/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/bio.h>
#include <assert.h>
#include <errno.h>
#include <limits.h>
#include <string.h>
#include <openssl/asn1.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "../internal.h"
BIO *BIO_new(const BIO_METHOD *method) {
BIO *ret = OPENSSL_malloc(sizeof(BIO));
if (ret == NULL) {
OPENSSL_PUT_ERROR(BIO, ERR_R_MALLOC_FAILURE);
return NULL;
}
OPENSSL_memset(ret, 0, sizeof(BIO));
ret->method = method;
ret->shutdown = 1;
ret->references = 1;
if (method->create != NULL && !method->create(ret)) {
OPENSSL_free(ret);
return NULL;
}
return ret;
}
int BIO_free(BIO *bio) {
BIO *next_bio;
for (; bio != NULL; bio = next_bio) {
if (!CRYPTO_refcount_dec_and_test_zero(&bio->references)) {
return 0;
}
next_bio = BIO_pop(bio);
if (bio->method != NULL && bio->method->destroy != NULL) {
bio->method->destroy(bio);
}
OPENSSL_free(bio);
}
return 1;
}
int BIO_up_ref(BIO *bio) {
CRYPTO_refcount_inc(&bio->references);
return 1;
}
void BIO_vfree(BIO *bio) {
BIO_free(bio);
}
void BIO_free_all(BIO *bio) {
BIO_free(bio);
}
int BIO_read(BIO *bio, void *buf, int len) {
if (bio == NULL || bio->method == NULL || bio->method->bread == NULL) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD);
return -2;
}
if (!bio->init) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNINITIALIZED);
return -2;
}
if (len <= 0) {
return 0;
}
int ret = bio->method->bread(bio, buf, len);
if (ret > 0) {
bio->num_read += ret;
}
return ret;
}
int BIO_gets(BIO *bio, char *buf, int len) {
if (bio == NULL || bio->method == NULL || bio->method->bgets == NULL) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD);
return -2;
}
if (!bio->init) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNINITIALIZED);
return -2;
}
if (len <= 0) {
return 0;
}
int ret = bio->method->bgets(bio, buf, len);
if (ret > 0) {
bio->num_read += ret;
}
return ret;
}
int BIO_write(BIO *bio, const void *in, int inl) {
if (bio == NULL || bio->method == NULL || bio->method->bwrite == NULL) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD);
return -2;
}
if (!bio->init) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNINITIALIZED);
return -2;
}
if (inl <= 0) {
return 0;
}
int ret = bio->method->bwrite(bio, in, inl);
if (ret > 0) {
bio->num_write += ret;
}
return ret;
}
int BIO_write_all(BIO *bio, const void *data, size_t len) {
const uint8_t *data_u8 = data;
while (len > 0) {
int ret = BIO_write(bio, data_u8, len > INT_MAX ? INT_MAX : (int)len);
if (ret <= 0) {
return 0;
}
data_u8 += ret;
len -= ret;
}
return 1;
}
int BIO_puts(BIO *bio, const char *in) {
return BIO_write(bio, in, strlen(in));
}
int BIO_flush(BIO *bio) {
return BIO_ctrl(bio, BIO_CTRL_FLUSH, 0, NULL);
}
long BIO_ctrl(BIO *bio, int cmd, long larg, void *parg) {
if (bio == NULL) {
return 0;
}
if (bio->method == NULL || bio->method->ctrl == NULL) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD);
return -2;
}
return bio->method->ctrl(bio, cmd, larg, parg);
}
char *BIO_ptr_ctrl(BIO *b, int cmd, long larg) {
char *p = NULL;
if (BIO_ctrl(b, cmd, larg, (void *)&p) <= 0) {
return NULL;
}
return p;
}
long BIO_int_ctrl(BIO *b, int cmd, long larg, int iarg) {
int i = iarg;
return BIO_ctrl(b, cmd, larg, (void *)&i);
}
int BIO_reset(BIO *bio) {
return BIO_ctrl(bio, BIO_CTRL_RESET, 0, NULL);
}
int BIO_eof(BIO *bio) {
return BIO_ctrl(bio, BIO_CTRL_EOF, 0, NULL);
}
void BIO_set_flags(BIO *bio, int flags) {
bio->flags |= flags;
}
int BIO_test_flags(const BIO *bio, int flags) {
return bio->flags & flags;
}
int BIO_should_read(const BIO *bio) {
