普通文本  |  1716行  |  48.02 KB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 *
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 *
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 *
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */
/* ====================================================================
 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */
/* ====================================================================
 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
 * ECC cipher suite support in OpenSSL originally developed by
 * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
 */
/* ====================================================================
 * Copyright 2005 Nokia. All rights reserved.
 *
 * The portions of the attached software ("Contribution") is developed by
 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
 * license.
 *
 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
 * support (see RFC 4279) to OpenSSL.
 *
 * No patent licenses or other rights except those expressly stated in
 * the OpenSSL open source license shall be deemed granted or received
 * expressly, by implication, estoppel, or otherwise.
 *
 * No assurances are provided by Nokia that the Contribution does not
 * infringe the patent or other intellectual property rights of any third
 * party or that the license provides you with all the necessary rights
 * to make use of the Contribution.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
 * OTHERWISE. */

#include <openssl/ssl.h>

#include <assert.h>
#include <string.h>

#include <openssl/buf.h>
#include <openssl/err.h>
#include <openssl/md5.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/stack.h>

#include "internal.h"
#include "../crypto/internal.h"


BSSL_NAMESPACE_BEGIN

static constexpr SSL_CIPHER kCiphers[] = {
    // The RSA ciphers
    // Cipher 02
    {
     SSL3_TXT_RSA_NULL_SHA,
     "TLS_RSA_WITH_NULL_SHA",
     SSL3_CK_RSA_NULL_SHA,
     SSL_kRSA,
     SSL_aRSA,
     SSL_eNULL,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher 0A
    {
     SSL3_TXT_RSA_DES_192_CBC3_SHA,
     "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
     SSL3_CK_RSA_DES_192_CBC3_SHA,
     SSL_kRSA,
     SSL_aRSA,
     SSL_3DES,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },


    // New AES ciphersuites

    // Cipher 2F
    {
     TLS1_TXT_RSA_WITH_AES_128_SHA,
     "TLS_RSA_WITH_AES_128_CBC_SHA",
     TLS1_CK_RSA_WITH_AES_128_SHA,
     SSL_kRSA,
     SSL_aRSA,
     SSL_AES128,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher 35
    {
     TLS1_TXT_RSA_WITH_AES_256_SHA,
     "TLS_RSA_WITH_AES_256_CBC_SHA",
     TLS1_CK_RSA_WITH_AES_256_SHA,
     SSL_kRSA,
     SSL_aRSA,
     SSL_AES256,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // PSK cipher suites.

    // Cipher 8C
    {
     TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
     "TLS_PSK_WITH_AES_128_CBC_SHA",
     TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
     SSL_kPSK,
     SSL_aPSK,
     SSL_AES128,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher 8D
    {
     TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
     "TLS_PSK_WITH_AES_256_CBC_SHA",
     TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
     SSL_kPSK,
     SSL_aPSK,
     SSL_AES256,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // GCM ciphersuites from RFC5288

    // Cipher 9C
    {
     TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
     "TLS_RSA_WITH_AES_128_GCM_SHA256",
     TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
     SSL_kRSA,
     SSL_aRSA,
     SSL_AES128GCM,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher 9D
    {
     TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
     "TLS_RSA_WITH_AES_256_GCM_SHA384",
     TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
     SSL_kRSA,
     SSL_aRSA,
     SSL_AES256GCM,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA384,
    },

    // TLS 1.3 suites.

    // Cipher 1301
    {
      TLS1_TXT_AES_128_GCM_SHA256,
      "TLS_AES_128_GCM_SHA256",
      TLS1_CK_AES_128_GCM_SHA256,
      SSL_kGENERIC,
      SSL_aGENERIC,
      SSL_AES128GCM,
      SSL_AEAD,
      SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher 1302
    {
      TLS1_TXT_AES_256_GCM_SHA384,
      "TLS_AES_256_GCM_SHA384",
      TLS1_CK_AES_256_GCM_SHA384,
      SSL_kGENERIC,
      SSL_aGENERIC,
      SSL_AES256GCM,
      SSL_AEAD,
      SSL_HANDSHAKE_MAC_SHA384,
    },

    // Cipher 1303
    {
      TLS1_TXT_CHACHA20_POLY1305_SHA256,
      "TLS_CHACHA20_POLY1305_SHA256",
      TLS1_CK_CHACHA20_POLY1305_SHA256,
      SSL_kGENERIC,
      SSL_aGENERIC,
      SSL_CHACHA20POLY1305,
      SSL_AEAD,
      SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher C009
    {
     TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
     "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
     TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
     SSL_kECDHE,
     SSL_aECDSA,
     SSL_AES128,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher C00A
    {
     TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
     "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
     TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
     SSL_kECDHE,
     SSL_aECDSA,
     SSL_AES256,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher C013
    {
     TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
     "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
     TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
     SSL_kECDHE,
     SSL_aRSA,
     SSL_AES128,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher C014
    {
     TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
     "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
     TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
     SSL_kECDHE,
     SSL_aRSA,
     SSL_AES256,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // GCM based TLS v1.2 ciphersuites from RFC5289

    // Cipher C02B
    {
     TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
     "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
     TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
     SSL_kECDHE,
     SSL_aECDSA,
     SSL_AES128GCM,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher C02C
    {
     TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
     "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
     TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
     SSL_kECDHE,
     SSL_aECDSA,
     SSL_AES256GCM,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA384,
    },

    // Cipher C02F
    {
     TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
     "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
     TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
     SSL_kECDHE,
     SSL_aRSA,
     SSL_AES128GCM,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher C030
    {
     TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
     "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
     TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
     SSL_kECDHE,
     SSL_aRSA,
     SSL_AES256GCM,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA384,
    },

    // ECDHE-PSK cipher suites.

