof(hostname));
// Can we get the hostname with a big buffer?
ASSERT_EQ(0, gethostname(hostname, HOST_NAME_MAX));
// Can we get the hostname with a right-sized buffer?
errno = 0;
ASSERT_EQ(0, gethostname(hostname, strlen(hostname) + 1));
// Does uname(2) agree?
utsname buf;
ASSERT_EQ(0, uname(&buf));
ASSERT_EQ(0, strncmp(hostname, buf.nodename, SYS_NMLN));
ASSERT_GT(strlen(hostname), 0U);
// Do we correctly detect truncation?
errno = 0;
ASSERT_EQ(-1, gethostname(hostname, strlen(hostname)));
ASSERT_EQ(ENAMETOOLONG, errno);
}
TEST(UNISTD_TEST, pathconf_fpathconf) {
TemporaryFile tf;
long rc = 0L;
// As a file system's block size is always power of 2, the configure values
// for ALLOC and XFER should be power of 2 as well.
rc = pathconf(tf.path, _PC_ALLOC_SIZE_MIN);
ASSERT_TRUE(rc > 0 && powerof2(rc));
rc = pathconf(tf.path, _PC_REC_MIN_XFER_SIZE);
ASSERT_TRUE(rc > 0 && powerof2(rc));
rc = pathconf(tf.path, _PC_REC_XFER_ALIGN);
ASSERT_TRUE(rc > 0 && powerof2(rc));
rc = fpathconf(tf.fd, _PC_ALLOC_SIZE_MIN);
ASSERT_TRUE(rc > 0 && powerof2(rc));
rc = fpathconf(tf.fd, _PC_REC_MIN_XFER_SIZE);
ASSERT_TRUE(rc > 0 && powerof2(rc));
rc = fpathconf(tf.fd, _PC_REC_XFER_ALIGN);
ASSERT_TRUE(rc > 0 && powerof2(rc));
}
TEST(UNISTD_TEST, _POSIX_constants) {
// Make a tight verification of _POSIX_* / _POSIX2_* / _XOPEN_* macros, to prevent change by mistake.
// Verify according to POSIX.1-2008.
EXPECT_EQ(200809L, _POSIX_VERSION);
EXPECT_EQ(2, _POSIX_AIO_LISTIO_MAX);
EXPECT_EQ(1, _POSIX_AIO_MAX);
EXPECT_EQ(4096, _POSIX_ARG_MAX);
EXPECT_EQ(25, _POSIX_CHILD_MAX);
EXPECT_EQ(20000000, _POSIX_CLOCKRES_MIN);
EXPECT_EQ(32, _POSIX_DELAYTIMER_MAX);
EXPECT_EQ(255, _POSIX_HOST_NAME_MAX);
EXPECT_EQ(8, _POSIX_LINK_MAX);
EXPECT_EQ(9, _POSIX_LOGIN_NAME_MAX);
EXPECT_EQ(255, _POSIX_MAX_CANON);
EXPECT_EQ(255, _POSIX_MAX_INPUT);
EXPECT_EQ(8, _POSIX_MQ_OPEN_MAX);
EXPECT_EQ(32, _POSIX_MQ_PRIO_MAX);
EXPECT_EQ(14, _POSIX_NAME_MAX);
EXPECT_EQ(8, _POSIX_NGROUPS_MAX);
EXPECT_EQ(20, _POSIX_OPEN_MAX);
EXPECT_EQ(256, _POSIX_PATH_MAX);
EXPECT_EQ(512, _POSIX_PIPE_BUF);
EXPECT_EQ(255, _POSIX_RE_DUP_MAX);
EXPECT_EQ(8, _POSIX_RTSIG_MAX);
EXPECT_EQ(256, _POSIX_SEM_NSEMS_MAX);
EXPECT_EQ(32767, _POSIX_SEM_VALUE_MAX);
EXPECT_EQ(32, _POSIX_SIGQUEUE_MAX);
EXPECT_EQ(32767, _POSIX_SSIZE_MAX);
EXPECT_EQ(8, _POSIX_STREAM_MAX);
#if !defined(__GLIBC__)
EXPECT_EQ(4, _POSIX_SS_REPL_MAX);
#endif
EXPECT_EQ(255, _POSIX_SYMLINK_MAX);
EXPECT_EQ(8, _POSIX_SYMLOOP_MAX);
EXPECT_EQ(4, _POSIX_THREAD_DESTRUCTOR_ITERATIONS);
EXPECT_EQ(128, _POSIX_THREAD_KEYS_MAX);
EXPECT_EQ(64, _POSIX_THREAD_THREADS_MAX);
EXPECT_EQ(32, _POSIX_TIMER_MAX);
#if !defined(__GLIBC__)
EXPECT_EQ(30, _POSIX_TRACE_EVENT_NAME_MAX);
EXPECT_EQ(8, _POSIX_TRACE_NAME_MAX);
EXPECT_EQ(8, _POSIX_TRACE_SYS_MAX);
EXPECT_EQ(32, _POSIX_TRACE_USER_EVENT_MAX);
#endif
EXPECT_EQ(9, _POSIX_TTY_NAME_MAX);
EXPECT_EQ(6, _POSIX_TZNAME_MAX);
EXPECT_EQ(99, _POSIX2_BC_BASE_MAX);
EXPECT_EQ(2048, _POSIX2_BC_DIM_MAX);
EXPECT_EQ(99, _POSIX2_BC_SCALE_MAX);
EXPECT_EQ(1000, _POSIX2_BC_STRING_MAX);
