//===--- ASTDiagnostic.cpp - Diagnostic Printing Hooks for AST Nodes ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a diagnostic formatting hook for AST elements.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
// Returns a desugared version of the QualType, and marks ShouldAKA as true
// whenever we remove significant sugar from the type.
static QualType Desugar(ASTContext &Context, QualType QT, bool &ShouldAKA) {
QualifierCollector QC;
while (true) {
const Type *Ty = QC.strip(QT);
// Don't aka just because we saw an elaborated type...
if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Ty)) {
QT = ET->desugar();
continue;
}
// ... or a paren type ...
if (const ParenType *PT = dyn_cast<ParenType>(Ty)) {
QT = PT->desugar();
continue;
}
// ...or a substituted template type parameter ...
if (const SubstTemplateTypeParmType *ST =
dyn_cast<SubstTemplateTypeParmType>(Ty)) {
QT = ST->desugar();
continue;
}
// ...or an attributed type...
if (const AttributedType *AT = dyn_cast<AttributedType>(Ty)) {
QT = AT->desugar();
continue;
}
// ...or an adjusted type...
if (const AdjustedType *AT = dyn_cast<AdjustedType>(Ty)) {
QT = AT->desugar();
continue;
}
// ... or an auto type.
if (const AutoType *AT = dyn_cast<AutoType>(Ty)) {
if (!AT->isSugared())
break;
QT = AT->desugar();
continue;
}
// Desugar FunctionType if return type or any parameter type should be
// desugared. Preserve nullability attribute on desugared types.
if (const FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
bool DesugarReturn = false;
QualType SugarRT = FT->getReturnType();
QualType RT = Desugar(Context, SugarRT, DesugarReturn);
if (auto nullability = AttributedType::stripOuterNullability(SugarRT)) {
RT = Context.getAttributedType(
AttributedType::getNullabilityAttrKind(*nullability), RT, RT);
}
bool DesugarArgument = false;
SmallVector<QualType, 4> Args;
const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT);
if (FPT) {
for (QualType SugarPT : FPT->param_types()) {
QualType PT = Desugar(Context, SugarPT, DesugarArgument);
if (auto nullability =
AttributedType::stripOuterNullability(SugarPT)) {
PT = Context.getAttributedType(
AttributedType::getNullabilityAttrKind(*nullability), PT, PT);
}
Args.push_back(PT);
}
}
if (DesugarReturn || DesugarArgument) {
ShouldAKA = true;
QT = FPT ? Context.getFunctionType(RT, Args, FPT->getExtProtoInfo())
: Context.getFunctionNoProtoType(RT, FT->getExtInfo());
break;
}
}
// Desugar template specializations if any template argument should be
// desugared.
if (const TemplateSpecializationType *TST =
dyn_cast<TemplateSpecializationType>(Ty)) {
if (!TST->isTypeAlias()) {
bool DesugarArgument = false;
SmallVector<TemplateArgument, 4> Args;
for (unsigned I = 0, N = TST->getNumArgs(); I != N; ++I) {
const TemplateArgument &Arg = TST->getArg(I);
if (Arg.getKind() == TemplateArgument::Type)
Args.push_back(Desugar(Context, Arg.getAsType(), DesugarArgument));
else
Args.push_back(Arg);
}
if (DesugarArgument) {
ShouldAKA = true;
QT = Context.getTemplateSpecializationType(
TST->getTemplateName(), Args, QT);
}
break;
}
}
// Don't desugar magic Objective-C types.
if (QualType(Ty,0) == Context.getObjCIdType() ||
QualType(Ty,0) == Context.getObjCClassType() ||
QualType(Ty,0) == Context.getObjCSelType() ||
QualType(Ty,0) == Context.getObjCProtoType())
break;
// Don't desugar va_list.
if (QualType(Ty, 0) == Context.getBuiltinVaListType() ||
QualType(Ty, 0) == Context.getBuiltinMSVaListType())
break;
// Otherwise, do a single-step desugar.
QualType Underlying;
bool IsSugar = false;
switch (Ty->getTypeClass()) {
#define ABSTRACT_TYPE(Class, Base)
#define TYPE(Class, Base) \
case Type::Class: { \
const Class##Type *CTy = cast<Class##Type>(Ty); \
if (CTy->isSugared()) { \
IsSugar = true; \
Underlying = CTy->desugar(); \
} \
break; \
}
#include "clang/AST/TypeNodes.def"
}
// If it wasn't sugared, we're done.
if (!IsSugar)
break;
// If the desugared type is a vector type, we don't want to expand
// it, it will turn into an attribute mess. People want their "vec4".
if (isa<VectorType>(Underlying))
break;
// Don't desugar through the primary typedef of an anonymous type.
if (const TagType *UTT = Underlying->getAs<TagType>())
if (const TypedefType *QTT = dyn_cast<TypedefType>(QT))
if (UTT->getDecl()->getTypedefNameForAnonDecl() == QTT->getDecl())
break;
// Record that we actually looked through an opaque type here.
ShouldAKA = true;
QT = Underlying;
}
// If we have a pointer-like type, desugar the pointee as well.
// FIXME: Handle other pointer-like types.
if (const PointerType *Ty = QT->getAs<PointerType>()) {
QT = Context.getPointerType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
} else if (const auto *Ty = QT->getAs<ObjCObjectPointerType>()) {
QT = Context.getObjCObjectPointerType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
} else if (const LValueReferenceType *Ty = QT->getAs<LValueReferenceType>()) {
QT = Context.getLValueReferenceType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
} else if (const RValueReferenceType *Ty = QT->getAs<RValueReferenceType>()) {
QT = Context.getRValueReferenceType(Desugar(Context, Ty->getPointeeType(),
ShouldAKA));
} else if (const auto *Ty = QT->getAs<ObjCObjectType>()) {
if (Ty->getBaseType().getTypePtr() != Ty && !ShouldAKA) {
QualType BaseType = Desugar(Context, Ty->getBaseType(), ShouldAKA);
QT = Context.getObjCObjectType(BaseType, Ty->getTypeArgsAsWritten(),
llvm::makeArrayRef(Ty->qual_begin(),
Ty->getNumProtocols()),
Ty->isKindOfTypeAsWritten());
}
}
return QC.apply(Context, QT);
}
/// \brief Convert the given type to a string suitable for printing as part of
/// a diagnostic.
///
/// There are four main criteria when determining whether we should have an
/// a.k.a. clause when pretty-printing a type:
///
/// 1) Some types provide very minimal sugar that doesn't impede the
/// user's understanding --- for example, elaborated type
/// specifiers. If this is all the sugar we see, we don't want an
/// a.k.a. clause.
/// 2) Some types are technically sugared but are much more familiar
/// when seen in their sugared form --- for example, va_list,
/// vector types, and the magic Objective C types. We don't
/// want to desugar these, even if we do produce an a.k.a. clause.
/// 3) Some types may have already been desugared previously in this diagnostic.
/// if this is the case, doing another "aka" would just be clutter.
/// 4) Two different types within the same diagnostic have the same output
/// string. In this case, force an a.k.a with the desugared type when
/// doing so will provide additional information.
///
/// \param Context the context in which the type was allocated
/// \param Ty the type to print
/// \param QualTypeVals pointer values to QualTypes which are used in the
/// diagnostic message
static std::string
ConvertTypeToDiagnosticString(ASTContext &Context, QualType Ty,
ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs,
ArrayRef<intptr_t> QualTypeVals) {
// FIXME: Playing with std::string is really slow.
bool ForceAKA = false;
QualType CanTy = Ty.getCanonicalType();
std::string S = Ty.getAsString(Context.getPrintingPolicy());
std::string CanS = CanTy.getAsString(Context.getPrintingPolicy());
for (unsigned I = 0, E = QualTypeVals.size(); I != E; ++I) {
QualType CompareTy =
QualType::getFromOpaquePtr(reinterpret_cast<void*>(QualTypeVals[I]));
if (CompareTy.isNull())
continue;
if (CompareTy == Ty)
continue; // Same types
QualType CompareCanTy = CompareTy.getCanonicalType();
if (CompareCanTy == CanTy)
continue; // Same canonical types
std::string CompareS = CompareTy.getAsString(Context.getPrintingPolicy());
bool ShouldAKA = false;
QualType CompareDesugar = Desugar(Context, CompareTy, ShouldAKA);
std::string CompareDesugarStr =
CompareDesugar.getAsString(Context.getPrintingPolicy());
if (CompareS != S && CompareDesugarStr != S)
continue; // The type string is different than the comparison string
// and the desugared comparison string.
std::string CompareCanS =
CompareCanTy.getAsString(Context.getPrintingPolicy());
if (CompareCanS == CanS)
continue; // No new info from canonical type
ForceAKA = true;
break;
}
// Check to see if we already desugared this type in this
// diagnostic. If so, don't do it again.
bool Repeated = false;
for (unsigned i = 0, e = PrevArgs.size(); i != e; ++i) {
// TODO: Handle ak_declcontext case.
if (PrevArgs[i].first == DiagnosticsEngine::ak_qualtype) {
void *Ptr = (void*)PrevArgs[i].second;
QualType PrevTy(QualType::getFromOpaquePtr(Ptr));
if (PrevTy == Ty) {
Repeated = true;
break;
}
}
}
// Consider producing an a.k.a. clause if removing all the direct
// sugar gives us something "significantly different".