    // Cipher C035
    {
     TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
     "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
     TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
     SSL_kECDHE,
     SSL_aPSK,
     SSL_AES128,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // Cipher C036
    {
     TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
     "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA",
     TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
     SSL_kECDHE,
     SSL_aPSK,
     SSL_AES256,
     SSL_SHA1,
     SSL_HANDSHAKE_MAC_DEFAULT,
    },

    // ChaCha20-Poly1305 cipher suites.

    // Cipher CCA8
    {
     TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
     "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
     TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
     SSL_kECDHE,
     SSL_aRSA,
     SSL_CHACHA20POLY1305,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher CCA9
    {
     TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
     "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
     TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
     SSL_kECDHE,
     SSL_aECDSA,
     SSL_CHACHA20POLY1305,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA256,
    },

    // Cipher CCAB
    {
     TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
     "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",
     TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
     SSL_kECDHE,
     SSL_aPSK,
     SSL_CHACHA20POLY1305,
     SSL_AEAD,
     SSL_HANDSHAKE_MAC_SHA256,
    },

};

Span<const SSL_CIPHER> AllCiphers() {
  return MakeConstSpan(kCiphers, OPENSSL_ARRAY_SIZE(kCiphers));
}

#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5

typedef struct cipher_order_st {
  const SSL_CIPHER *cipher;
  bool active;
  bool in_group;
  struct cipher_order_st *next, *prev;
} CIPHER_ORDER;

typedef struct cipher_alias_st {
  // name is the name of the cipher alias.
  const char *name;

  // The following fields are bitmasks for the corresponding fields on
  // |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
  // bit corresponding to the cipher's value is set to 1. If any bitmask is
  // all zeroes, the alias matches nothing. Use |~0u| for the default value.
  uint32_t algorithm_mkey;
  uint32_t algorithm_auth;
  uint32_t algorithm_enc;
  uint32_t algorithm_mac;

  // min_version, if non-zero, matches all ciphers which were added in that
  // particular protocol version.
  uint16_t min_version;
} CIPHER_ALIAS;

static const CIPHER_ALIAS kCipherAliases[] = {
    // "ALL" doesn't include eNULL. It must be explicitly enabled.
    {"ALL", ~0u, ~0u, ~0u, ~0u, 0},

    // The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing.

    // key exchange aliases
    // (some of those using only a single bit here combine
    // multiple key exchange algs according to the RFCs.
    {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},

    {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
    {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
    {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},

    {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},

    // server authentication aliases
    {"aRSA", ~0u, SSL_aRSA, ~0u, ~0u, 0},
    {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
    {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
    {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},

    // aliases combining key exchange and server authentication
    {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
    {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
    {"RSA", SSL_kRSA, SSL_aRSA, ~0u, ~0u, 0},
    {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},

    // symmetric encryption aliases
    {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0},
    {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0},
    {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0},
    {"AES", ~0u, ~0u, SSL_AES, ~0u, 0},
    {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0},
    {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0},

    // MAC aliases
    {"SHA1", ~0u, ~0u, ~0u, SSL_SHA1, 0},
    {"SHA", ~0u, ~0u, ~0u, SSL_SHA1, 0},

    // Legacy protocol minimum version aliases. "TLSv1" is intentionally the
    // same as "SSLv3".
    {"SSLv3", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
    {"TLSv1", ~0u, ~0u, ~0u, ~0u, SSL3_VERSION},
    {"TLSv1.2", ~0u, ~0u, ~0u, ~0u, TLS1_2_VERSION},

    // Legacy strength classes.
    {"HIGH", ~0u, ~0u, ~0u, ~0u, 0},
    {"FIPS", ~0u, ~0u, ~0u, ~0u, 0},

    // Temporary no-op aliases corresponding to removed SHA-2 legacy CBC
    // ciphers. These should be removed after 2018-05-14.
    {"SHA256", 0, 0, 0, 0, 0},
    {"SHA384", 0, 0, 0, 0, 0},
};

static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases);

bool ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
                             size_t *out_mac_secret_len,
                             size_t *out_fixed_iv_len, const SSL_CIPHER *cipher,
                             uint16_t version, bool is_dtls) {
  *out_aead = NULL;
  *out_mac_secret_len = 0;
  *out_fixed_iv_len = 0;

  const bool is_tls12 = version == TLS1_2_VERSION && !is_dtls;
  const bool is_tls13 = version == TLS1_3_VERSION && !is_dtls;