EXPECT_EQ(14, _POSIX2_CHARCLASS_NAME_MAX);
EXPECT_EQ(2, _POSIX2_COLL_WEIGHTS_MAX);
EXPECT_EQ(32, _POSIX2_EXPR_NEST_MAX);
EXPECT_EQ(2048, _POSIX2_LINE_MAX);
EXPECT_EQ(255, _POSIX2_RE_DUP_MAX);
EXPECT_EQ(16, _XOPEN_IOV_MAX);
#if !defined(__GLIBC__)
EXPECT_EQ(255, _XOPEN_NAME_MAX);
EXPECT_EQ(1024, _XOPEN_PATH_MAX);
#endif
}
TEST(UNISTD_TEST, _POSIX_options) {
EXPECT_EQ(_POSIX_VERSION, _POSIX_ADVISORY_INFO);
EXPECT_GT(_POSIX_BARRIERS, 0);
EXPECT_GT(_POSIX_SPIN_LOCKS, 0);
EXPECT_NE(_POSIX_CHOWN_RESTRICTED, -1);
EXPECT_EQ(_POSIX_VERSION, _POSIX_CLOCK_SELECTION);
#if !defined(__GLIBC__) // glibc supports ancient kernels.
EXPECT_EQ(_POSIX_VERSION, _POSIX_CPUTIME);
#endif
EXPECT_EQ(_POSIX_VERSION, _POSIX_FSYNC);
EXPECT_EQ(_POSIX_VERSION, _POSIX_IPV6);
EXPECT_GT(_POSIX_JOB_CONTROL, 0);
EXPECT_EQ(_POSIX_VERSION, _POSIX_MAPPED_FILES);
EXPECT_EQ(_POSIX_VERSION, _POSIX_MEMLOCK);
EXPECT_EQ(_POSIX_VERSION, _POSIX_MEMLOCK_RANGE);
EXPECT_EQ(_POSIX_VERSION, _POSIX_MEMORY_PROTECTION);
#if !defined(__GLIBC__) // glibc supports ancient kernels.
EXPECT_EQ(_POSIX_VERSION, _POSIX_MONOTONIC_CLOCK);
#endif
EXPECT_GT(_POSIX_NO_TRUNC, 0);
EXPECT_EQ(_POSIX_VERSION, _POSIX_PRIORITY_SCHEDULING);
EXPECT_EQ(_POSIX_VERSION, _POSIX_RAW_SOCKETS);
EXPECT_EQ(_POSIX_VERSION, _POSIX_READER_WRITER_LOCKS);
EXPECT_EQ(_POSIX_VERSION, _POSIX_REALTIME_SIGNALS);
EXPECT_GT(_POSIX_REGEXP, 0);
EXPECT_GT(_POSIX_SAVED_IDS, 0);
EXPECT_EQ(_POSIX_VERSION, _POSIX_SEMAPHORES);
EXPECT_GT(_POSIX_SHELL, 0);
EXPECT_EQ(_POSIX_VERSION, _POSIX_SPAWN);
EXPECT_EQ(-1, _POSIX_SPORADIC_SERVER);
EXPECT_EQ(_POSIX_VERSION, _POSIX_SYNCHRONIZED_IO);
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREADS);
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREAD_ATTR_STACKADDR);
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREAD_ATTR_STACKSIZE);
#if !defined(__GLIBC__) // glibc supports ancient kernels.
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREAD_CPUTIME);
#endif
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREAD_PRIORITY_SCHEDULING);
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREAD_PROCESS_SHARED);
EXPECT_EQ(-1, _POSIX_THREAD_ROBUST_PRIO_PROTECT);
EXPECT_EQ(_POSIX_VERSION, _POSIX_THREAD_SAFE_FUNCTIONS);
EXPECT_EQ(-1, _POSIX_THREAD_SPORADIC_SERVER);
EXPECT_EQ(_POSIX_VERSION, _POSIX_TIMEOUTS);
EXPECT_EQ(_POSIX_VERSION, _POSIX_TIMERS);
EXPECT_EQ(-1, _POSIX_TRACE);
EXPECT_EQ(-1, _POSIX_TRACE_EVENT_FILTER);
EXPECT_EQ(-1, _POSIX_TRACE_INHERIT);
EXPECT_EQ(-1, _POSIX_TRACE_LOG);
EXPECT_EQ(-1, _POSIX_TYPED_MEMORY_OBJECTS);
EXPECT_NE(-1, _POSIX_VDISABLE);
EXPECT_EQ(_POSIX_VERSION, _POSIX2_VERSION);
EXPECT_EQ(_POSIX_VERSION, _POSIX2_C_BIND);
EXPECT_EQ(_POSIX_VERSION, _POSIX2_CHAR_TERM);
EXPECT_EQ(700, _XOPEN_VERSION);
EXPECT_EQ(1, _XOPEN_ENH_I18N);
EXPECT_EQ(1, _XOPEN_REALTIME);
EXPECT_EQ(1, _XOPEN_REALTIME_THREADS);
EXPECT_EQ(1, _XOPEN_SHM);
EXPECT_EQ(1, _XOPEN_UNIX);
#if defined(__BIONIC__)
// These tests only pass on bionic, as bionic and glibc has different support on these macros.