if (!Repeated) {
bool ShouldAKA = false;
QualType DesugaredTy = Desugar(Context, Ty, ShouldAKA);
if (ShouldAKA || ForceAKA) {
if (DesugaredTy == Ty) {
DesugaredTy = Ty.getCanonicalType();
}
std::string akaStr = DesugaredTy.getAsString(Context.getPrintingPolicy());
if (akaStr != S) {
S = "'" + S + "' (aka '" + akaStr + "')";
return S;
}
}
// Give some additional info on vector types. These are either not desugared
// or displaying complex __attribute__ expressions so add details of the
// type and element count.
if (Ty->isVectorType()) {
const VectorType *VTy = Ty->getAs<VectorType>();
std::string DecoratedString;
llvm::raw_string_ostream OS(DecoratedString);
const char *Values = VTy->getNumElements() > 1 ? "values" : "value";
OS << "'" << S << "' (vector of " << VTy->getNumElements() << " '"
<< VTy->getElementType().getAsString(Context.getPrintingPolicy())
<< "' " << Values << ")";
return OS.str();
}
}
S = "'" + S + "'";
return S;
}
static bool FormatTemplateTypeDiff(ASTContext &Context, QualType FromType,
QualType ToType, bool PrintTree,
bool PrintFromType, bool ElideType,
bool ShowColors, raw_ostream &OS);
void clang::FormatASTNodeDiagnosticArgument(
DiagnosticsEngine::ArgumentKind Kind,
intptr_t Val,
StringRef Modifier,
StringRef Argument,
ArrayRef<DiagnosticsEngine::ArgumentValue> PrevArgs,
SmallVectorImpl<char> &Output,
void *Cookie,
ArrayRef<intptr_t> QualTypeVals) {
ASTContext &Context = *static_cast<ASTContext*>(Cookie);
size_t OldEnd = Output.size();
llvm::raw_svector_ostream OS(Output);
bool NeedQuotes = true;
switch (Kind) {
default: llvm_unreachable("unknown ArgumentKind");
case DiagnosticsEngine::ak_qualtype_pair: {
TemplateDiffTypes &TDT = *reinterpret_cast<TemplateDiffTypes*>(Val);
QualType FromType =
QualType::getFromOpaquePtr(reinterpret_cast<void*>(TDT.FromType));
QualType ToType =
QualType::getFromOpaquePtr(reinterpret_cast<void*>(TDT.ToType));
if (FormatTemplateTypeDiff(Context, FromType, ToType, TDT.PrintTree,
TDT.PrintFromType, TDT.ElideType,
TDT.ShowColors, OS)) {
NeedQuotes = !TDT.PrintTree;
TDT.TemplateDiffUsed = true;
break;
}
// Don't fall-back during tree printing. The caller will handle
// this case.
if (TDT.PrintTree)
return;
// Attempting to do a template diff on non-templates. Set the variables
// and continue with regular type printing of the appropriate type.
Val = TDT.PrintFromType ? TDT.FromType : TDT.ToType;
Modifier = StringRef();
Argument = StringRef();
// Fall through
}
case DiagnosticsEngine::ak_qualtype: {
assert(Modifier.empty() && Argument.empty() &&
"Invalid modifier for QualType argument");
QualType Ty(QualType::getFromOpaquePtr(reinterpret_cast<void*>(Val)));
OS << ConvertTypeToDiagnosticString(Context, Ty, PrevArgs, QualTypeVals);
NeedQuotes = false;
break;
}
case DiagnosticsEngine::ak_declarationname: {
if (Modifier == "objcclass" && Argument.empty())
OS << '+';
else if (Modifier == "objcinstance" && Argument.empty())
OS << '-';
else
assert(Modifier.empty() && Argument.empty() &&
"Invalid modifier for DeclarationName argument");
OS << DeclarationName::getFromOpaqueInteger(Val);
break;
}
case DiagnosticsEngine::ak_nameddecl: {
bool Qualified;
if (Modifier == "q" && Argument.empty())
Qualified = true;
else {
assert(Modifier.empty() && Argument.empty() &&
"Invalid modifier for NamedDecl* argument");
Qualified = false;
}
const NamedDecl *ND = reinterpret_cast<const NamedDecl*>(Val);
ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), Qualified);
break;
}
case DiagnosticsEngine::ak_nestednamespec: {
NestedNameSpecifier *NNS = reinterpret_cast<NestedNameSpecifier*>(Val);
NNS->print(OS, Context.getPrintingPolicy());
NeedQuotes = false;
break;
}
case DiagnosticsEngine::ak_declcontext: {
DeclContext *DC = reinterpret_cast<DeclContext *> (Val);
assert(DC && "Should never have a null declaration context");
NeedQuotes = false;
// FIXME: Get the strings for DeclContext from some localized place
if (DC->isTranslationUnit()) {
if (Context.getLangOpts().CPlusPlus)
OS << "the global namespace";
else
OS << "the global scope";
} else if (DC->isClosure()) {
OS << "block literal";
} else if (isLambdaCallOperator(DC)) {
OS << "lambda expression";
} else if (TypeDecl *Type = dyn_cast<TypeDecl>(DC)) {
OS << ConvertTypeToDiagnosticString(Context,
Context.getTypeDeclType(Type),
PrevArgs, QualTypeVals);
} else {
assert(isa<NamedDecl>(DC) && "Expected a NamedDecl");
NamedDecl *ND = cast<NamedDecl>(DC);
if (isa<NamespaceDecl>(ND))
OS << "namespace ";
else if (isa<ObjCMethodDecl>(ND))
OS << "method ";
else if (isa<FunctionDecl>(ND))
OS << "function ";
OS << '\'';
ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true);
OS << '\'';
}
break;
}
case DiagnosticsEngine::ak_attr: {
const Attr *At = reinterpret_cast<Attr *>(Val);
assert(At && "Received null Attr object!");
OS << '\'' << At->getSpelling() << '\'';
NeedQuotes = false;
break;
}
}
if (NeedQuotes) {
Output.insert(Output.begin()+OldEnd, '\'');
Output.push_back('\'');
}
}
/// TemplateDiff - A class that constructs a pretty string for a pair of
/// QualTypes. For the pair of types, a diff tree will be created containing
/// all the information about the templates and template arguments. Afterwards,
/// the tree is transformed to a string according to the options passed in.
namespace {
class TemplateDiff {
/// Context - The ASTContext which is used for comparing template arguments.
ASTContext &Context;
/// Policy - Used during expression printing.
PrintingPolicy Policy;
/// ElideType - Option to elide identical types.
bool ElideType;
/// PrintTree - Format output string as a tree.
bool PrintTree;
/// ShowColor - Diagnostics support color, so bolding will be used.
bool ShowColor;
/// FromTemplateType - When single type printing is selected, this is the
/// type to be be printed. When tree printing is selected, this type will
/// show up first in the tree.
QualType FromTemplateType;
/// ToTemplateType - The type that FromType is compared to. Only in tree
/// printing will this type be outputed.
QualType ToTemplateType;
/// OS - The stream used to construct the output strings.
raw_ostream &OS;
/// IsBold - Keeps track of the bold formatting for the output string.
bool IsBold;
/// DiffTree - A tree representation the differences between two types.
class DiffTree {
public:
/// DiffKind - The difference in a DiffNode. Fields of
/// TemplateArgumentInfo needed by each difference can be found in the
/// Set* and Get* functions.
enum DiffKind {
/// Incomplete or invalid node.
Invalid,
/// Another level of templates
Template,
/// Type difference, all type differences except those falling under
/// the Template difference.
Type,
/// Expression difference, this is only when both arguments are
/// expressions. If one argument is an expression and the other is
/// Integer or Declaration, then use that diff type instead.
Expression,
/// Template argument difference
TemplateTemplate,
/// Integer difference
Integer,
/// Declaration difference, nullptr arguments are included here
Declaration,
/// One argument being integer and the other being declaration
FromIntegerAndToDeclaration,
FromDeclarationAndToInteger
};
private:
/// TemplateArgumentInfo - All the information needed to pretty print
/// a template argument. See the Set* and Get* functions to see which
/// fields are used for each DiffKind.
struct TemplateArgumentInfo {
QualType ArgType;
Qualifiers Qual;
llvm::APSInt Val;
bool IsValidInt = false;
Expr *ArgExpr = nullptr;
TemplateDecl *TD = nullptr;
ValueDecl *VD = nullptr;
bool NeedAddressOf = false;
bool IsNullPtr = false;
bool IsDefault = false;
};
/// DiffNode - The root node stores the original type. Each child node
/// stores template arguments of their parents. For templated types, the
/// template decl is also stored.
struct DiffNode {
DiffKind Kind = Invalid;
/// NextNode - The index of the next sibling node or 0.
unsigned NextNode = 0;
/// ChildNode - The index of the first child node or 0.
unsigned ChildNode = 0;
/// ParentNode - The index of the parent node.
unsigned ParentNode = 0;
TemplateArgumentInfo FromArgInfo, ToArgInfo;
/// Same - Whether the two arguments evaluate to the same value.
bool Same = false;
DiffNode(unsigned ParentNode = 0) : ParentNode(ParentNode) {}
};
/// FlatTree - A flattened tree used to store the DiffNodes.