  if (cipher->algorithm_mac == SSL_AEAD) {
    if (cipher->algorithm_enc == SSL_AES128GCM) {
      if (is_tls12) {
        *out_aead = EVP_aead_aes_128_gcm_tls12();
      } else if (is_tls13) {
        *out_aead = EVP_aead_aes_128_gcm_tls13();
      } else {
        *out_aead = EVP_aead_aes_128_gcm();
      }
      *out_fixed_iv_len = 4;
    } else if (cipher->algorithm_enc == SSL_AES256GCM) {
      if (is_tls12) {
        *out_aead = EVP_aead_aes_256_gcm_tls12();
      } else if (is_tls13) {
        *out_aead = EVP_aead_aes_256_gcm_tls13();
      } else {
        *out_aead = EVP_aead_aes_256_gcm();
      }
      *out_fixed_iv_len = 4;
    } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
      *out_aead = EVP_aead_chacha20_poly1305();
      *out_fixed_iv_len = 12;
    } else {
      return false;
    }

    // In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
    // above computes the TLS 1.2 construction.
    if (version >= TLS1_3_VERSION) {
      *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
    }
  } else if (cipher->algorithm_mac == SSL_SHA1) {
    if (cipher->algorithm_enc == SSL_eNULL) {
      *out_aead = EVP_aead_null_sha1_tls();
    } else if (cipher->algorithm_enc == SSL_3DES) {
      if (version == TLS1_VERSION) {
        *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
        *out_fixed_iv_len = 8;
      } else {
        *out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
      }
    } else if (cipher->algorithm_enc == SSL_AES128) {
      if (version == TLS1_VERSION) {
        *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
        *out_fixed_iv_len = 16;
      } else {
        *out_aead = EVP_aead_aes_128_cbc_sha1_tls();
      }
    } else if (cipher->algorithm_enc == SSL_AES256) {
      if (version == TLS1_VERSION) {
        *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
        *out_fixed_iv_len = 16;
      } else {
        *out_aead = EVP_aead_aes_256_cbc_sha1_tls();
      }
    } else {
      return false;
    }

    *out_mac_secret_len = SHA_DIGEST_LENGTH;
  } else {
    return false;
  }

  return true;
}

const EVP_MD *ssl_get_handshake_digest(uint16_t version,
                                       const SSL_CIPHER *cipher) {
  switch (cipher->algorithm_prf) {
    case SSL_HANDSHAKE_MAC_DEFAULT:
      return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1();
    case SSL_HANDSHAKE_MAC_SHA256:
      return EVP_sha256();
    case SSL_HANDSHAKE_MAC_SHA384:
      return EVP_sha384();
    default:
      assert(0);
      return NULL;
  }
}

static bool is_cipher_list_separator(char c, bool is_strict) {
  if (c == ':') {
    return true;
  }
  return !is_strict && (c == ' ' || c == ';' || c == ',');
}

// rule_equals returns whether the NUL-terminated string |rule| is equal to the
// |buf_len| bytes at |buf|.
static bool rule_equals(const char *rule, const char *buf, size_t buf_len) {
  // |strncmp| alone only checks that |buf| is a prefix of |rule|.
  return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
}

static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
                           CIPHER_ORDER **tail) {
  if (curr == *tail) {
    return;
  }
  if (curr == *head) {
    *head = curr->next;
  }
  if (curr->prev != NULL) {
    curr->prev->next = curr->next;
  }
  if (curr->next != NULL) {
    curr->next->prev = curr->prev;
  }
  (*tail)->next = curr;
  curr->prev = *tail;
  curr->next = NULL;
  *tail = curr;
}

static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
                           CIPHER_ORDER **tail) {
  if (curr == *head) {
    return;
  }
  if (curr == *tail) {
    *tail = curr->prev;
  }
  if (curr->next != NULL) {
    curr->next->prev = curr->prev;
  }
  if (curr->prev != NULL) {
    curr->prev->next = curr->next;
  }
  (*head)->prev = curr;
  curr->next = *head;
  curr->prev = NULL;
  *head = curr;
}

static bool ssl_cipher_collect_ciphers(Array<CIPHER_ORDER> *out_co_list,
                                       CIPHER_ORDER **out_head,
                                       CIPHER_ORDER **out_tail) {
  Array<CIPHER_ORDER> co_list;
  if (!co_list.Init(OPENSSL_ARRAY_SIZE(kCiphers))) {
    return false;
  }

  size_t co_list_num = 0;
  for (const SSL_CIPHER &cipher : kCiphers) {
    // TLS 1.3 ciphers do not participate in this mechanism.
    if (cipher.algorithm_mkey != SSL_kGENERIC) {
      co_list[co_list_num].cipher = &cipher;
      co_list[co_list_num].next = NULL;
      co_list[co_list_num].prev = NULL;
      co_list[co_list_num].active = false;
      co_list[co_list_num].in_group = false;
      co_list_num++;
    }
  }

  // Prepare linked list from list entries.
  if (co_list_num > 0) {
    co_list[0].prev = NULL;

    if (co_list_num > 1) {
      co_list[0].next = &co_list[1];

      for (size_t i = 1; i < co_list_num - 1; i++) {
        co_list[i].prev = &co_list[i - 1];
        co_list[i].next = &co_list[i + 1];
      }

      co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
    }

    co_list[co_list_num - 1].next = NULL;