// Macros like _POSIX_ASYNCHRONOUS_IO are not supported on bionic yet.
EXPECT_EQ(-1, _POSIX_ASYNCHRONOUS_IO);
EXPECT_EQ(-1, _POSIX_MESSAGE_PASSING);
EXPECT_EQ(-1, _POSIX_PRIORITIZED_IO);
EXPECT_EQ(-1, _POSIX_SHARED_MEMORY_OBJECTS);
EXPECT_EQ(-1, _POSIX_THREAD_PRIO_INHERIT);
EXPECT_EQ(-1, _POSIX_THREAD_PRIO_PROTECT);
EXPECT_EQ(-1, _POSIX_THREAD_ROBUST_PRIO_INHERIT);
EXPECT_EQ(-1, _POSIX2_C_DEV);
EXPECT_EQ(-1, _POSIX2_FORT_DEV);
EXPECT_EQ(-1, _POSIX2_FORT_RUN);
EXPECT_EQ(-1, _POSIX2_LOCALEDEF);
EXPECT_EQ(-1, _POSIX2_SW_DEV);
EXPECT_EQ(-1, _POSIX2_UPE);
EXPECT_EQ(-1, _XOPEN_CRYPT);
EXPECT_EQ(-1, _XOPEN_LEGACY);
EXPECT_EQ(-1, _XOPEN_STREAMS);
#endif // defined(__BIONIC__)
}
#define VERIFY_SYSCONF_UNKNOWN(name) \
VerifySysconf(name, #name, [](long v){return v == -1 && errno == EINVAL;})
#define VERIFY_SYSCONF_UNSUPPORTED(name) \
VerifySysconf(name, #name, [](long v){return v == -1 && errno == 0;})
// sysconf() means unlimited when it returns -1 with errno unchanged.
#define VERIFY_SYSCONF_POSITIVE(name) \
VerifySysconf(name, #name, [](long v){return (v > 0 || v == -1) && errno == 0;})
#define VERIFY_SYSCONF_POSIX_VERSION(name) \
VerifySysconf(name, #name, [](long v){return v == _POSIX_VERSION && errno == 0;})
static void VerifySysconf(int option, const char *option_name, bool (*verify)(long)) {
errno = 0;
long ret = sysconf(option);
EXPECT_TRUE(verify(ret)) << "name = " << option_name << ", ret = "
<< ret <<", Error Message: " << strerror(errno);
}
TEST(UNISTD_TEST, sysconf) {
VERIFY_SYSCONF_POSIX_VERSION(_SC_ADVISORY_INFO);
VERIFY_SYSCONF_POSITIVE(_SC_ARG_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_BARRIERS);
VERIFY_SYSCONF_POSITIVE(_SC_BC_BASE_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_BC_DIM_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_BC_SCALE_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_CHILD_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_CLK_TCK);
VERIFY_SYSCONF_POSITIVE(_SC_COLL_WEIGHTS_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_CPUTIME);
VERIFY_SYSCONF_POSITIVE(_SC_EXPR_NEST_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_LINE_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_NGROUPS_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_OPEN_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_PASS_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_2_C_BIND);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_FORT_DEV);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_FORT_RUN);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_UPE);
VERIFY_SYSCONF_POSIX_VERSION(_SC_2_VERSION);
VERIFY_SYSCONF_POSITIVE(_SC_JOB_CONTROL);
VERIFY_SYSCONF_POSITIVE(_SC_SAVED_IDS);
VERIFY_SYSCONF_POSIX_VERSION(_SC_VERSION);
VERIFY_SYSCONF_POSITIVE(_SC_RE_DUP_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_STREAM_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_TZNAME_MAX);
VerifySysconf(_SC_XOPEN_VERSION, "_SC_XOPEN_VERSION", [](long v){return v == _XOPEN_VERSION && errno == 0;});
VERIFY_SYSCONF_POSITIVE(_SC_ATEXIT_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_IOV_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_UIO_MAXIOV);
EXPECT_EQ(sysconf(_SC_IOV_MAX), sysconf(_SC_UIO_MAXIOV));
VERIFY_SYSCONF_POSITIVE(_SC_PAGESIZE);
VERIFY_SYSCONF_POSITIVE(_SC_PAGE_SIZE);
VerifySysconf(_SC_PAGE_SIZE, "_SC_PAGE_SIZE",
[](long v){return v == sysconf(_SC_PAGESIZE) && errno == 0 && v == getpagesize();});
VERIFY_SYSCONF_POSITIVE(_SC_XOPEN_UNIX);
VERIFY_SYSCONF_POSITIVE(_SC_AIO_LISTIO_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_AIO_MAX);
VerifySysconf(_SC_AIO_PRIO_DELTA_MAX, "_SC_AIO_PRIO_DELTA_MAX", [](long v){return v >= 0 && errno == 0;});