SmallVector<DiffNode, 16> FlatTree;
/// CurrentNode - The index of the current node being used.
unsigned CurrentNode;
/// NextFreeNode - The index of the next unused node. Used when creating
/// child nodes.
unsigned NextFreeNode;
/// ReadNode - The index of the current node being read.
unsigned ReadNode;
public:
DiffTree() :
CurrentNode(0), NextFreeNode(1) {
FlatTree.push_back(DiffNode());
}
// Node writing functions, one for each valid DiffKind element.
void SetTemplateDiff(TemplateDecl *FromTD, TemplateDecl *ToTD,
Qualifiers FromQual, Qualifiers ToQual,
bool FromDefault, bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = Template;
FlatTree[CurrentNode].FromArgInfo.TD = FromTD;
FlatTree[CurrentNode].ToArgInfo.TD = ToTD;
FlatTree[CurrentNode].FromArgInfo.Qual = FromQual;
FlatTree[CurrentNode].ToArgInfo.Qual = ToQual;
SetDefault(FromDefault, ToDefault);
}
void SetTypeDiff(QualType FromType, QualType ToType, bool FromDefault,
bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = Type;
FlatTree[CurrentNode].FromArgInfo.ArgType = FromType;
FlatTree[CurrentNode].ToArgInfo.ArgType = ToType;
SetDefault(FromDefault, ToDefault);
}
void SetExpressionDiff(Expr *FromExpr, Expr *ToExpr, bool FromDefault,
bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = Expression;
FlatTree[CurrentNode].FromArgInfo.ArgExpr = FromExpr;
FlatTree[CurrentNode].ToArgInfo.ArgExpr = ToExpr;
SetDefault(FromDefault, ToDefault);
}
void SetTemplateTemplateDiff(TemplateDecl *FromTD, TemplateDecl *ToTD,
bool FromDefault, bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = TemplateTemplate;
FlatTree[CurrentNode].FromArgInfo.TD = FromTD;
FlatTree[CurrentNode].ToArgInfo.TD = ToTD;
SetDefault(FromDefault, ToDefault);
}
void SetIntegerDiff(const llvm::APSInt &FromInt, const llvm::APSInt &ToInt,
bool IsValidFromInt, bool IsValidToInt,
QualType FromIntType, QualType ToIntType,
Expr *FromExpr, Expr *ToExpr, bool FromDefault,
bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = Integer;
FlatTree[CurrentNode].FromArgInfo.Val = FromInt;
FlatTree[CurrentNode].ToArgInfo.Val = ToInt;
FlatTree[CurrentNode].FromArgInfo.IsValidInt = IsValidFromInt;
FlatTree[CurrentNode].ToArgInfo.IsValidInt = IsValidToInt;
FlatTree[CurrentNode].FromArgInfo.ArgType = FromIntType;
FlatTree[CurrentNode].ToArgInfo.ArgType = ToIntType;
FlatTree[CurrentNode].FromArgInfo.ArgExpr = FromExpr;
FlatTree[CurrentNode].ToArgInfo.ArgExpr = ToExpr;
SetDefault(FromDefault, ToDefault);
}
void SetDeclarationDiff(ValueDecl *FromValueDecl, ValueDecl *ToValueDecl,
bool FromAddressOf, bool ToAddressOf,
bool FromNullPtr, bool ToNullPtr, Expr *FromExpr,
Expr *ToExpr, bool FromDefault, bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = Declaration;
FlatTree[CurrentNode].FromArgInfo.VD = FromValueDecl;
FlatTree[CurrentNode].ToArgInfo.VD = ToValueDecl;
FlatTree[CurrentNode].FromArgInfo.NeedAddressOf = FromAddressOf;
FlatTree[CurrentNode].ToArgInfo.NeedAddressOf = ToAddressOf;
FlatTree[CurrentNode].FromArgInfo.IsNullPtr = FromNullPtr;
FlatTree[CurrentNode].ToArgInfo.IsNullPtr = ToNullPtr;
FlatTree[CurrentNode].FromArgInfo.ArgExpr = FromExpr;
FlatTree[CurrentNode].ToArgInfo.ArgExpr = ToExpr;
SetDefault(FromDefault, ToDefault);
}
void SetFromDeclarationAndToIntegerDiff(
ValueDecl *FromValueDecl, bool FromAddressOf, bool FromNullPtr,
Expr *FromExpr, const llvm::APSInt &ToInt, bool IsValidToInt,
QualType ToIntType, Expr *ToExpr, bool FromDefault, bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = FromDeclarationAndToInteger;
FlatTree[CurrentNode].FromArgInfo.VD = FromValueDecl;
FlatTree[CurrentNode].FromArgInfo.NeedAddressOf = FromAddressOf;
FlatTree[CurrentNode].FromArgInfo.IsNullPtr = FromNullPtr;
FlatTree[CurrentNode].FromArgInfo.ArgExpr = FromExpr;
FlatTree[CurrentNode].ToArgInfo.Val = ToInt;
FlatTree[CurrentNode].ToArgInfo.IsValidInt = IsValidToInt;
FlatTree[CurrentNode].ToArgInfo.ArgType = ToIntType;
FlatTree[CurrentNode].ToArgInfo.ArgExpr = ToExpr;
SetDefault(FromDefault, ToDefault);
}
void SetFromIntegerAndToDeclarationDiff(
const llvm::APSInt &FromInt, bool IsValidFromInt, QualType FromIntType,
Expr *FromExpr, ValueDecl *ToValueDecl, bool ToAddressOf,
bool ToNullPtr, Expr *ToExpr, bool FromDefault, bool ToDefault) {
assert(FlatTree[CurrentNode].Kind == Invalid && "Node is not empty.");
FlatTree[CurrentNode].Kind = FromIntegerAndToDeclaration;
FlatTree[CurrentNode].FromArgInfo.Val = FromInt;
FlatTree[CurrentNode].FromArgInfo.IsValidInt = IsValidFromInt;
FlatTree[CurrentNode].FromArgInfo.ArgType = FromIntType;
FlatTree[CurrentNode].FromArgInfo.ArgExpr = FromExpr;
FlatTree[CurrentNode].ToArgInfo.VD = ToValueDecl;
FlatTree[CurrentNode].ToArgInfo.NeedAddressOf = ToAddressOf;
FlatTree[CurrentNode].ToArgInfo.IsNullPtr = ToNullPtr;
FlatTree[CurrentNode].ToArgInfo.ArgExpr = ToExpr;
SetDefault(FromDefault, ToDefault);
}
/// SetDefault - Sets FromDefault and ToDefault flags of the current node.
void SetDefault(bool FromDefault, bool ToDefault) {
assert((!FromDefault || !ToDefault) && "Both arguments cannot be default.");
FlatTree[CurrentNode].FromArgInfo.IsDefault = FromDefault;
FlatTree[CurrentNode].ToArgInfo.IsDefault = ToDefault;
}
/// SetSame - Sets the same flag of the current node.
void SetSame(bool Same) {
FlatTree[CurrentNode].Same = Same;
}
/// SetKind - Sets the current node's type.
void SetKind(DiffKind Kind) {
FlatTree[CurrentNode].Kind = Kind;
}
/// Up - Changes the node to the parent of the current node.
void Up() {
assert(FlatTree[CurrentNode].Kind != Invalid &&
"Cannot exit node before setting node information.");
CurrentNode = FlatTree[CurrentNode].ParentNode;
}
/// AddNode - Adds a child node to the current node, then sets that node
/// node as the current node.
void AddNode() {
assert(FlatTree[CurrentNode].Kind == Template &&
"Only Template nodes can have children nodes.");
FlatTree.push_back(DiffNode(CurrentNode));
DiffNode &Node = FlatTree[CurrentNode];
if (Node.ChildNode == 0) {
// If a child node doesn't exist, add one.
Node.ChildNode = NextFreeNode;
} else {
// If a child node exists, find the last child node and add a
// next node to it.
unsigned i;
for (i = Node.ChildNode; FlatTree[i].NextNode != 0;
i = FlatTree[i].NextNode) {
}
FlatTree[i].NextNode = NextFreeNode;
}
CurrentNode = NextFreeNode;
++NextFreeNode;
}
// Node reading functions.