    *out_head = &co_list[0];
    *out_tail = &co_list[co_list_num - 1];
  } else {
    *out_head = nullptr;
    *out_tail = nullptr;
  }
  *out_co_list = std::move(co_list);
  return true;
}

SSLCipherPreferenceList::~SSLCipherPreferenceList() {
  OPENSSL_free(in_group_flags);
}

bool SSLCipherPreferenceList::Init(UniquePtr<STACK_OF(SSL_CIPHER)> ciphers_arg,
                                   Span<const bool> in_group_flags_arg) {
  if (sk_SSL_CIPHER_num(ciphers_arg.get()) != in_group_flags_arg.size()) {
    OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
    return false;
  }

  Array<bool> copy;
  if (!copy.CopyFrom(in_group_flags_arg)) {
    return false;
  }
  ciphers = std::move(ciphers_arg);
  size_t unused_len;
  copy.Release(&in_group_flags, &unused_len);
  return true;
}

bool SSLCipherPreferenceList::Init(const SSLCipherPreferenceList& other) {
  size_t size = sk_SSL_CIPHER_num(other.ciphers.get());
  Span<const bool> other_flags(other.in_group_flags, size);
  UniquePtr<STACK_OF(SSL_CIPHER)> other_ciphers(sk_SSL_CIPHER_dup(
      other.ciphers.get()));
  if (!other_ciphers) {
    return false;
  }
  return Init(std::move(other_ciphers), other_flags);
}

void SSLCipherPreferenceList::Remove(const SSL_CIPHER *cipher) {
  size_t index;
  if (!sk_SSL_CIPHER_find(ciphers.get(), &index, cipher)) {
    return;
  }
  if (!in_group_flags[index] /* last element of group */ && index > 0) {
    in_group_flags[index-1] = false;
  }
  for (size_t i = index; i < sk_SSL_CIPHER_num(ciphers.get()) - 1; ++i) {
    in_group_flags[i] = in_group_flags[i+1];
  }
  sk_SSL_CIPHER_delete(ciphers.get(), index);
}

// ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
// parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
// head and tail of the list to |*head_p| and |*tail_p|, respectively.
//
// - If |cipher_id| is non-zero, only that cipher is selected.
// - Otherwise, if |strength_bits| is non-negative, it selects ciphers
//   of that strength.
// - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
//   |min_version|.
static void ssl_cipher_apply_rule(
    uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
    uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule,
    int strength_bits, bool in_group, CIPHER_ORDER **head_p,
    CIPHER_ORDER **tail_p) {
  CIPHER_ORDER *head, *tail, *curr, *next, *last;
  const SSL_CIPHER *cp;
  bool reverse = false;

  if (cipher_id == 0 && strength_bits == -1 && min_version == 0 &&
      (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) {
    // The rule matches nothing, so bail early.
    return;
  }

  if (rule == CIPHER_DEL) {
    // needed to maintain sorting between currently deleted ciphers
    reverse = true;
  }

  head = *head_p;
  tail = *tail_p;

  if (reverse) {
    next = tail;
    last = head;
  } else {
    next = head;
    last = tail;
  }

  curr = NULL;
  for (;;) {
    if (curr == last) {
      break;
    }

    curr = next;
    if (curr == NULL) {
      break;
    }

    next = reverse ? curr->prev : curr->next;
    cp = curr->cipher;

    // Selection criteria is either a specific cipher, the value of
    // |strength_bits|, or the algorithms used.
    if (cipher_id != 0) {
      if (cipher_id != cp->id) {
        continue;
      }
    } else if (strength_bits >= 0) {
      if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
        continue;
      }
    } else {
      if (!(alg_mkey & cp->algorithm_mkey) ||
          !(alg_auth & cp->algorithm_auth) ||
          !(alg_enc & cp->algorithm_enc) ||
          !(alg_mac & cp->algorithm_mac) ||
          (min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version) ||
          // The NULL cipher must be selected explicitly.
          cp->algorithm_enc == SSL_eNULL) {
        continue;
      }
    }

    // add the cipher if it has not been added yet.
    if (rule == CIPHER_ADD) {
      // reverse == false
      if (!curr->active) {
        ll_append_tail(&head, curr, &tail);
        curr->active = true;
        curr->in_group = in_group;
      }
    }

    // Move the added cipher to this location
    else if (rule == CIPHER_ORD) {
      // reverse == false
      if (curr->active) {
        ll_append_tail(&head, curr, &tail);
        curr->in_group = false;
      }
    } else if (rule == CIPHER_DEL) {
      // reverse == true
      if (curr->active) {
        // most recently deleted ciphersuites get best positions
        // for any future CIPHER_ADD (note that the CIPHER_DEL loop
        // works in reverse to maintain the order)
        ll_append_head(&head, curr, &tail);
        curr->active = false;
        curr->in_group = false;
      }
    } else if (rule == CIPHER_KILL) {
      // reverse == false
      if (head == curr) {
        head = curr->next;
      } else {
        curr->prev->next = curr->next;
      }

      if (tail == curr) {
        tail = curr->prev;
      }
      curr->active = false;
      if (curr->next != NULL) {
        curr->next->prev = curr->prev;
      }
      if (curr->prev != NULL) {
        curr->prev->next = curr->next;
      }
      curr->next = NULL;
      curr->prev = NULL;
    }
  }