VERIFY_SYSCONF_POSITIVE(_SC_DELAYTIMER_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_MQ_OPEN_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_MQ_PRIO_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_RTSIG_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_SEM_NSEMS_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_SEM_VALUE_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_SPIN_LOCKS);
VERIFY_SYSCONF_POSITIVE(_SC_TIMER_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_FSYNC);
VERIFY_SYSCONF_POSIX_VERSION(_SC_MAPPED_FILES);
VERIFY_SYSCONF_POSIX_VERSION(_SC_MEMLOCK);
VERIFY_SYSCONF_POSIX_VERSION(_SC_MEMLOCK_RANGE);
VERIFY_SYSCONF_POSIX_VERSION(_SC_MEMORY_PROTECTION);
VERIFY_SYSCONF_POSIX_VERSION(_SC_PRIORITY_SCHEDULING);
VERIFY_SYSCONF_POSIX_VERSION(_SC_REALTIME_SIGNALS);
VERIFY_SYSCONF_POSIX_VERSION(_SC_SEMAPHORES);
VERIFY_SYSCONF_POSIX_VERSION(_SC_SYNCHRONIZED_IO);
VERIFY_SYSCONF_POSIX_VERSION(_SC_TIMERS);
VERIFY_SYSCONF_POSITIVE(_SC_GETGR_R_SIZE_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_GETPW_R_SIZE_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_LOGIN_NAME_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_THREAD_DESTRUCTOR_ITERATIONS);
VERIFY_SYSCONF_POSITIVE(_SC_THREAD_KEYS_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_THREAD_STACK_MIN);
VERIFY_SYSCONF_POSITIVE(_SC_THREAD_THREADS_MAX);
VERIFY_SYSCONF_POSITIVE(_SC_TTY_NAME_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREADS);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREAD_ATTR_STACKADDR);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREAD_ATTR_STACKSIZE);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREAD_PRIORITY_SCHEDULING);
VERIFY_SYSCONF_UNSUPPORTED(_SC_THREAD_PRIO_INHERIT);
VERIFY_SYSCONF_UNSUPPORTED(_SC_THREAD_PRIO_PROTECT);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREAD_SAFE_FUNCTIONS);
VERIFY_SYSCONF_POSITIVE(_SC_NPROCESSORS_CONF);
VERIFY_SYSCONF_POSITIVE(_SC_NPROCESSORS_ONLN);
VERIFY_SYSCONF_POSITIVE(_SC_PHYS_PAGES);
VERIFY_SYSCONF_POSITIVE(_SC_AVPHYS_PAGES);
VERIFY_SYSCONF_POSIX_VERSION(_SC_MONOTONIC_CLOCK);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_PBS);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_PBS_ACCOUNTING);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_PBS_CHECKPOINT);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_PBS_LOCATE);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_PBS_MESSAGE);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_PBS_TRACK);
VERIFY_SYSCONF_POSIX_VERSION(_SC_CLOCK_SELECTION);
VERIFY_SYSCONF_POSITIVE(_SC_HOST_NAME_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_IPV6);
VERIFY_SYSCONF_POSIX_VERSION(_SC_RAW_SOCKETS);
VERIFY_SYSCONF_POSIX_VERSION(_SC_READER_WRITER_LOCKS);
VERIFY_SYSCONF_POSITIVE(_SC_REGEXP);
VERIFY_SYSCONF_POSITIVE(_SC_SHELL);
VERIFY_SYSCONF_POSIX_VERSION(_SC_SPAWN);
VERIFY_SYSCONF_UNSUPPORTED(_SC_SPORADIC_SERVER);
VERIFY_SYSCONF_POSITIVE(_SC_SYMLOOP_MAX);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREAD_CPUTIME);
VERIFY_SYSCONF_POSIX_VERSION(_SC_THREAD_PROCESS_SHARED);
VERIFY_SYSCONF_UNSUPPORTED(_SC_THREAD_SPORADIC_SERVER);
VERIFY_SYSCONF_POSIX_VERSION(_SC_TIMEOUTS);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_EVENT_FILTER);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_EVENT_NAME_MAX);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_INHERIT);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_LOG);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_NAME_MAX);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_SYS_MAX);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TRACE_USER_EVENT_MAX);
VERIFY_SYSCONF_UNSUPPORTED(_SC_TYPED_MEMORY_OBJECTS);
VERIFY_SYSCONF_UNSUPPORTED(_SC_XOPEN_STREAMS);
#if defined(__LP64__)
VERIFY_SYSCONF_UNSUPPORTED(_SC_V7_ILP32_OFF32);
VERIFY_SYSCONF_UNSUPPORTED(_SC_V7_ILP32_OFFBIG);
VERIFY_SYSCONF_POSITIVE(_SC_V7_LP64_OFF64);
VERIFY_SYSCONF_POSITIVE(_SC_V7_LPBIG_OFFBIG);
#else
VERIFY_SYSCONF_POSITIVE(_SC_V7_ILP32_OFF32);
#if defined(__BIONIC__)
// bionic does not support 64 bits off_t type on 32bit machine.