return BIO_test_flags(bio, BIO_FLAGS_READ);
}
int BIO_should_write(const BIO *bio) {
return BIO_test_flags(bio, BIO_FLAGS_WRITE);
}
int BIO_should_retry(const BIO *bio) {
return BIO_test_flags(bio, BIO_FLAGS_SHOULD_RETRY);
}
int BIO_should_io_special(const BIO *bio) {
return BIO_test_flags(bio, BIO_FLAGS_IO_SPECIAL);
}
int BIO_get_retry_reason(const BIO *bio) { return bio->retry_reason; }
void BIO_clear_flags(BIO *bio, int flags) {
bio->flags &= ~flags;
}
void BIO_set_retry_read(BIO *bio) {
bio->flags |= BIO_FLAGS_READ | BIO_FLAGS_SHOULD_RETRY;
}
void BIO_set_retry_write(BIO *bio) {
bio->flags |= BIO_FLAGS_WRITE | BIO_FLAGS_SHOULD_RETRY;
}
static const int kRetryFlags = BIO_FLAGS_RWS | BIO_FLAGS_SHOULD_RETRY;
int BIO_get_retry_flags(BIO *bio) {
return bio->flags & kRetryFlags;
}
void BIO_clear_retry_flags(BIO *bio) {
bio->flags &= ~kRetryFlags;
bio->retry_reason = 0;
}
int BIO_method_type(const BIO *bio) { return bio->method->type; }
void BIO_copy_next_retry(BIO *bio) {
BIO_clear_retry_flags(bio);
BIO_set_flags(bio, BIO_get_retry_flags(bio->next_bio));
bio->retry_reason = bio->next_bio->retry_reason;
}
long BIO_callback_ctrl(BIO *bio, int cmd, bio_info_cb fp) {
if (bio == NULL) {
return 0;
}
if (bio->method == NULL || bio->method->callback_ctrl == NULL) {
OPENSSL_PUT_ERROR(BIO, BIO_R_UNSUPPORTED_METHOD);
return 0;
}
return bio->method->callback_ctrl(bio, cmd, fp);
}
size_t BIO_pending(const BIO *bio) {
const long r = BIO_ctrl((BIO *) bio, BIO_CTRL_PENDING, 0, NULL);
assert(r >= 0);
if (r < 0) {
return 0;
}
return r;
}
size_t BIO_ctrl_pending(const BIO *bio) {
return BIO_pending(bio);
}
size_t BIO_wpending(const BIO *bio) {
const long r = BIO_ctrl((BIO *) bio, BIO_CTRL_WPENDING, 0, NULL);
assert(r >= 0);
if (r < 0) {
return 0;
}
return r;
}
int BIO_set_close(BIO *bio, int close_flag) {
return BIO_ctrl(bio, BIO_CTRL_SET_CLOSE, close_flag, NULL);
}
OPENSSL_EXPORT size_t BIO_number_read(const BIO *bio) {
return bio->num_read;
}
OPENSSL_EXPORT size_t BIO_number_written(const BIO *bio) {
return bio->num_write;
}
BIO *BIO_push(BIO *bio, BIO *appended_bio) {
BIO *last_bio;
if (bio == NULL) {
return bio;
}
last_bio = bio;
while (last_bio->next_bio != NULL) {
last_bio = last_bio->next_bio;
}
last_bio->next_bio = appended_bio;
return bio;
}
BIO *BIO_pop(BIO *bio) {
BIO *ret;
if (bio == NULL) {
return NULL;
}
ret = bio->next_bio;
bio->next_bio = NULL;
return ret;
}
BIO *BIO_next(BIO *bio) {
if (!bio) {
return NULL;
}
return bio->next_bio;
}
BIO *BIO_find_type(BIO *bio, int type) {
int method_type, mask;
if (!bio) {
return NULL;
}
mask = type & 0xff;
do {
if (bio->method != NULL) {
method_type = bio->method->type;
if (!mask) {
if (method_type & type) {
return bio;
}
} else if (method_type == type) {
return bio;
}
}
bio = bio->next_bio;
} while (bio != NULL);
return NULL;
}
int BIO_indent(BIO *bio, unsigned indent, unsigned max_indent) {
if (indent > max_indent) {
indent = max_indent;
}
while (indent--) {
if (BIO_puts(bio, " ") != 1) {
return 0;
}
}
return 1;
}
static int print_bio(const char *str, size_t len, void *bio) {
return BIO_write((BIO *)bio, str, len);
}
void ERR_print_errors(BIO *bio) {
ERR_print_errors_cb(print_bio, bio);
}
// bio_read_all reads everything from |bio| and prepends |prefix| to it. On
// success, |*out| is set to an allocated buffer (which should be freed with
// |OPENSSL_free|), |*out_len| is set to its length and one is returned. The
// buffer will contain |prefix| followed by the contents of |bio|. On failure,
// zero is returned.