/// StartTraverse - Prepares the tree for recursive traversal.
void StartTraverse() {
ReadNode = 0;
CurrentNode = NextFreeNode;
NextFreeNode = 0;
}
/// Parent - Move the current read node to its parent.
void Parent() {
ReadNode = FlatTree[ReadNode].ParentNode;
}
void GetTemplateDiff(TemplateDecl *&FromTD, TemplateDecl *&ToTD,
Qualifiers &FromQual, Qualifiers &ToQual) {
assert(FlatTree[ReadNode].Kind == Template && "Unexpected kind.");
FromTD = FlatTree[ReadNode].FromArgInfo.TD;
ToTD = FlatTree[ReadNode].ToArgInfo.TD;
FromQual = FlatTree[ReadNode].FromArgInfo.Qual;
ToQual = FlatTree[ReadNode].ToArgInfo.Qual;
}
void GetTypeDiff(QualType &FromType, QualType &ToType) {
assert(FlatTree[ReadNode].Kind == Type && "Unexpected kind");
FromType = FlatTree[ReadNode].FromArgInfo.ArgType;
ToType = FlatTree[ReadNode].ToArgInfo.ArgType;
}
void GetExpressionDiff(Expr *&FromExpr, Expr *&ToExpr) {
assert(FlatTree[ReadNode].Kind == Expression && "Unexpected kind");
FromExpr = FlatTree[ReadNode].FromArgInfo.ArgExpr;
ToExpr = FlatTree[ReadNode].ToArgInfo.ArgExpr;
}
void GetTemplateTemplateDiff(TemplateDecl *&FromTD, TemplateDecl *&ToTD) {
assert(FlatTree[ReadNode].Kind == TemplateTemplate && "Unexpected kind.");
FromTD = FlatTree[ReadNode].FromArgInfo.TD;
ToTD = FlatTree[ReadNode].ToArgInfo.TD;
}
void GetIntegerDiff(llvm::APSInt &FromInt, llvm::APSInt &ToInt,
bool &IsValidFromInt, bool &IsValidToInt,
QualType &FromIntType, QualType &ToIntType,
Expr *&FromExpr, Expr *&ToExpr) {
assert(FlatTree[ReadNode].Kind == Integer && "Unexpected kind.");
FromInt = FlatTree[ReadNode].FromArgInfo.Val;
ToInt = FlatTree[ReadNode].ToArgInfo.Val;
IsValidFromInt = FlatTree[ReadNode].FromArgInfo.IsValidInt;
IsValidToInt = FlatTree[ReadNode].ToArgInfo.IsValidInt;
FromIntType = FlatTree[ReadNode].FromArgInfo.ArgType;
ToIntType = FlatTree[ReadNode].ToArgInfo.ArgType;
FromExpr = FlatTree[ReadNode].FromArgInfo.ArgExpr;
ToExpr = FlatTree[ReadNode].ToArgInfo.ArgExpr;
}
void GetDeclarationDiff(ValueDecl *&FromValueDecl, ValueDecl *&ToValueDecl,
bool &FromAddressOf, bool &ToAddressOf,
bool &FromNullPtr, bool &ToNullPtr, Expr *&FromExpr,
Expr *&ToExpr) {
assert(FlatTree[ReadNode].Kind == Declaration && "Unexpected kind.");
FromValueDecl = FlatTree[ReadNode].FromArgInfo.VD;
ToValueDecl = FlatTree[ReadNode].ToArgInfo.VD;
FromAddressOf = FlatTree[ReadNode].FromArgInfo.NeedAddressOf;
ToAddressOf = FlatTree[ReadNode].ToArgInfo.NeedAddressOf;
FromNullPtr = FlatTree[ReadNode].FromArgInfo.IsNullPtr;
ToNullPtr = FlatTree[ReadNode].ToArgInfo.IsNullPtr;
FromExpr = FlatTree[ReadNode].FromArgInfo.ArgExpr;
ToExpr = FlatTree[ReadNode].ToArgInfo.ArgExpr;
}
void GetFromDeclarationAndToIntegerDiff(
ValueDecl *&FromValueDecl, bool &FromAddressOf, bool &FromNullPtr,
Expr *&FromExpr, llvm::APSInt &ToInt, bool &IsValidToInt,
QualType &ToIntType, Expr *&ToExpr) {
assert(FlatTree[ReadNode].Kind == FromDeclarationAndToInteger &&
"Unexpected kind.");
FromValueDecl = FlatTree[ReadNode].FromArgInfo.VD;
FromAddressOf = FlatTree[ReadNode].FromArgInfo.NeedAddressOf;
FromNullPtr = FlatTree[ReadNode].FromArgInfo.IsNullPtr;
FromExpr = FlatTree[ReadNode].FromArgInfo.ArgExpr;
ToInt = FlatTree[ReadNode].ToArgInfo.Val;
IsValidToInt = FlatTree[ReadNode].ToArgInfo.IsValidInt;
ToIntType = FlatTree[ReadNode].ToArgInfo.ArgType;
ToExpr = FlatTree[ReadNode].ToArgInfo.ArgExpr;
}
void GetFromIntegerAndToDeclarationDiff(
llvm::APSInt &FromInt, bool &IsValidFromInt, QualType &FromIntType,
Expr *&FromExpr, ValueDecl *&ToValueDecl, bool &ToAddressOf,
bool &ToNullPtr, Expr *&ToExpr) {
assert(FlatTree[ReadNode].Kind == FromIntegerAndToDeclaration &&
"Unexpected kind.");
FromInt = FlatTree[ReadNode].FromArgInfo.Val;
IsValidFromInt = FlatTree[ReadNode].FromArgInfo.IsValidInt;
FromIntType = FlatTree[ReadNode].FromArgInfo.ArgType;
FromExpr = FlatTree[ReadNode].FromArgInfo.ArgExpr;
ToValueDecl = FlatTree[ReadNode].ToArgInfo.VD;
ToAddressOf = FlatTree[ReadNode].ToArgInfo.NeedAddressOf;
ToNullPtr = FlatTree[ReadNode].ToArgInfo.IsNullPtr;
ToExpr = FlatTree[ReadNode].ToArgInfo.ArgExpr;
}
/// FromDefault - Return true if the from argument is the default.
bool FromDefault() {
return FlatTree[ReadNode].FromArgInfo.IsDefault;
}
/// ToDefault - Return true if the to argument is the default.
bool ToDefault() {
return FlatTree[ReadNode].ToArgInfo.IsDefault;
}
/// NodeIsSame - Returns true the arguments are the same.
bool NodeIsSame() {
return FlatTree[ReadNode].Same;
}
/// HasChildrend - Returns true if the node has children.
bool HasChildren() {
return FlatTree[ReadNode].ChildNode != 0;
}
/// MoveToChild - Moves from the current node to its child.
void MoveToChild() {
ReadNode = FlatTree[ReadNode].ChildNode;
}
/// AdvanceSibling - If there is a next sibling, advance to it and return
/// true. Otherwise, return false.
bool AdvanceSibling() {
if (FlatTree[ReadNode].NextNode == 0)
return false;
ReadNode = FlatTree[ReadNode].NextNode;
return true;
}
/// HasNextSibling - Return true if the node has a next sibling.
bool HasNextSibling() {
return FlatTree[ReadNode].NextNode != 0;
}
/// Empty - Returns true if the tree has no information.
bool Empty() {
return GetKind() == Invalid;
}
/// GetKind - Returns the current node's type.
DiffKind GetKind() {
return FlatTree[ReadNode].Kind;
}
};
DiffTree Tree;
/// TSTiterator - a pair of iterators that walks the
/// TemplateSpecializationType and the desugared TemplateSpecializationType.
/// The deseguared TemplateArgument should provide the canonical argument
/// for comparisons.
class TSTiterator {
typedef const TemplateArgument& reference;
typedef const TemplateArgument* pointer;
/// InternalIterator - an iterator that is used to enter a
/// TemplateSpecializationType and read TemplateArguments inside template
/// parameter packs in order with the rest of the TemplateArguments.
struct InternalIterator {
/// TST - the template specialization whose arguments this iterator
/// traverse over.
const TemplateSpecializationType *TST;
/// Index - the index of the template argument in TST.
unsigned Index;
/// CurrentTA - if CurrentTA is not the same as EndTA, then CurrentTA
/// points to a TemplateArgument within a parameter pack.
TemplateArgument::pack_iterator CurrentTA;
/// EndTA - the end iterator of a parameter pack
TemplateArgument::pack_iterator EndTA;
/// InternalIterator - Constructs an iterator and sets it to the first
/// template argument.
InternalIterator(const TemplateSpecializationType *TST)
: TST(TST), Index(0), CurrentTA(nullptr), EndTA(nullptr) {
if (isEnd()) return;
// Set to first template argument. If not a parameter pack, done.
TemplateArgument TA = TST->getArg(0);
if (TA.getKind() != TemplateArgument::Pack) return;
// Start looking into the parameter pack.
CurrentTA = TA.pack_begin();
EndTA = TA.pack_end();
// Found a valid template argument.
if (CurrentTA != EndTA) return;
// Parameter pack is empty, use the increment to get to a valid
// template argument.
++(*this);
}
/// isEnd - Returns true if the iterator is one past the end.
bool isEnd() const {
return Index >= TST->getNumArgs();
}
/// &operator++ - Increment the iterator to the next template argument.
InternalIterator &operator++() {
if (isEnd()) {
return *this;
}
// If in a parameter pack, advance in the parameter pack.
if (CurrentTA != EndTA) {
++CurrentTA;
if (CurrentTA != EndTA)
return *this;
}
// Loop until a template argument is found, or the end is reached.
while (true) {
// Advance to the next template argument. Break if reached the end.
if (++Index == TST->getNumArgs())
break;
// If the TemplateArgument is not a parameter pack, done.
TemplateArgument TA = TST->getArg(Index);
if (TA.getKind() != TemplateArgument::Pack)
break;
// Handle parameter packs.
CurrentTA = TA.pack_begin();
EndTA = TA.pack_end();
// If the parameter pack is empty, try to advance again.
if (CurrentTA != EndTA)
break;
}
return *this;
}
/// operator* - Returns the appropriate TemplateArgument.
reference operator*() const {
assert(!isEnd() && "Index exceeds number of arguments.");
if (CurrentTA == EndTA)
return TST->getArg(Index);
else
return *CurrentTA;
}
/// operator-> - Allow access to the underlying TemplateArgument.
pointer operator->() const {
return &operator*();
}
};
bool UseDesugaredIterator;
InternalIterator SugaredIterator;
InternalIterator DesugaredIterator;
public:
TSTiterator(ASTContext &Context, const TemplateSpecializationType *TST)
: UseDesugaredIterator(TST->isSugared() && !TST->isTypeAlias()),
SugaredIterator(TST),
DesugaredIterator(
GetTemplateSpecializationType(Context, TST->desugar())) {}
/// &operator++ - Increment the iterator to the next template argument.