VERIFY_SYSCONF_UNSUPPORTED(_SC_V7_ILP32_OFFBIG);
#endif
VERIFY_SYSCONF_UNSUPPORTED(_SC_V7_LP64_OFF64);
VERIFY_SYSCONF_UNSUPPORTED(_SC_V7_LPBIG_OFFBIG);
#endif
#if defined(__BIONIC__)
// Tests can only run on bionic, as bionic and glibc have different support for these options.
// Below options are not supported on bionic yet.
VERIFY_SYSCONF_UNSUPPORTED(_SC_ASYNCHRONOUS_IO);
VERIFY_SYSCONF_UNSUPPORTED(_SC_MESSAGE_PASSING);
VERIFY_SYSCONF_UNSUPPORTED(_SC_PRIORITIZED_IO);
VERIFY_SYSCONF_UNSUPPORTED(_SC_SHARED_MEMORY_OBJECTS);
VERIFY_SYSCONF_UNSUPPORTED(_SC_THREAD_ROBUST_PRIO_INHERIT);
VERIFY_SYSCONF_UNSUPPORTED(_SC_THREAD_ROBUST_PRIO_PROTECT);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_C_DEV);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_LOCALEDEF);
VERIFY_SYSCONF_UNSUPPORTED(_SC_2_SW_DEV);
VERIFY_SYSCONF_UNSUPPORTED(_SC_XOPEN_CRYPT);
VERIFY_SYSCONF_UNSUPPORTED(_SC_XOPEN_LEGACY);
VERIFY_SYSCONF_UNSUPPORTED(_SC_XOPEN_UUCP);
#endif // defined(__BIONIC__)
}
TEST(UNISTD_TEST, get_cpu_count_from_string) {
ASSERT_EQ(0, GetCpuCountFromString(" "));
ASSERT_EQ(1, GetCpuCountFromString("0"));
ASSERT_EQ(40, GetCpuCountFromString("0-39"));
ASSERT_EQ(4, GetCpuCountFromString("0, 1-2, 4\n"));
}
TEST(UNISTD_TEST, sysconf_SC_NPROCESSORS_ONLN) {
std::string line;
ASSERT_TRUE(android::base::ReadFileToString("/sys/devices/system/cpu/online", &line));
long online_cpus = 0;
for (const std::string& s : android::base::Split(line, ",")) {
std::vector<std::string> numbers = android::base::Split(s, "-");
if (numbers.size() == 1u) {
online_cpus++;
} else {
online_cpus += atoi(numbers[1].c_str()) - atoi(numbers[0].c_str()) + 1;
}
}
ASSERT_EQ(online_cpus, sysconf(_SC_NPROCESSORS_ONLN));
}
TEST(UNISTD_TEST, sysconf_SC_ARG_MAX) {
// https://lkml.org/lkml/2017/11/15/813.
#if !defined(ARG_MAX)
#define ARG_MAX 131072
#endif
ASSERT_EQ(ARG_MAX, sysconf(_SC_ARG_MAX));
}
TEST(UNISTD_TEST, sysconf_unknown) {
VERIFY_SYSCONF_UNKNOWN(-1);
VERIFY_SYSCONF_UNKNOWN(666);
}
TEST(UNISTD_TEST, dup2_same) {
// POSIX says of dup2:
// If fildes2 is already a valid open file descriptor ...
// [and] fildes is equal to fildes2 ... dup2() shall return
// fildes2 without closing it.
// This isn't true of dup3(2), so we need to manually implement that.
// Equal and valid.
int fd = open("/proc/version", O_RDONLY);
ASSERT_TRUE(fd != -1);
ASSERT_EQ(fd, dup2(fd, fd));
ASSERT_EQ(0, close(fd)); // Check that dup2 didn't close fd.
// Equal, but invalid.
errno = 0;
ASSERT_EQ(-1, dup2(fd, fd));
ASSERT_EQ(EBADF, errno);
}
TEST(UNISTD_TEST, dup3) {
int fd = open("/proc/version", O_RDONLY);
ASSERT_EQ(666, dup3(fd, 666, 0));
AssertCloseOnExec(666, false);
close(666);
ASSERT_EQ(667, dup3(fd, 667, O_CLOEXEC));
AssertCloseOnExec(667, true);
close(667);
close(fd);
}
TEST(UNISTD_TEST, lockf_smoke) {
constexpr off64_t file_size = 32*1024LL;
TemporaryFile tf;
ASSERT_EQ(0, ftruncate(tf.fd, file_size));
// Lock everything.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_LOCK, file_size));
// Try-lock everything, this should succeed too.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TLOCK, file_size));
// Check status.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TEST, file_size));
// Unlock file.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_ULOCK, file_size));
}
TEST(UNISTD_TEST, lockf_zero) {
constexpr off64_t file_size = 32*1024LL;
TemporaryFile tf;
ASSERT_EQ(0, ftruncate(tf.fd, file_size));
// Lock everything by specifying a size of 0 (meaning "to the end, even if it changes").