  *head_p = head;
  *tail_p = tail;
}

static bool ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
                                     CIPHER_ORDER **tail_p) {
  // This routine sorts the ciphers with descending strength. The sorting must
  // keep the pre-sorted sequence, so we apply the normal sorting routine as
  // '+' movement to the end of the list.
  int max_strength_bits = 0;
  CIPHER_ORDER *curr = *head_p;
  while (curr != NULL) {
    if (curr->active &&
        SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
      max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
    }
    curr = curr->next;
  }

  Array<int> number_uses;
  if (!number_uses.Init(max_strength_bits + 1)) {
    return false;
  }
  OPENSSL_memset(number_uses.data(), 0, (max_strength_bits + 1) * sizeof(int));

  // Now find the strength_bits values actually used.
  curr = *head_p;
  while (curr != NULL) {
    if (curr->active) {
      number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
    }
    curr = curr->next;
  }

  // Go through the list of used strength_bits values in descending order.
  for (int i = max_strength_bits; i >= 0; i--) {
    if (number_uses[i] > 0) {
      ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, false, head_p,
                            tail_p);
    }
  }

  return true;
}

static bool ssl_cipher_process_rulestr(const char *rule_str,
                                       CIPHER_ORDER **head_p,
                                       CIPHER_ORDER **tail_p, bool strict) {
  uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
  uint16_t min_version;
  const char *l, *buf;
  int rule;
  bool multi, skip_rule, in_group = false, has_group = false;
  size_t j, buf_len;
  uint32_t cipher_id;
  char ch;

  l = rule_str;
  for (;;) {
    ch = *l;

    if (ch == '\0') {
      break;  // done
    }

    if (in_group) {
      if (ch == ']') {
        if (*tail_p) {
          (*tail_p)->in_group = false;
        }
        in_group = false;
        l++;
        continue;
      }

      if (ch == '|') {
        rule = CIPHER_ADD;
        l++;
        continue;
      } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
                 !(ch >= '0' && ch <= '9')) {
        OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
        return false;
      } else {
        rule = CIPHER_ADD;
      }
    } else if (ch == '-') {
      rule = CIPHER_DEL;
      l++;
    } else if (ch == '+') {
      rule = CIPHER_ORD;
      l++;
    } else if (ch == '!') {
      rule = CIPHER_KILL;
      l++;
    } else if (ch == '@') {
      rule = CIPHER_SPECIAL;
      l++;
    } else if (ch == '[') {
      assert(!in_group);
      in_group = true;
      has_group = true;
      l++;
      continue;
    } else {
      rule = CIPHER_ADD;
    }

    // If preference groups are enabled, the only legal operator is +.
    // Otherwise the in_group bits will get mixed up.
    if (has_group && rule != CIPHER_ADD) {
      OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
      return false;
    }

    if (is_cipher_list_separator(ch, strict)) {
      l++;
      continue;
    }

    multi = false;
    cipher_id = 0;
    alg_mkey = ~0u;
    alg_auth = ~0u;
    alg_enc = ~0u;
    alg_mac = ~0u;
    min_version = 0;
    skip_rule = false;

    for (;;) {
      ch = *l;
      buf = l;
      buf_len = 0;
      while ((ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') ||
             (ch >= 'a' && ch <= 'z') || ch == '-' || ch == '.' || ch == '_') {
        ch = *(++l);
        buf_len++;
      }

      if (buf_len == 0) {
        // We hit something we cannot deal with, it is no command or separator
        // nor alphanumeric, so we call this an error.
        OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
        return false;
      }

      if (rule == CIPHER_SPECIAL) {
        break;
      }

      // Look for a matching exact cipher. These aren't allowed in multipart
      // rules.
      if (!multi && ch != '+') {
        for (j = 0; j < OPENSSL_ARRAY_SIZE(kCiphers); j++) {
          const SSL_CIPHER *cipher = &kCiphers[j];
          if (rule_equals(cipher->name, buf, buf_len) ||
              rule_equals(cipher->standard_name, buf, buf_len)) {
            cipher_id = cipher->id;
            break;
          }
        }
      }
      if (cipher_id == 0) {
        // If not an exact cipher, look for a matching cipher alias.
        for (j = 0; j < kCipherAliasesLen; j++) {
          if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
            alg_mkey &= kCipherAliases[j].algorithm_mkey;
            alg_auth &= kCipherAliases[j].algorithm_auth;
            alg_enc &= kCipherAliases[j].algorithm_enc;
            alg_mac &= kCipherAliases[j].algorithm_mac;

            if (min_version != 0 &&
                min_version != kCipherAliases[j].min_version) {
              skip_rule = true;
            } else {
              min_version = kCipherAliases[j].min_version;
            }
            break;
          }
        }
        if (j == kCipherAliasesLen) {
          skip_rule = true;
          if (strict) {
            OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
            return false;
          }
        }
      }