TSTiterator &operator++() {
++SugaredIterator;
if (UseDesugaredIterator)
++DesugaredIterator;
return *this;
}
/// operator* - Returns the appropriate TemplateArgument.
reference operator*() const {
return *SugaredIterator;
}
/// operator-> - Allow access to the underlying TemplateArgument.
pointer operator->() const {
return &operator*();
}
/// isEnd - Returns true if no more TemplateArguments are available.
bool isEnd() const {
return SugaredIterator.isEnd();
}
/// hasDesugaredTA - Returns true if there is another TemplateArgument
/// available.
bool hasDesugaredTA() const {
return UseDesugaredIterator && !DesugaredIterator.isEnd();
}
/// getDesugaredTA - Returns the desugared TemplateArgument.
reference getDesugaredTA() const {
assert(UseDesugaredIterator &&
"Desugared TemplateArgument should not be used.");
return *DesugaredIterator;
}
};
// These functions build up the template diff tree, including functions to
// retrieve and compare template arguments.
static const TemplateSpecializationType *GetTemplateSpecializationType(
ASTContext &Context, QualType Ty) {
if (const TemplateSpecializationType *TST =
Ty->getAs<TemplateSpecializationType>())
return TST;
const RecordType *RT = Ty->getAs<RecordType>();
if (!RT)
return nullptr;
const ClassTemplateSpecializationDecl *CTSD =
dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
if (!CTSD)
return nullptr;
Ty = Context.getTemplateSpecializationType(
TemplateName(CTSD->getSpecializedTemplate()),
CTSD->getTemplateArgs().asArray(),
Ty.getLocalUnqualifiedType().getCanonicalType());
return Ty->getAs<TemplateSpecializationType>();
}
/// Returns true if the DiffType is Type and false for Template.
static bool OnlyPerformTypeDiff(ASTContext &Context, QualType FromType,
QualType ToType,
const TemplateSpecializationType *&FromArgTST,
const TemplateSpecializationType *&ToArgTST) {
if (FromType.isNull() || ToType.isNull())
return true;
if (Context.hasSameType(FromType, ToType))
return true;
FromArgTST = GetTemplateSpecializationType(Context, FromType);
ToArgTST = GetTemplateSpecializationType(Context, ToType);
if (!FromArgTST || !ToArgTST)
return true;
if (!hasSameTemplate(FromArgTST, ToArgTST))
return true;
return false;
}
/// DiffTypes - Fills a DiffNode with information about a type difference.
void DiffTypes(const TSTiterator &FromIter, const TSTiterator &ToIter) {
QualType FromType = GetType(FromIter);
QualType ToType = GetType(ToIter);
bool FromDefault = FromIter.isEnd() && !FromType.isNull();
bool ToDefault = ToIter.isEnd() && !ToType.isNull();
const TemplateSpecializationType *FromArgTST = nullptr;
const TemplateSpecializationType *ToArgTST = nullptr;
if (OnlyPerformTypeDiff(Context, FromType, ToType, FromArgTST, ToArgTST)) {
Tree.SetTypeDiff(FromType, ToType, FromDefault, ToDefault);
Tree.SetSame(!FromType.isNull() && !ToType.isNull() &&
Context.hasSameType(FromType, ToType));
} else {
assert(FromArgTST && ToArgTST &&
"Both template specializations need to be valid.");
Qualifiers FromQual = FromType.getQualifiers(),
ToQual = ToType.getQualifiers();
FromQual -= QualType(FromArgTST, 0).getQualifiers();
ToQual -= QualType(ToArgTST, 0).getQualifiers();
Tree.SetTemplateDiff(FromArgTST->getTemplateName().getAsTemplateDecl(),
ToArgTST->getTemplateName().getAsTemplateDecl(),
FromQual, ToQual, FromDefault, ToDefault);
DiffTemplate(FromArgTST, ToArgTST);
}
}
/// DiffTemplateTemplates - Fills a DiffNode with information about a
/// template template difference.
void DiffTemplateTemplates(const TSTiterator &FromIter,
const TSTiterator &ToIter) {
TemplateDecl *FromDecl = GetTemplateDecl(FromIter);
TemplateDecl *ToDecl = GetTemplateDecl(ToIter);
Tree.SetTemplateTemplateDiff(FromDecl, ToDecl, FromIter.isEnd() && FromDecl,
ToIter.isEnd() && ToDecl);
Tree.SetSame(FromDecl && ToDecl &&
FromDecl->getCanonicalDecl() == ToDecl->getCanonicalDecl());
}
/// InitializeNonTypeDiffVariables - Helper function for DiffNonTypes
static void InitializeNonTypeDiffVariables(ASTContext &Context,
const TSTiterator &Iter,
NonTypeTemplateParmDecl *Default,
llvm::APSInt &Value, bool &HasInt,
QualType &IntType, bool &IsNullPtr,
Expr *&E, ValueDecl *&VD,
bool &NeedAddressOf) {
if (!Iter.isEnd()) {
switch (Iter->getKind()) {
default:
llvm_unreachable("unknown ArgumentKind");
case TemplateArgument::Integral:
Value = Iter->getAsIntegral();
HasInt = true;
IntType = Iter->getIntegralType();
return;
case TemplateArgument::Declaration: {
VD = Iter->getAsDecl();
QualType ArgType = Iter->getParamTypeForDecl();
QualType VDType = VD->getType();
if (ArgType->isPointerType() &&
Context.hasSameType(ArgType->getPointeeType(), VDType))
NeedAddressOf = true;
return;
}
case TemplateArgument::NullPtr:
IsNullPtr = true;
return;
case TemplateArgument::Expression:
E = Iter->getAsExpr();
}
} else if (!Default->isParameterPack()) {
E = Default->getDefaultArgument();
}
if (!Iter.hasDesugaredTA()) return;
const TemplateArgument& TA = Iter.getDesugaredTA();
switch (TA.getKind()) {
default:
llvm_unreachable("unknown ArgumentKind");
case TemplateArgument::Integral:
Value = TA.getAsIntegral();
HasInt = true;
IntType = TA.getIntegralType();
return;
case TemplateArgument::Declaration: {
VD = TA.getAsDecl();
QualType ArgType = TA.getParamTypeForDecl();
QualType VDType = VD->getType();
if (ArgType->isPointerType() &&
Context.hasSameType(ArgType->getPointeeType(), VDType))
NeedAddressOf = true;
return;
}
case TemplateArgument::NullPtr:
IsNullPtr = true;
return;
case TemplateArgument::Expression:
// TODO: Sometimes, the desugared template argument Expr differs from
// the sugared template argument Expr. It may be useful in the future
// but for now, it is just discarded.
if (!E)
E = TA.getAsExpr();
return;
}
}
/// DiffNonTypes - Handles any template parameters not handled by DiffTypes
/// of DiffTemplatesTemplates, such as integer and declaration parameters.
void DiffNonTypes(const TSTiterator &FromIter, const TSTiterator &ToIter,
NonTypeTemplateParmDecl *FromDefaultNonTypeDecl,
NonTypeTemplateParmDecl *ToDefaultNonTypeDecl) {
Expr *FromExpr = nullptr, *ToExpr = nullptr;
llvm::APSInt FromInt, ToInt;
QualType FromIntType, ToIntType;
ValueDecl *FromValueDecl = nullptr, *ToValueDecl = nullptr;
bool HasFromInt = false, HasToInt = false, FromNullPtr = false,
ToNullPtr = false, NeedFromAddressOf = false, NeedToAddressOf = false;
InitializeNonTypeDiffVariables(
Context, FromIter, FromDefaultNonTypeDecl, FromInt, HasFromInt,
FromIntType, FromNullPtr, FromExpr, FromValueDecl, NeedFromAddressOf);
InitializeNonTypeDiffVariables(Context, ToIter, ToDefaultNonTypeDecl, ToInt,
HasToInt, ToIntType, ToNullPtr, ToExpr,
ToValueDecl, NeedToAddressOf);
bool FromDefault = FromIter.isEnd() &&
(FromExpr || FromValueDecl || HasFromInt || FromNullPtr);
bool ToDefault = ToIter.isEnd() &&
(ToExpr || ToValueDecl || HasToInt || ToNullPtr);
bool FromDeclaration = FromValueDecl || FromNullPtr;
bool ToDeclaration = ToValueDecl || ToNullPtr;
if (FromDeclaration && HasToInt) {
Tree.SetFromDeclarationAndToIntegerDiff(
FromValueDecl, NeedFromAddressOf, FromNullPtr, FromExpr, ToInt,
HasToInt, ToIntType, ToExpr, FromDefault, ToDefault);
Tree.SetSame(false);
return;
}
if (HasFromInt && ToDeclaration) {
Tree.SetFromIntegerAndToDeclarationDiff(
FromInt, HasFromInt, FromIntType, FromExpr, ToValueDecl,
NeedToAddressOf, ToNullPtr, ToExpr, FromDefault, ToDefault);
Tree.SetSame(false);
return;
}
if (HasFromInt || HasToInt) {
Tree.SetIntegerDiff(FromInt, ToInt, HasFromInt, HasToInt, FromIntType,
ToIntType, FromExpr, ToExpr, FromDefault, ToDefault);
if (HasFromInt && HasToInt) {
Tree.SetSame(Context.hasSameType(FromIntType, ToIntType) &&
FromInt == ToInt);
}
return;
}
if (FromDeclaration || ToDeclaration) {
Tree.SetDeclarationDiff(FromValueDecl, ToValueDecl, NeedFromAddressOf,
NeedToAddressOf, FromNullPtr, ToNullPtr, FromExpr,
ToExpr, FromDefault, ToDefault);
bool BothNull = FromNullPtr && ToNullPtr;
bool SameValueDecl =
FromValueDecl && ToValueDecl &&
NeedFromAddressOf == NeedToAddressOf &&
FromValueDecl->getCanonicalDecl() == ToValueDecl->getCanonicalDecl();
Tree.SetSame(BothNull || SameValueDecl);
return;
}
assert((FromExpr || ToExpr) && "Both template arguments cannot be empty.");
Tree.SetExpressionDiff(FromExpr, ToExpr, FromDefault, ToDefault);
Tree.SetSame(IsEqualExpr(Context, FromExpr, ToExpr));
}
/// DiffTemplate - recursively visits template arguments and stores the
/// argument info into a tree.