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_LOCK, 0));
// Check that it's locked.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TEST, file_size));
// Move the end.
ASSERT_EQ(0, ftruncate(tf.fd, 2*file_size));
// Check that the new section is locked too.
ASSERT_EQ(file_size, lseek64(tf.fd, file_size, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TEST, 2*file_size));
}
TEST(UNISTD_TEST, lockf_negative) {
constexpr off64_t file_size = 32*1024LL;
TemporaryFile tf;
ASSERT_EQ(0, ftruncate(tf.fd, file_size));
// Lock everything, but specifying the range in reverse.
ASSERT_EQ(file_size, lseek64(tf.fd, file_size, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_LOCK, -file_size));
// Check that it's locked.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TEST, file_size));
}
TEST(UNISTD_TEST, lockf_with_child) {
constexpr off64_t file_size = 32*1024LL;
TemporaryFile tf;
ASSERT_EQ(0, ftruncate(tf.fd, file_size));
// Lock everything.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_LOCK, file_size));
// Fork a child process
pid_t pid = fork();
ASSERT_NE(-1, pid);
if (pid == 0) {
// Check that the child cannot lock the file.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(-1, lockf64(tf.fd, F_TLOCK, file_size));
ASSERT_EQ(EAGAIN, errno);
// Check also that it reports itself as locked.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(-1, lockf64(tf.fd, F_TEST, file_size));
ASSERT_EQ(EACCES, errno);
_exit(0);
}
AssertChildExited(pid, 0);
}
TEST(UNISTD_TEST, lockf_partial_with_child) {
constexpr off64_t file_size = 32*1024LL;
TemporaryFile tf;
ASSERT_EQ(0, ftruncate(tf.fd, file_size));
// Lock the first half of the file.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_LOCK, file_size/2));
// Fork a child process.
pid_t pid = fork();
ASSERT_NE(-1, pid);
if (pid == 0) {
// Check that the child can lock the other half.
ASSERT_EQ(file_size/2, lseek64(tf.fd, file_size/2, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TLOCK, file_size/2));
// Check that the child cannot lock the first half.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(-1, lockf64(tf.fd, F_TEST, file_size/2));
ASSERT_EQ(EACCES, errno);
// Check also that it reports itself as locked.
ASSERT_EQ(0, lseek64(tf.fd, 0, SEEK_SET));
ASSERT_EQ(-1, lockf64(tf.fd, F_TEST, file_size/2));
ASSERT_EQ(EACCES, errno);
_exit(0);
}
AssertChildExited(pid, 0);
// The second half was locked by the child, but the lock disappeared
// when the process exited, so check it can be locked now.
ASSERT_EQ(file_size/2, lseek64(tf.fd, file_size/2, SEEK_SET));
ASSERT_EQ(0, lockf64(tf.fd, F_TLOCK, file_size/2));
}
TEST(UNISTD_TEST, getdomainname) {
struct utsname u;
ASSERT_EQ(0, uname(&u));
char buf[sizeof(u.domainname)];
ASSERT_EQ(0, getdomainname(buf, sizeof(buf)));
EXPECT_STREQ(u.domainname, buf);
#if defined(__BIONIC__)
// bionic and glibc have different behaviors when len is too small
ASSERT_EQ(-1, getdomainname(buf, strlen(u.domainname)));
EXPECT_EQ(EINVAL, errno);
#endif
}
TEST(UNISTD_TEST, setdomainname) {
__user_cap_header_struct header;
memset(&header, 0, sizeof(header));
header.version = _LINUX_CAPABILITY_VERSION_3;
__user_cap_data_struct old_caps[_LINUX_CAPABILITY_U32S_3];
ASSERT_EQ(0, capget(&header, &old_caps[0]));
auto admin_idx = CAP_TO_INDEX(CAP_SYS_ADMIN);
auto admin_mask = CAP_TO_MASK(CAP_SYS_ADMIN);
bool has_admin = old_caps[admin_idx].effective & admin_mask;
if (has_admin) {
__user_cap_data_struct new_caps[_LINUX_CAPABILITY_U32S_3];
memcpy(new_caps, old_caps, sizeof(new_caps));
new_caps[admin_idx].effective &= ~admin_mask;
ASSERT_EQ(0, capset(&header, &new_caps[0])) << "failed to drop admin privileges";
}
const char* name = "newdomainname";
ASSERT_EQ(-1, setdomainname(name, strlen(name)));
ASSERT_EQ(EPERM, errno);
if (has_admin) {
ASSERT_EQ(0, capset(&header, &old_caps[0])) << "failed to restore admin privileges";
}
}
TEST(UNISTD_TEST, execve_failure) {
ExecTestHelper eth;
errno = 0;
ASSERT_EQ(-1, execve("/", eth.GetArgs(), eth.GetEnv()));
ASSERT_EQ(EACCES, errno);
}
TEST(UNISTD_TEST, execve_args) {
// int execve(const char* path, char* argv[], char* envp[]);
// Test basic argument passing.