//
// The function will fail if the size of the output would equal or exceed
// |max_len|.
static int bio_read_all(BIO *bio, uint8_t **out, size_t *out_len,
const uint8_t *prefix, size_t prefix_len,
size_t max_len) {
static const size_t kChunkSize = 4096;
size_t len = prefix_len + kChunkSize;
if (len > max_len) {
len = max_len;
}
if (len < prefix_len) {
return 0;
}
*out = OPENSSL_malloc(len);
if (*out == NULL) {
return 0;
}
OPENSSL_memcpy(*out, prefix, prefix_len);
size_t done = prefix_len;
for (;;) {
if (done == len) {
OPENSSL_free(*out);
return 0;
}
const size_t todo = len - done;
assert(todo < INT_MAX);
const int n = BIO_read(bio, *out + done, todo);
if (n == 0) {
*out_len = done;
return 1;
} else if (n == -1) {
OPENSSL_free(*out);
return 0;
}
done += n;
if (len < max_len && len - done < kChunkSize / 2) {
len += kChunkSize;
if (len < kChunkSize || len > max_len) {
len = max_len;
}
uint8_t *new_buf = OPENSSL_realloc(*out, len);
if (new_buf == NULL) {
OPENSSL_free(*out);
return 0;
}
*out = new_buf;
}
}
}
// bio_read_full reads |len| bytes |bio| and writes them into |out|. It
// tolerates partial reads from |bio| and returns one on success or zero if a
// read fails before |len| bytes are read. On failure, it additionally sets
// |*out_eof_on_first_read| to whether the error was due to |bio| returning zero
// on the first read. |out_eof_on_first_read| may be NULL to discard the value.
static int bio_read_full(BIO *bio, uint8_t *out, int *out_eof_on_first_read,
size_t len) {
int first_read = 1;
while (len > 0) {
int todo = len <= INT_MAX ? (int)len : INT_MAX;
int ret = BIO_read(bio, out, todo);
if (ret <= 0) {
if (out_eof_on_first_read != NULL) {
*out_eof_on_first_read = first_read && ret == 0;
}
return 0;
}
out += ret;
len -= (size_t)ret;
first_read = 0;
}
return 1;
}
// For compatibility with existing |d2i_*_bio| callers, |BIO_read_asn1| uses
// |ERR_LIB_ASN1| errors.
OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_DECODE_ERROR)
OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_HEADER_TOO_LONG)
OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_NOT_ENOUGH_DATA)
OPENSSL_DECLARE_ERROR_REASON(ASN1, ASN1_R_TOO_LONG)
int BIO_read_asn1(BIO *bio, uint8_t **out, size_t *out_len, size_t max_len) {
uint8_t header[6];
static const size_t kInitialHeaderLen = 2;
int eof_on_first_read;
if (!bio_read_full(bio, header, &eof_on_first_read, kInitialHeaderLen)) {
if (eof_on_first_read) {
// Historically, OpenSSL returned |ASN1_R_HEADER_TOO_LONG| when
// |d2i_*_bio| could not read anything. CPython conditions on this to
// determine if |bio| was empty.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_HEADER_TOO_LONG);
} else {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA);
}
return 0;
}
const uint8_t tag = header[0];
const uint8_t length_byte = header[1];
if ((tag & 0x1f) == 0x1f) {
// Long form tags are not supported.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR);
return 0;
}
size_t len, header_len;
if ((length_byte & 0x80) == 0) {
// Short form length.
len = length_byte;
header_len = kInitialHeaderLen;
} else {
const size_t num_bytes = length_byte & 0x7f;
if ((tag & 0x20 /* constructed */) != 0 && num_bytes == 0) {
// indefinite length.