      // Check for a multipart rule.
      if (ch != '+') {
        break;
      }
      l++;
      multi = true;
    }

    // Ok, we have the rule, now apply it.
    if (rule == CIPHER_SPECIAL) {
      if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) {
        OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
        return false;
      }
      if (!ssl_cipher_strength_sort(head_p, tail_p)) {
        return false;
      }

      // We do not support any "multi" options together with "@", so throw away
      // the rest of the command, if any left, until end or ':' is found.
      while (*l != '\0' && !is_cipher_list_separator(*l, strict)) {
        l++;
      }
    } else if (!skip_rule) {
      ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
                            min_version, rule, -1, in_group, head_p, tail_p);
    }
  }

  if (in_group) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
    return false;
  }

  return true;
}

bool ssl_create_cipher_list(UniquePtr<SSLCipherPreferenceList> *out_cipher_list,
                            const char *rule_str, bool strict) {
  // Return with error if nothing to do.
  if (rule_str == NULL || out_cipher_list == NULL) {
    return false;
  }

  // Now we have to collect the available ciphers from the compiled in ciphers.
  // We cannot get more than the number compiled in, so it is used for
  // allocation.
  Array<CIPHER_ORDER> co_list;
  CIPHER_ORDER *head = nullptr, *tail = nullptr;
  if (!ssl_cipher_collect_ciphers(&co_list, &head, &tail)) {
    return false;
  }

  // Now arrange all ciphers by preference:
  // TODO(davidben): Compute this order once and copy it.

  // Everything else being equal, prefer ECDHE_ECDSA and ECDHE_RSA over other
  // key exchange mechanisms
  ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1,
                        false, &head, &tail);
  ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false,
                        &head, &tail);
  ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head,
                        &tail);

  // Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
  // CHACHA20 unless there is hardware support for fast and constant-time
  // AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the
  // old one.
  if (EVP_has_aes_hardware()) {
    ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1,
                          false, &head, &tail);
    ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1,
                          false, &head, &tail);
    ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
                          -1, false, &head, &tail);
  } else {
    ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
                          -1, false, &head, &tail);
    ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1,
                          false, &head, &tail);
    ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1,
                          false, &head, &tail);
  }

  // Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC,
  // 3DES_EDE_CBC_SHA.
  ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, false,
                        &head, &tail);
  ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, false,
                        &head, &tail);
  ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, false,
                        &head, &tail);

  // Temporarily enable everything else for sorting
  ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, false, &head,
                        &tail);

  // Move ciphers without forward secrecy to the end.
  ssl_cipher_apply_rule(0, (SSL_kRSA | SSL_kPSK), ~0u, ~0u, ~0u, 0, CIPHER_ORD,
                        -1, false, &head, &tail);

  // Now disable everything (maintaining the ordering!)
  ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, false, &head,
                        &tail);

  // If the rule_string begins with DEFAULT, apply the default rule before
  // using the (possibly available) additional rules.
  const char *rule_p = rule_str;
  if (strncmp(rule_str, "DEFAULT", 7) == 0) {
    if (!ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST, &head, &tail,
                                    strict)) {
      return false;
    }
    rule_p += 7;
    if (*rule_p == ':') {
      rule_p++;
    }
  }

  if (*rule_p != '\0' &&
      !ssl_cipher_process_rulestr(rule_p, &head, &tail, strict)) {
    return false;
  }

  // Allocate new "cipherstack" for the result, return with error
  // if we cannot get one.
  UniquePtr<STACK_OF(SSL_CIPHER)> cipherstack(sk_SSL_CIPHER_new_null());
  Array<bool> in_group_flags;
  if (cipherstack == nullptr ||
      !in_group_flags.Init(OPENSSL_ARRAY_SIZE(kCiphers))) {
    return false;
  }

  // The cipher selection for the list is done. The ciphers are added
  // to the resulting precedence to the STACK_OF(SSL_CIPHER).
  size_t num_in_group_flags = 0;
  for (CIPHER_ORDER *curr = head; curr != NULL; curr = curr->next) {
    if (curr->active) {
      if (!sk_SSL_CIPHER_push(cipherstack.get(), curr->cipher)) {
        return false;
      }
      in_group_flags[num_in_group_flags++] = curr->in_group;
    }
  }

  UniquePtr<SSLCipherPreferenceList> pref_list =
      MakeUnique<SSLCipherPreferenceList>();
  if (!pref_list ||
      !pref_list->Init(
          std::move(cipherstack),
          MakeConstSpan(in_group_flags).subspan(0, num_in_group_flags))) {
    return false;
  }

  *out_cipher_list = std::move(pref_list);