ExecTestHelper eth;
eth.SetArgs({"echo", "hello", "world", nullptr});
eth.Run([&]() { execve(BIN_DIR "echo", eth.GetArgs(), eth.GetEnv()); }, 0, "hello world\n");
// Test environment variable setting too.
eth.SetArgs({"printenv", nullptr});
eth.SetEnv({"A=B", nullptr});
eth.Run([&]() { execve(BIN_DIR "printenv", eth.GetArgs(), eth.GetEnv()); }, 0, "A=B\n");
}
TEST(UNISTD_TEST, execl_failure) {
errno = 0;
ASSERT_EQ(-1, execl("/", "/", nullptr));
ASSERT_EQ(EACCES, errno);
}
TEST(UNISTD_TEST, execl) {
ExecTestHelper eth;
// int execl(const char* path, const char* arg, ...);
eth.Run([&]() { execl(BIN_DIR "echo", "echo", "hello", "world", nullptr); }, 0, "hello world\n");
}
TEST(UNISTD_TEST, execle_failure) {
ExecTestHelper eth;
errno = 0;
ASSERT_EQ(-1, execle("/", "/", nullptr, eth.GetEnv()));
ASSERT_EQ(EACCES, errno);
}
TEST(UNISTD_TEST, execle) {
ExecTestHelper eth;
eth.SetEnv({"A=B", nullptr});
// int execle(const char* path, const char* arg, ..., char* envp[]);
eth.Run([&]() { execle(BIN_DIR "printenv", "printenv", nullptr, eth.GetEnv()); }, 0, "A=B\n");
}
TEST(UNISTD_TEST, execv_failure) {
ExecTestHelper eth;
errno = 0;
ASSERT_EQ(-1, execv("/", eth.GetArgs()));
ASSERT_EQ(EACCES, errno);
}
TEST(UNISTD_TEST, execv) {
ExecTestHelper eth;
eth.SetArgs({"echo", "hello", "world", nullptr});
// int execv(const char* path, char* argv[]);
eth.Run([&]() { execv(BIN_DIR "echo", eth.GetArgs()); }, 0, "hello world\n");
}
TEST(UNISTD_TEST, execlp_failure) {
errno = 0;
ASSERT_EQ(-1, execlp("/", "/", nullptr));
ASSERT_EQ(EACCES, errno);
}
TEST(UNISTD_TEST, execlp) {
ExecTestHelper eth;
// int execlp(const char* file, const char* arg, ...);
eth.Run([&]() { execlp("echo", "echo", "hello", "world", nullptr); }, 0, "hello world\n");
}
TEST(UNISTD_TEST, execvp_failure) {
ExecTestHelper eth;
eth.SetArgs({nullptr});
errno = 0;
ASSERT_EQ(-1, execvp("/", eth.GetArgs()));
ASSERT_EQ(EACCES, errno);
}
TEST(UNISTD_TEST, execvp) {
ExecTestHelper eth;
eth.SetArgs({"echo", "hello", "world", nullptr});
// int execvp(const char* file, char* argv[]);
eth.Run([&]() { execvp("echo", eth.GetArgs()); }, 0, "hello world\n");
}
TEST(UNISTD_TEST, execvpe_failure) {
ExecTestHelper eth;
errno = 0;
ASSERT_EQ(-1, execvpe("this-does-not-exist", eth.GetArgs(), eth.GetEnv()));
// Running in CTS we might not even be able to search all directories in $PATH.
ASSERT_TRUE(errno == ENOENT || errno == EACCES);
}
TEST(UNISTD_TEST, execvpe) {
// int execvpe(const char* file, char* argv[], char* envp[]);
// Test basic argument passing.
ExecTestHelper eth;
eth.SetArgs({"echo", "hello", "world", nullptr});
eth.Run([&]() { execvpe("echo", eth.GetArgs(), eth.GetEnv()); }, 0, "hello world\n");
// Test environment variable setting too.
eth.SetArgs({"printenv", nullptr});
eth.SetEnv({"A=B", nullptr});
eth.Run([&]() { execvpe("printenv", eth.GetArgs(), eth.GetEnv()); }, 0, "A=B\n");
}
TEST(UNISTD_TEST, execvpe_ENOEXEC) {
// Create a shell script with #!.
TemporaryFile tf;
ASSERT_TRUE(android::base::WriteStringToFile("#!" BIN_DIR "sh\necho script\n", tf.path));
// Set $PATH so we can find it.
setenv("PATH", dirname(tf.path), 1);
ExecTestHelper eth;
eth.SetArgs({basename(tf.path), nullptr});
// It's not inherently executable.
errno = 0;
ASSERT_EQ(-1, execvpe(basename(tf.path), eth.GetArgs(), eth.GetEnv()));
ASSERT_EQ(EACCES, errno);
// Make it executable (and keep it writable because we're going to rewrite it below).
ASSERT_EQ(0, chmod(tf.path, 0777));
// TemporaryFile will have a writable fd, so we can test ETXTBSY while we're here...
errno = 0;
ASSERT_EQ(-1, execvpe(basename(tf.path), eth.GetArgs(), eth.GetEnv()));
ASSERT_EQ(ETXTBSY, errno);
// 1. The simplest test: the kernel should handle this.