if (!bio_read_all(bio, out, out_len, header, kInitialHeaderLen,
max_len)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA);
return 0;
}
return 1;
}
if (num_bytes == 0 || num_bytes > 4) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR);
return 0;
}
if (!bio_read_full(bio, header + kInitialHeaderLen, NULL, num_bytes)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA);
return 0;
}
header_len = kInitialHeaderLen + num_bytes;
uint32_t len32 = 0;
for (unsigned i = 0; i < num_bytes; i++) {
len32 <<= 8;
len32 |= header[kInitialHeaderLen + i];
}
if (len32 < 128) {
// Length should have used short-form encoding.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR);
return 0;
}
if ((len32 >> ((num_bytes-1)*8)) == 0) {
// Length should have been at least one byte shorter.
OPENSSL_PUT_ERROR(ASN1, ASN1_R_DECODE_ERROR);
return 0;
}
len = len32;
}
if (len + header_len < len ||
len + header_len > max_len ||
len > INT_MAX) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_TOO_LONG);
return 0;
}
len += header_len;
*out_len = len;
*out = OPENSSL_malloc(len);
if (*out == NULL) {
OPENSSL_PUT_ERROR(ASN1, ERR_R_MALLOC_FAILURE);
return 0;
}
OPENSSL_memcpy(*out, header, header_len);
if (!bio_read_full(bio, (*out) + header_len, NULL, len - header_len)) {
OPENSSL_PUT_ERROR(ASN1, ASN1_R_NOT_ENOUGH_DATA);
OPENSSL_free(*out);
return 0;
}
return 1;
}
void BIO_set_retry_special(BIO *bio) {
bio->flags |= BIO_FLAGS_READ | BIO_FLAGS_IO_SPECIAL;
}
int BIO_set_write_buffer_size(BIO *bio, int buffer_size) { return 0; }
static struct CRYPTO_STATIC_MUTEX g_index_lock = CRYPTO_STATIC_MUTEX_INIT;
static int g_index = BIO_TYPE_START;
int BIO_get_new_index(void) {
CRYPTO_STATIC_MUTEX_lock_write(&g_index_lock);
// If |g_index| exceeds 255, it will collide with the flags bits.
int ret = g_index > 255 ? -1 : g_index++;
CRYPTO_STATIC_MUTEX_unlock_write(&g_index_lock);
return ret;
}
BIO_METHOD *BIO_meth_new(int type, const char *name) {
BIO_METHOD *method = OPENSSL_malloc(sizeof(BIO_METHOD));
if (method == NULL) {
return NULL;
}
OPENSSL_memset(method, 0, sizeof(BIO_METHOD));
method->type = type;
method->name = name;
return method;
}
void BIO_meth_free(BIO_METHOD *method) {
OPENSSL_free(method);
}
int BIO_meth_set_create(BIO_METHOD *method,
int (*create)(BIO *)) {
method->create = create;
return 1;
}
int BIO_meth_set_destroy(BIO_METHOD *method,
int (*destroy)(BIO *)) {
method->destroy = destroy;
return 1;
}
int BIO_meth_set_write(BIO_METHOD *method,
int (*write)(BIO *, const char *, int)) {
method->bwrite = write;
return 1;
}
int BIO_meth_set_read(BIO_METHOD *method,
int (*read)(BIO *, char *, int)) {
method->bread = read;
return 1;
}
int BIO_meth_set_gets(BIO_METHOD *method,
int (*gets)(BIO *, char *, int)) {
method->bgets = gets;
return 1;
}
int BIO_meth_set_ctrl(BIO_METHOD *method,
long (*ctrl)(BIO *, int, long, void *)) {
method->ctrl = ctrl;
return 1;
}
void BIO_set_data(BIO *bio, void *ptr) { bio->ptr = ptr; }
void *BIO_get_data(BIO *bio) { return bio->ptr; }
void BIO_set_init(BIO *bio, int init) { bio->init = init; }
int BIO_get_init(BIO *bio) { return bio->init; }
void BIO_set_shutdown(BIO *bio, int shutdown) { bio->shutdown = shutdown; }
int BIO_get_shutdown(BIO *bio) { return bio->shutdown; }
int BIO_meth_set_puts(BIO_METHOD *method, int (*puts)(BIO *, const char *)) {
// Ignore the parameter. We implement |BIO_puts| using |BIO_write|.
return 1;
}