  // Configuring an empty cipher list is an error but still updates the
  // output.
  if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers.get()) == 0) {
    OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
    return false;
  }

  return true;
}

uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
  uint32_t id = cipher->id;
  // All OpenSSL cipher IDs are prefaced with 0x03. Historically this referred
  // to SSLv2 vs SSLv3.
  assert((id & 0xff000000) == 0x03000000);
  return id & 0xffff;
}

uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key) {
  switch (EVP_PKEY_id(key)) {
    case EVP_PKEY_RSA:
      return SSL_aRSA;
    case EVP_PKEY_EC:
    case EVP_PKEY_ED25519:
      // Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers.
      return SSL_aECDSA;
    default:
      return 0;
  }
}

bool ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
  return (cipher->algorithm_auth & SSL_aCERT) != 0;
}

bool ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
  // Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. It is
  // optional or omitted in all others.
  return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
}

size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
  size_t block_size;
  switch (cipher->algorithm_enc) {
    case SSL_3DES:
      block_size = 8;
      break;
    case SSL_AES128:
    case SSL_AES256:
      block_size = 16;
      break;
    default:
      return 0;
  }

  // All supported TLS 1.0 ciphers use SHA-1.
  assert(cipher->algorithm_mac == SSL_SHA1);
  size_t ret = 1 + SHA_DIGEST_LENGTH;
  ret += block_size - (ret % block_size);
  return ret;
}

BSSL_NAMESPACE_END

using namespace bssl;

static constexpr int ssl_cipher_id_cmp_inner(const SSL_CIPHER *a,
                                             const SSL_CIPHER *b) {
  // C++11's constexpr functions must have a body consisting of just a
  // return-statement.
  return (a->id > b->id) ? 1 : ((a->id < b->id) ? -1 : 0);
}

static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
  return ssl_cipher_id_cmp_inner(reinterpret_cast<const SSL_CIPHER *>(in_a),
                                 reinterpret_cast<const SSL_CIPHER *>(in_b));
}

template <typename T, size_t N>
static constexpr size_t countof(T const (&)[N]) {
  return N;
}

template <typename T, size_t I>
static constexpr int check_order(const T (&arr)[I], size_t N) {
  // C++11's constexpr functions must have a body consisting of just a
  // return-statement.
  return N > 1 ? ((ssl_cipher_id_cmp_inner(&arr[N - 2], &arr[N - 1]) < 0)
                      ? check_order(arr, N - 1)
                      : 0)
               : 1;
}

static_assert(check_order(kCiphers, countof(kCiphers)) == 1,
              "Ciphers are not sorted, bsearch won't work");

const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
  SSL_CIPHER c;

  c.id = 0x03000000L | value;
  return reinterpret_cast<const SSL_CIPHER *>(bsearch(
      &c, kCiphers, OPENSSL_ARRAY_SIZE(kCiphers), sizeof(SSL_CIPHER),
      ssl_cipher_id_cmp));
}

uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }

int SSL_CIPHER_is_aead(const SSL_CIPHER *cipher) {
  return (cipher->algorithm_mac & SSL_AEAD) != 0;
}

int SSL_CIPHER_get_cipher_nid(const SSL_CIPHER *cipher) {
  switch (cipher->algorithm_enc) {
    case SSL_eNULL:
      return NID_undef;
    case SSL_3DES:
      return NID_des_ede3_cbc;
    case SSL_AES128:
      return NID_aes_128_cbc;
    case SSL_AES256:
      return NID_aes_256_cbc;
    case SSL_AES128GCM:
      return NID_aes_128_gcm;
    case SSL_AES256GCM:
      return NID_aes_256_gcm;
    case SSL_CHACHA20POLY1305:
      return NID_chacha20_poly1305;
  }
  assert(0);
  return NID_undef;
}

int SSL_CIPHER_get_digest_nid(const SSL_CIPHER *cipher) {
  switch (cipher->algorithm_mac) {
    case SSL_AEAD:
      return NID_undef;
    case SSL_SHA1:
      return NID_sha1;
  }
  assert(0);
  return NID_undef;
}

int SSL_CIPHER_get_kx_nid(const SSL_CIPHER *cipher) {
  switch (cipher->algorithm_mkey) {
    case SSL_kRSA:
      return NID_kx_rsa;
    case SSL_kECDHE:
      return NID_kx_ecdhe;
    case SSL_kPSK:
      return NID_kx_psk;
    case SSL_kGENERIC:
      return NID_kx_any;
  }
  assert(0);
  return NID_undef;
}

int SSL_CIPHER_get_auth_nid(const SSL_CIPHER *cipher) {
  switch (cipher->algorithm_auth) {
    case SSL_aRSA:
      return NID_auth_rsa;
    case SSL_aECDSA:
      return NID_auth_ecdsa;
    case SSL_aPSK:
      return NID_auth_psk;
    case SSL_aGENERIC:
      return NID_auth_any;
  }
  assert(0);
  return NID_undef;
}

int SSL_CIPHER_get_prf_nid(const SSL_CIPHER *cipher) {
  switch (cipher->algorithm_prf) {
    case SSL_HANDSHAKE_MAC_DEFAULT:
      return NID_md5_sha1;
    case SSL_HANDSHAKE_MAC_SHA256:
      return NID_sha256;
    case SSL_HANDSHAKE_MAC_SHA384:
      return NID_sha384;
  }
  assert(0);
  return NID_undef;
}

int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
  return (cipher->algorithm_enc & SSL_eNULL) == 0 &&
      cipher->algorithm_mac != SSL_AEAD;
}

uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
  if (cipher->algorithm_mkey == SSL_kGENERIC ||
      cipher->algorithm_auth == SSL_aGENERIC) {
    return TLS1_3_VERSION;
  }

  if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
    // Cipher suites before TLS 1.2 use the default PRF, while all those added
    // afterwards specify a particular hash.
    return TLS1_2_VERSION;
  }
  return SSL3_VERSION;
}

uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
  if (cipher->algorithm_mkey == SSL_kGENERIC ||
      cipher->algorithm_auth == SSL_aGENERIC) {
    return TLS1_3_VERSION;
  }
  return TLS1_2_VERSION;
}