ASSERT_EQ(0, close(tf.fd));
eth.Run([&]() { execvpe(basename(tf.path), eth.GetArgs(), eth.GetEnv()); }, 0, "script\n");
// 2. Try again without a #!. We should have to handle this ourselves.
ASSERT_TRUE(android::base::WriteStringToFile("echo script\n", tf.path));
eth.Run([&]() { execvpe(basename(tf.path), eth.GetArgs(), eth.GetEnv()); }, 0, "script\n");
// 3. Again without a #!, but also with a leading '/', since that's a special case in the
// implementation.
eth.Run([&]() { execvpe(tf.path, eth.GetArgs(), eth.GetEnv()); }, 0, "script\n");
}
TEST(UNISTD_TEST, execvp_libcore_test_55017) {
ExecTestHelper eth;
eth.SetArgs({"/system/bin/does-not-exist", nullptr});
errno = 0;
ASSERT_EQ(-1, execvp("/system/bin/does-not-exist", eth.GetArgs()));
ASSERT_EQ(ENOENT, errno);
}
TEST(UNISTD_TEST, exec_argv0_null) {
// http://b/33276926
char* args[] = {nullptr};
char* envs[] = {nullptr};
ASSERT_EXIT(execve("/system/bin/run-as", args, envs), testing::ExitedWithCode(1),
"<unknown>: usage: run-as");
}
TEST(UNISTD_TEST, fexecve_failure) {
ExecTestHelper eth;
errno = 0;
int fd = open("/", O_RDONLY);
ASSERT_NE(-1, fd);
ASSERT_EQ(-1, fexecve(fd, eth.GetArgs(), eth.GetEnv()));
ASSERT_EQ(EACCES, errno);
close(fd);
}
TEST(UNISTD_TEST, fexecve_bad_fd) {
ExecTestHelper eth;
errno = 0;
ASSERT_EQ(-1, fexecve(-1, eth.GetArgs(), eth.GetEnv()));
ASSERT_EQ(EBADF, errno);
}
TEST(UNISTD_TEST, fexecve_args) {
// Test basic argument passing.
int echo_fd = open(BIN_DIR "echo", O_RDONLY | O_CLOEXEC);
ASSERT_NE(-1, echo_fd);
ExecTestHelper eth;
eth.SetArgs({"echo", "hello", "world", nullptr});
eth.Run([&]() { fexecve(echo_fd, eth.GetArgs(), eth.GetEnv()); }, 0, "hello world\n");
close(echo_fd);
// Test environment variable setting too.
int printenv_fd = open(BIN_DIR "printenv", O_RDONLY | O_CLOEXEC);
ASSERT_NE(-1, printenv_fd);
eth.SetArgs({"printenv", nullptr});
eth.SetEnv({"A=B", nullptr});
eth.Run([&]() { fexecve(printenv_fd, eth.GetArgs(), eth.GetEnv()); }, 0, "A=B\n");
close(printenv_fd);
}
TEST(UNISTD_TEST, getlogin_r) {
char buf[LOGIN_NAME_MAX] = {};
EXPECT_EQ(ERANGE, getlogin_r(buf, 0));
EXPECT_EQ(0, getlogin_r(buf, sizeof(buf)));
EXPECT_STREQ(getlogin(), buf);
}
TEST(UNISTD_TEST, swab) {
// POSIX: "The swab() function shall copy nbytes bytes, which are pointed to by src,
// to the object pointed to by dest, exchanging adjacent bytes."
char buf[BUFSIZ];
memset(buf, 'x', sizeof(buf));
swab("ehll oowlr\0d", buf, 12);
ASSERT_STREQ("hello world", buf);
}
TEST(UNISTD_TEST, swab_odd_byte_count) {
// POSIX: "If nbytes is odd, swab() copies and exchanges nbytes-1 bytes and the disposition
// of the last byte is unspecified."
// ...but it seems unreasonable to not just leave the last byte alone.
char buf[BUFSIZ];
memset(buf, 'x', sizeof(buf));
swab("012345", buf, 3);
ASSERT_EQ('1', buf[0]);
ASSERT_EQ('0', buf[1]);
ASSERT_EQ('x', buf[2]);
}
TEST(UNISTD_TEST, swab_overlap) {
// POSIX: "If copying takes place between objects that overlap, the behavior is undefined."
// ...but it seems unreasonable to not just do the right thing.
char buf[] = "012345";
swab(buf, buf, 4);
ASSERT_EQ('1', buf[0]);
ASSERT_EQ('0', buf[1]);
ASSERT_EQ('3', buf[2]);
ASSERT_EQ('2', buf[3]);
ASSERT_EQ('4', buf[4]);
ASSERT_EQ('5', buf[5]);
ASSERT_EQ(0, buf[6]);
}
TEST(UNISTD_TEST, swab_negative_byte_count) {
// POSIX: "If nbytes is negative, swab() does nothing."
char buf[BUFSIZ];
memset(buf, 'x', sizeof(buf));
swab("hello", buf, -1);
ASSERT_EQ('x', buf[0]);
}