void DiffTemplate(const TemplateSpecializationType *FromTST,
const TemplateSpecializationType *ToTST) {
// Begin descent into diffing template tree.
TemplateParameterList *ParamsFrom =
FromTST->getTemplateName().getAsTemplateDecl()->getTemplateParameters();
TemplateParameterList *ParamsTo =
ToTST->getTemplateName().getAsTemplateDecl()->getTemplateParameters();
unsigned TotalArgs = 0;
for (TSTiterator FromIter(Context, FromTST), ToIter(Context, ToTST);
!FromIter.isEnd() || !ToIter.isEnd(); ++TotalArgs) {
Tree.AddNode();
// Get the parameter at index TotalArgs. If index is larger
// than the total number of parameters, then there is an
// argument pack, so re-use the last parameter.
unsigned FromParamIndex = std::min(TotalArgs, ParamsFrom->size() - 1);
unsigned ToParamIndex = std::min(TotalArgs, ParamsTo->size() - 1);
NamedDecl *FromParamND = ParamsFrom->getParam(FromParamIndex);
NamedDecl *ToParamND = ParamsTo->getParam(ToParamIndex);
assert(FromParamND->getKind() == ToParamND->getKind() &&
"Parameter Decl are not the same kind.");
if (isa<TemplateTypeParmDecl>(FromParamND)) {
DiffTypes(FromIter, ToIter);
} else if (isa<TemplateTemplateParmDecl>(FromParamND)) {
DiffTemplateTemplates(FromIter, ToIter);
} else if (isa<NonTypeTemplateParmDecl>(FromParamND)) {
NonTypeTemplateParmDecl *FromDefaultNonTypeDecl =
cast<NonTypeTemplateParmDecl>(FromParamND);
NonTypeTemplateParmDecl *ToDefaultNonTypeDecl =
cast<NonTypeTemplateParmDecl>(ToParamND);
DiffNonTypes(FromIter, ToIter, FromDefaultNonTypeDecl,
ToDefaultNonTypeDecl);
} else {
llvm_unreachable("Unexpected Decl type.");
}
++FromIter;
++ToIter;
Tree.Up();
}
}
/// makeTemplateList - Dump every template alias into the vector.
static void makeTemplateList(
SmallVectorImpl<const TemplateSpecializationType *> &TemplateList,
const TemplateSpecializationType *TST) {
while (TST) {
TemplateList.push_back(TST);
if (!TST->isTypeAlias())
return;
TST = TST->getAliasedType()->getAs<TemplateSpecializationType>();
}
}
/// hasSameBaseTemplate - Returns true when the base templates are the same,
/// even if the template arguments are not.
static bool hasSameBaseTemplate(const TemplateSpecializationType *FromTST,
const TemplateSpecializationType *ToTST) {
return FromTST->getTemplateName().getAsTemplateDecl()->getCanonicalDecl() ==
ToTST->getTemplateName().getAsTemplateDecl()->getCanonicalDecl();
}
/// hasSameTemplate - Returns true if both types are specialized from the
/// same template declaration. If they come from different template aliases,
/// do a parallel ascension search to determine the highest template alias in
/// common and set the arguments to them.
static bool hasSameTemplate(const TemplateSpecializationType *&FromTST,
const TemplateSpecializationType *&ToTST) {
// Check the top templates if they are the same.
if (hasSameBaseTemplate(FromTST, ToTST))
return true;
// Create vectors of template aliases.
SmallVector<const TemplateSpecializationType*, 1> FromTemplateList,
ToTemplateList;
makeTemplateList(FromTemplateList, FromTST);
makeTemplateList(ToTemplateList, ToTST);
SmallVectorImpl<const TemplateSpecializationType *>::reverse_iterator
FromIter = FromTemplateList.rbegin(), FromEnd = FromTemplateList.rend(),
ToIter = ToTemplateList.rbegin(), ToEnd = ToTemplateList.rend();
// Check if the lowest template types are the same. If not, return.
if (!hasSameBaseTemplate(*FromIter, *ToIter))
return false;
// Begin searching up the template aliases. The bottom most template
// matches so move up until one pair does not match. Use the template
// right before that one.
for (; FromIter != FromEnd && ToIter != ToEnd; ++FromIter, ++ToIter) {
if (!hasSameBaseTemplate(*FromIter, *ToIter))
break;
}
FromTST = FromIter[-1];
ToTST = ToIter[-1];
return true;
}
/// GetType - Retrieves the template type arguments, including default
/// arguments.
static QualType GetType(const TSTiterator &Iter) {
if (!Iter.isEnd())
return Iter->getAsType();
if (Iter.hasDesugaredTA())
return Iter.getDesugaredTA().getAsType();
return QualType();
}
/// GetTemplateDecl - Retrieves the template template arguments, including
/// default arguments.
static TemplateDecl *GetTemplateDecl(const TSTiterator &Iter) {
if (!Iter.isEnd())
return Iter->getAsTemplate().getAsTemplateDecl();
if (Iter.hasDesugaredTA())
return Iter.getDesugaredTA().getAsTemplate().getAsTemplateDecl();
return nullptr;
}
/// IsEqualExpr - Returns true if the expressions are the same in regards to
/// template arguments. These expressions are dependent, so profile them
/// instead of trying to evaluate them.
static bool IsEqualExpr(ASTContext &Context, Expr *FromExpr, Expr *ToExpr) {
if (FromExpr == ToExpr)
return true;
if (!FromExpr || !ToExpr)
return false;
llvm::FoldingSetNodeID FromID, ToID;
FromExpr->Profile(FromID, Context, true);
ToExpr->Profile(ToID, Context, true);
return FromID == ToID;
}
// These functions converts the tree representation of the template
// differences into the internal character vector.
/// TreeToString - Converts the Tree object into a character stream which
/// will later be turned into the output string.
void TreeToString(int Indent = 1) {
if (PrintTree) {
OS << '\n';
OS.indent(2 * Indent);
++Indent;
}
// Handle cases where the difference is not templates with different
// arguments.
