/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ec.h>
#include <assert.h>
#include "internal.h"
#include "../bn/internal.h"
#include "../../internal.h"
static void ec_GFp_mont_mul_single(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_RAW_POINT *p,
const EC_SCALAR *scalar) {
// This is a generic implementation for uncommon curves that not do not
// warrant a tuned one. It uses unsigned digits so that the doubling case in
// |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity.
// Compute a table of the first 32 multiples of |p| (including infinity).
EC_RAW_POINT precomp[32];
ec_GFp_simple_point_set_to_infinity(group, &precomp[0]);
ec_GFp_simple_point_copy(&precomp[1], p);
for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) {
if (j & 1) {
ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]);
} else {
ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]);
}
}
// Divide bits in |scalar| into windows.
unsigned bits = BN_num_bits(&group->order);
int r_is_at_infinity = 1;
for (unsigned i = bits - 1; i < bits; i--) {
if (!r_is_at_infinity) {
ec_GFp_mont_dbl(group, r, r);
}
if (i % 5 == 0) {
// Compute the next window value.
const size_t width = group->order.width;
uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4;
window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3;
window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2;
window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1;
window |= bn_is_bit_set_words(scalar->words, width, i);
// Select the entry in constant-time.
EC_RAW_POINT tmp;
OPENSSL_memset(&tmp, 0, sizeof(EC_RAW_POINT));
for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) {
BN_ULONG mask = constant_time_eq_w(j, window);
ec_felem_select(group, &tmp.X, mask, &precomp[j].X, &tmp.X);
ec_felem_select(group, &tmp.Y, mask, &precomp[j].Y, &tmp.Y);
ec_felem_select(group, &tmp.Z, mask, &precomp[j].Z, &tmp.Z);
}
if (r_is_at_infinity) {
ec_GFp_simple_point_copy(r, &tmp);
r_is_at_infinity = 0;
} else {
ec_GFp_mont_add(group, r, r, &tmp);
}
}
}
if (r_is_at_infinity) {
ec_GFp_simple_point_set_to_infinity(group, r);
}
}
void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r,
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
const EC_SCALAR *p_scalar) {
assert(g_scalar != NULL || p_scalar != NULL);
if (p_scalar == NULL) {
ec_GFp_mont_mul_single(group, r, &group->generator->raw, g_scalar);
} else if (g_scalar == NULL) {
ec_GFp_mont_mul_single(group, r, p, p_scalar);
} else {
// Support constant-time two-point multiplication for compatibility. This
// does not actually come up in keygen, ECDH, or ECDSA, so we implement it
// the naive way.
ec_GFp_mont_mul_single(group, r, &group->generator->raw, g_scalar);
EC_RAW_POINT tmp;
ec_GFp_mont_mul_single(group, &tmp, p, p_scalar);
ec_GFp_mont_add(group, r, r, &tmp);
}
}