// return the actual cipher being used
const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
  if (cipher != NULL) {
    return cipher->name;
  }

  return "(NONE)";
}

const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) {
  return cipher->standard_name;
}

const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
  if (cipher == NULL) {
    return "";
  }

  switch (cipher->algorithm_mkey) {
    case SSL_kRSA:
      return "RSA";

    case SSL_kECDHE:
      switch (cipher->algorithm_auth) {
        case SSL_aECDSA:
          return "ECDHE_ECDSA";
        case SSL_aRSA:
          return "ECDHE_RSA";
        case SSL_aPSK:
          return "ECDHE_PSK";
        default:
          assert(0);
          return "UNKNOWN";
      }

    case SSL_kPSK:
      assert(cipher->algorithm_auth == SSL_aPSK);
      return "PSK";

    case SSL_kGENERIC:
      assert(cipher->algorithm_auth == SSL_aGENERIC);
      return "GENERIC";

    default:
      assert(0);
      return "UNKNOWN";
  }
}

char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
  if (cipher == NULL) {
    return NULL;
  }

  return OPENSSL_strdup(SSL_CIPHER_standard_name(cipher));
}

int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
  if (cipher == NULL) {
    return 0;
  }

  int alg_bits, strength_bits;
  switch (cipher->algorithm_enc) {
    case SSL_AES128:
    case SSL_AES128GCM:
      alg_bits = 128;
      strength_bits = 128;
      break;

    case SSL_AES256:
    case SSL_AES256GCM:
    case SSL_CHACHA20POLY1305:
      alg_bits = 256;
      strength_bits = 256;
      break;

    case SSL_3DES:
      alg_bits = 168;
      strength_bits = 112;
      break;

    case SSL_eNULL:
      alg_bits = 0;
      strength_bits = 0;
      break;

    default:
      assert(0);
      alg_bits = 0;
      strength_bits = 0;
  }

  if (out_alg_bits != NULL) {
    *out_alg_bits = alg_bits;
  }
  return strength_bits;
}

const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
                                   int len) {
  const char *kx, *au, *enc, *mac;
  uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;

  alg_mkey = cipher->algorithm_mkey;
  alg_auth = cipher->algorithm_auth;
  alg_enc = cipher->algorithm_enc;
  alg_mac = cipher->algorithm_mac;

  switch (alg_mkey) {
    case SSL_kRSA:
      kx = "RSA";
      break;

    case SSL_kECDHE:
      kx = "ECDH";
      break;

    case SSL_kPSK:
      kx = "PSK";
      break;

    case SSL_kGENERIC:
      kx = "GENERIC";
      break;

    default:
      kx = "unknown";
  }

  switch (alg_auth) {
    case SSL_aRSA:
      au = "RSA";
      break;

    case SSL_aECDSA:
      au = "ECDSA";
      break;

    case SSL_aPSK:
      au = "PSK";
      break;

    case SSL_aGENERIC:
      au = "GENERIC";
      break;

    default:
      au = "unknown";
      break;
  }

  switch (alg_enc) {
    case SSL_3DES:
      enc = "3DES(168)";
      break;

    case SSL_AES128:
      enc = "AES(128)";
      break;

    case SSL_AES256:
      enc = "AES(256)";
      break;

    case SSL_AES128GCM:
      enc = "AESGCM(128)";
      break;

    case SSL_AES256GCM:
      enc = "AESGCM(256)";
      break;

    case SSL_CHACHA20POLY1305:
      enc = "ChaCha20-Poly1305";
      break;

    case SSL_eNULL:
      enc="None";
      break;

    default:
      enc = "unknown";
      break;
  }

  switch (alg_mac) {
    case SSL_SHA1:
      mac = "SHA1";
      break;

    case SSL_AEAD:
      mac = "AEAD";
      break;

    default:
      mac = "unknown";
      break;
  }

  if (buf == NULL) {
    len = 128;
    buf = (char *)OPENSSL_malloc(len);
    if (buf == NULL) {
      return NULL;
    }
  } else if (len < 128) {
    return "Buffer too small";
  }

  BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
               cipher->name, kx, au, enc, mac);
  return buf;
}

const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
  return "TLSv1/SSLv3";
}

STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; }

int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }

const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }

const char *SSL_COMP_get0_name(const SSL_COMP *comp) { return comp->name; }

int SSL_COMP_get_id(const SSL_COMP *comp) { return comp->id; }

void SSL_COMP_free_compression_methods(void) {}