switch (Tree.GetKind()) {
case DiffTree::Invalid:
llvm_unreachable("Template diffing failed with bad DiffNode");
case DiffTree::Type: {
QualType FromType, ToType;
Tree.GetTypeDiff(FromType, ToType);
PrintTypeNames(FromType, ToType, Tree.FromDefault(), Tree.ToDefault(),
Tree.NodeIsSame());
return;
}
case DiffTree::Expression: {
Expr *FromExpr, *ToExpr;
Tree.GetExpressionDiff(FromExpr, ToExpr);
PrintExpr(FromExpr, ToExpr, Tree.FromDefault(), Tree.ToDefault(),
Tree.NodeIsSame());
return;
}
case DiffTree::TemplateTemplate: {
TemplateDecl *FromTD, *ToTD;
Tree.GetTemplateTemplateDiff(FromTD, ToTD);
PrintTemplateTemplate(FromTD, ToTD, Tree.FromDefault(),
Tree.ToDefault(), Tree.NodeIsSame());
return;
}
case DiffTree::Integer: {
llvm::APSInt FromInt, ToInt;
Expr *FromExpr, *ToExpr;
bool IsValidFromInt, IsValidToInt;
QualType FromIntType, ToIntType;
Tree.GetIntegerDiff(FromInt, ToInt, IsValidFromInt, IsValidToInt,
FromIntType, ToIntType, FromExpr, ToExpr);
PrintAPSInt(FromInt, ToInt, IsValidFromInt, IsValidToInt, FromIntType,
ToIntType, FromExpr, ToExpr, Tree.FromDefault(),
Tree.ToDefault(), Tree.NodeIsSame());
return;
}
case DiffTree::Declaration: {
ValueDecl *FromValueDecl, *ToValueDecl;
bool FromAddressOf, ToAddressOf;
bool FromNullPtr, ToNullPtr;
Expr *FromExpr, *ToExpr;
Tree.GetDeclarationDiff(FromValueDecl, ToValueDecl, FromAddressOf,
ToAddressOf, FromNullPtr, ToNullPtr, FromExpr,
ToExpr);
PrintValueDecl(FromValueDecl, ToValueDecl, FromAddressOf, ToAddressOf,
FromNullPtr, ToNullPtr, FromExpr, ToExpr,
Tree.FromDefault(), Tree.ToDefault(), Tree.NodeIsSame());
return;
}
case DiffTree::FromDeclarationAndToInteger: {
ValueDecl *FromValueDecl;
bool FromAddressOf;
bool FromNullPtr;
Expr *FromExpr;
llvm::APSInt ToInt;
bool IsValidToInt;
QualType ToIntType;
Expr *ToExpr;
Tree.GetFromDeclarationAndToIntegerDiff(
FromValueDecl, FromAddressOf, FromNullPtr, FromExpr, ToInt,
IsValidToInt, ToIntType, ToExpr);
assert((FromValueDecl || FromNullPtr) && IsValidToInt);
PrintValueDeclAndInteger(FromValueDecl, FromAddressOf, FromNullPtr,
FromExpr, Tree.FromDefault(), ToInt, ToIntType,
ToExpr, Tree.ToDefault());
return;
}
case DiffTree::FromIntegerAndToDeclaration: {
llvm::APSInt FromInt;
bool IsValidFromInt;
QualType FromIntType;
Expr *FromExpr;
ValueDecl *ToValueDecl;
bool ToAddressOf;
bool ToNullPtr;
Expr *ToExpr;
Tree.GetFromIntegerAndToDeclarationDiff(
FromInt, IsValidFromInt, FromIntType, FromExpr, ToValueDecl,
ToAddressOf, ToNullPtr, ToExpr);
assert(IsValidFromInt && (ToValueDecl || ToNullPtr));
PrintIntegerAndValueDecl(FromInt, FromIntType, FromExpr,
Tree.FromDefault(), ToValueDecl, ToAddressOf,
ToNullPtr, ToExpr, Tree.ToDefault());
return;
}
case DiffTree::Template: {
// Node is root of template. Recurse on children.
TemplateDecl *FromTD, *ToTD;
Qualifiers FromQual, ToQual;
Tree.GetTemplateDiff(FromTD, ToTD, FromQual, ToQual);
PrintQualifiers(FromQual, ToQual);
if (!Tree.HasChildren()) {
// If we're dealing with a template specialization with zero
// arguments, there are no children; special-case this.
OS << FromTD->getNameAsString() << "<>";
return;
}
OS << FromTD->getNameAsString() << '<';
Tree.MoveToChild();
unsigned NumElideArgs = 0;
bool AllArgsElided = true;
do {
if (ElideType) {
if (Tree.NodeIsSame()) {
++NumElideArgs;
continue;
}
AllArgsElided = false;
if (NumElideArgs > 0) {
PrintElideArgs(NumElideArgs, Indent);
NumElideArgs = 0;
OS << ", ";
}
}
TreeToString(Indent);
if (Tree.HasNextSibling())
OS << ", ";
} while (Tree.AdvanceSibling());
if (NumElideArgs > 0) {
if (AllArgsElided)
OS << "...";
else
PrintElideArgs(NumElideArgs, Indent);
}
Tree.Parent();
OS << ">";
return;
}
}
}
// To signal to the text printer that a certain text needs to be bolded,
// a special character is injected into the character stream which the
// text printer will later strip out.
/// Bold - Start bolding text.
void Bold() {
assert(!IsBold && "Attempting to bold text that is already bold.");
IsBold = true;
if (ShowColor)
OS << ToggleHighlight;
}
/// Unbold - Stop bolding text.
void Unbold() {
assert(IsBold && "Attempting to remove bold from unbold text.");
IsBold = false;
if (ShowColor)
OS << ToggleHighlight;
}
// Functions to print out the arguments and highlighting the difference.
/// PrintTypeNames - prints the typenames, bolding differences. Will detect
/// typenames that are the same and attempt to disambiguate them by using
/// canonical typenames.
void PrintTypeNames(QualType FromType, QualType ToType,
bool FromDefault, bool ToDefault, bool Same) {
assert((!FromType.isNull() || !ToType.isNull()) &&
"Only one template argument may be missing.");
if (Same) {
OS << FromType.getAsString(Policy);
return;
}
if (!FromType.isNull() && !ToType.isNull() &&
FromType.getLocalUnqualifiedType() ==
ToType.getLocalUnqualifiedType()) {
Qualifiers FromQual = FromType.getLocalQualifiers(),
ToQual = ToType.getLocalQualifiers();
PrintQualifiers(FromQual, ToQual);
FromType.getLocalUnqualifiedType().print(OS, Policy);
return;
}
std::string FromTypeStr = FromType.isNull() ? "(no argument)"
: FromType.getAsString(Policy);
std::string ToTypeStr = ToType.isNull() ? "(no argument)"
: ToType.getAsString(Policy);
// Switch to canonical typename if it is better.
// TODO: merge this with other aka printing above.
if (FromTypeStr == ToTypeStr) {
std::string FromCanTypeStr =
FromType.getCanonicalType().getAsString(Policy);
std::string ToCanTypeStr = ToType.getCanonicalType().getAsString(Policy);
if (FromCanTypeStr != ToCanTypeStr) {
FromTypeStr = FromCanTypeStr;
ToTypeStr = ToCanTypeStr;
}
}
if (PrintTree) OS << '[';
OS << (FromDefault ? "(default) " : "");
Bold();
OS << FromTypeStr;
Unbold();
if (PrintTree) {
OS << " != " << (ToDefault ? "(default) " : "");
Bold();
OS << ToTypeStr;
Unbold();
OS << "]";
}
}
/// PrintExpr - Prints out the expr template arguments, highlighting argument
/// differences.
void PrintExpr(const Expr *FromExpr, const Expr *ToExpr, bool FromDefault,
bool ToDefault, bool Same) {
assert((FromExpr || ToExpr) &&
"Only one template argument may be missing.");
if (Same) {
PrintExpr(FromExpr);
} else if (!PrintTree) {
OS << (FromDefault ? "(default) " : "");
Bold();
PrintExpr(FromExpr);
Unbold();
} else {
OS << (FromDefault ? "[(default) " : "[");
Bold();
PrintExpr(FromExpr);
Unbold();
OS << " != " << (ToDefault ? "(default) " : "");
Bold();
PrintExpr(ToExpr);
Unbold();
OS << ']';
}
}
/// PrintExpr - Actual formatting and printing of expressions.
void PrintExpr(const Expr *E) {
if (E) {
E->printPretty(OS, nullptr, Policy);
return;
}
OS << "(no argument)";
}
/// PrintTemplateTemplate - Handles printing of template template arguments,
/// highlighting argument differences.
void PrintTemplateTemplate(TemplateDecl *FromTD, TemplateDecl *ToTD,
bool FromDefault, bool ToDefault, bool Same) {
assert((FromTD || ToTD) && "Only one template argument may be missing.");
std::string FromName = FromTD ? FromTD->getName() : "(no argument)";
std::string ToName = ToTD ? ToTD->getName() : "(no argument)";
if (FromTD && ToTD && FromName == ToName) {
FromName = FromTD->getQualifiedNameAsString();
ToName = ToTD->getQualifiedNameAsString();
}
if (Same) {
OS << "template " << FromTD->getNameAsString();
} else if (!PrintTree) {
OS << (FromDefault ? "(default) template " : "template ");
Bold();
OS << FromName;
Unbold();
} else {
OS << (FromDefault ? "[(default) template " : "[template ");
Bold();
OS << FromName;
Unbold();
OS << " != " << (ToDefault ? "(default) template " : "template ");
Bold();
OS << ToName;
Unbold();
OS << ']';
}
}
/// PrintAPSInt - Handles printing of integral arguments, highlighting
/// argument differences.
void PrintAPSInt(const llvm::APSInt &FromInt, const llvm::APSInt &ToInt,
bool IsValidFromInt, bool IsValidToInt, QualType FromIntType,
QualType ToIntType, Expr *FromExpr, Expr *ToExpr,
bool FromDefault, bool ToDefault, bool Same) {
assert((IsValidFromInt || IsValidToInt) &&
"Only one integral argument may be missing.");
if (Same) {
if (FromIntType->isBooleanType()) {
OS << ((FromInt == 0) ? "false" : "true");
} else {
OS << FromInt.toString(10);
}
return;
}
bool PrintType = IsValidFromInt && IsValidToInt &&
!Context.hasSameType(FromIntType, ToIntType);
if (!PrintTree) {
OS << (FromDefault ? "(default) " : "");
PrintAPSInt(FromInt, FromExpr, IsValidFromInt, FromIntType, PrintType);
} else {
OS << (FromDefault ? "[(default) " : "[");
PrintAPSInt(FromInt, FromExpr, IsValidFromInt, FromIntType, PrintType);
OS << " != " << (ToDefault ? "(default) " : "");
PrintAPSInt(ToInt, ToExpr, IsValidToInt, ToIntType, PrintType);
OS << ']';
}
}
/// PrintAPSInt - If valid, print the APSInt. If the expression is
/// gives more information, print it too.
void PrintAPSInt(const llvm::APSInt &Val, Expr *E, bool Valid,
QualType IntType, bool PrintType) {
Bold();
if (Valid) {
if (HasExtraInfo(E)) {
PrintExpr(E);
Unbold();
OS << " aka ";
Bold();
}
if (PrintType) {
Unbold();
OS << "(";
Bold();
IntType.print(OS, Context.getPrintingPolicy());
Unbold();
OS << ") ";
Bold();
}
if (IntType->isBooleanType()) {
OS << ((Val == 0) ? "false" : "true");
} else {
OS << Val.toString(10);
}
} else if (E) {
PrintExpr(E);
} else {
OS << "(no argument)";
}
Unbold();
}
/// HasExtraInfo - Returns true if E is not an integer literal, the
/// negation of an integer literal, or a boolean literal.
bool HasExtraInfo(Expr *E) {
if (!E) return false;
E = E->IgnoreImpCasts();
if (isa<IntegerLiteral>(E)) return false;
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
if (UO->getOpcode() == UO_Minus)
if (isa<IntegerLiteral>(UO->getSubExpr()))
return false;
if (isa<CXXBoolLiteralExpr>(E))
return false;
return true;
}
void PrintValueDecl(ValueDecl *VD, bool AddressOf, Expr *E, bool NullPtr) {
if (VD) {
if (AddressOf)
OS << "&";
OS << VD->getName();
return;
}
if (NullPtr) {
if (E && !isa<CXXNullPtrLiteralExpr>(E)) {
PrintExpr(E);
if (IsBold) {
Unbold();
OS << " aka ";
Bold();
} else {
OS << " aka ";
}
}
OS << "nullptr";
return;
}
OS << "(no argument)";
}
/// PrintDecl - Handles printing of Decl arguments, highlighting
/// argument differences.
void PrintValueDecl(ValueDecl *FromValueDecl, ValueDecl *ToValueDecl,
bool FromAddressOf, bool ToAddressOf, bool FromNullPtr,
bool ToNullPtr, Expr *FromExpr, Expr *ToExpr,
bool FromDefault, bool ToDefault, bool Same) {
assert((FromValueDecl || FromNullPtr || ToValueDecl || ToNullPtr) &&
"Only one Decl argument may be NULL");
if (Same) {
PrintValueDecl(FromValueDecl, FromAddressOf, FromExpr, FromNullPtr);
} else if (!PrintTree) {
OS << (FromDefault ? "(default) " : "");
Bold();
PrintValueDecl(FromValueDecl, FromAddressOf, FromExpr, FromNullPtr);
Unbold();
} else {
OS << (FromDefault ? "[(default) " : "[");
Bold();
PrintValueDecl(FromValueDecl, FromAddressOf, FromExpr, FromNullPtr);
Unbold();
OS << " != " << (ToDefault ? "(default) " : "");
Bold();
PrintValueDecl(ToValueDecl, ToAddressOf, ToExpr, ToNullPtr);
Unbold();
OS << ']';
}
}
/// PrintValueDeclAndInteger - Uses the print functions for ValueDecl and
/// APSInt to print a mixed difference.
void PrintValueDeclAndInteger(ValueDecl *VD, bool NeedAddressOf,
bool IsNullPtr, Expr *VDExpr, bool DefaultDecl,
const llvm::APSInt &Val, QualType IntType,
Expr *IntExpr, bool DefaultInt) {
if (!PrintTree) {
OS << (DefaultDecl ? "(default) " : "");
Bold();
PrintValueDecl(VD, NeedAddressOf, VDExpr, IsNullPtr);
Unbold();
} else {
OS << (DefaultDecl ? "[(default) " : "[");
Bold();
PrintValueDecl(VD, NeedAddressOf, VDExpr, IsNullPtr);
Unbold();
OS << " != " << (DefaultInt ? "(default) " : "");
PrintAPSInt(Val, IntExpr, true /*Valid*/, IntType, false /*PrintType*/);
OS << ']';
}
}
/// PrintIntegerAndValueDecl - Uses the print functions for APSInt and
/// ValueDecl to print a mixed difference.
void PrintIntegerAndValueDecl(const llvm::APSInt &Val, QualType IntType,
Expr *IntExpr, bool DefaultInt, ValueDecl *VD,
bool NeedAddressOf, bool IsNullPtr,
Expr *VDExpr, bool DefaultDecl) {
if (!PrintTree) {
OS << (DefaultInt ? "(default) " : "");
PrintAPSInt(Val, IntExpr, true /*Valid*/, IntType, false /*PrintType*/);
} else {
OS << (DefaultInt ? "[(default) " : "[");
PrintAPSInt(Val, IntExpr, true /*Valid*/, IntType, false /*PrintType*/);
OS << " != " << (DefaultDecl ? "(default) " : "");
Bold();
PrintValueDecl(VD, NeedAddressOf, VDExpr, IsNullPtr);
Unbold();
OS << ']';
}
}
// Prints the appropriate placeholder for elided template arguments.
void PrintElideArgs(unsigned NumElideArgs, unsigned Indent) {
if (PrintTree) {
OS << '\n';
for (unsigned i = 0; i < Indent; ++i)
OS << " ";
}
if (NumElideArgs == 0) return;
if (NumElideArgs == 1)
OS << "[...]";
else
OS << "[" << NumElideArgs << " * ...]";
}
// Prints and highlights differences in Qualifiers.
void PrintQualifiers(Qualifiers FromQual, Qualifiers ToQual) {
// Both types have no qualifiers
if (FromQual.empty() && ToQual.empty())
return;
// Both types have same qualifiers
if (FromQual == ToQual) {
PrintQualifier(FromQual, /*ApplyBold*/false);
return;
}
// Find common qualifiers and strip them from FromQual and ToQual.
Qualifiers CommonQual = Qualifiers::removeCommonQualifiers(FromQual,
ToQual);
// The qualifiers are printed before the template name.
// Inline printing:
// The common qualifiers are printed. Then, qualifiers only in this type
// are printed and highlighted. Finally, qualifiers only in the other
// type are printed and highlighted inside parentheses after "missing".
// Tree printing:
// Qualifiers are printed next to each other, inside brackets, and
// separated by "!=". The printing order is:
// common qualifiers, highlighted from qualifiers, "!=",
// common qualifiers, highlighted to qualifiers
if (PrintTree) {
OS << "[";
if (CommonQual.empty() && FromQual.empty()) {
Bold();
OS << "(no qualifiers) ";
Unbold();
} else {
PrintQualifier(CommonQual, /*ApplyBold*/false);
PrintQualifier(FromQual, /*ApplyBold*/true);
}
OS << "!= ";
if (CommonQual.empty() && ToQual.empty()) {
Bold();
OS << "(no qualifiers)";
Unbold();
} else {
PrintQualifier(CommonQual, /*ApplyBold*/false,
/*appendSpaceIfNonEmpty*/!ToQual.empty());
PrintQualifier(ToQual, /*ApplyBold*/true,
/*appendSpaceIfNonEmpty*/false);
}
OS << "] ";
} else {
PrintQualifier(CommonQual, /*ApplyBold*/false);
PrintQualifier(FromQual, /*ApplyBold*/true);
}
}
void PrintQualifier(Qualifiers Q, bool ApplyBold,
bool AppendSpaceIfNonEmpty = true) {
if (Q.empty()) return;
if (ApplyBold) Bold();
Q.print(OS, Policy, AppendSpaceIfNonEmpty);
if (ApplyBold) Unbold();
}
public:
TemplateDiff(raw_ostream &OS, ASTContext &Context, QualType FromType,
QualType ToType, bool PrintTree, bool PrintFromType,
bool ElideType, bool ShowColor)
: Context(Context),
Policy(Context.getLangOpts()),
ElideType(ElideType),
PrintTree(PrintTree),
ShowColor(ShowColor),
// When printing a single type, the FromType is the one printed.
FromTemplateType(PrintFromType ? FromType : ToType),
ToTemplateType(PrintFromType ? ToType : FromType),
OS(OS),
IsBold(false) {
}
/// DiffTemplate - Start the template type diffing.
void DiffTemplate() {
Qualifiers FromQual = FromTemplateType.getQualifiers(),
ToQual = ToTemplateType.getQualifiers();
const TemplateSpecializationType *FromOrigTST =
GetTemplateSpecializationType(Context, FromTemplateType);
const TemplateSpecializationType *ToOrigTST =
GetTemplateSpecializationType(Context, ToTemplateType);
// Only checking templates.
if (!FromOrigTST || !ToOrigTST)
return;
// Different base templates.
if (!hasSameTemplate(FromOrigTST, ToOrigTST)) {
return;
}
FromQual -= QualType(FromOrigTST, 0).getQualifiers();
ToQual -= QualType(ToOrigTST, 0).getQualifiers();
// Same base template, but different arguments.
Tree.SetTemplateDiff(FromOrigTST->getTemplateName().getAsTemplateDecl(),
ToOrigTST->getTemplateName().getAsTemplateDecl(),
FromQual, ToQual, false /*FromDefault*/,
false /*ToDefault*/);
DiffTemplate(FromOrigTST, ToOrigTST);
}
/// Emit - When the two types given are templated types with the same
/// base template, a string representation of the type difference will be
/// emitted to the stream and return true. Otherwise, return false.
bool Emit() {
Tree.StartTraverse();
if (Tree.Empty())
return false;
TreeToString();
assert(!IsBold && "Bold is applied to end of string.");
return true;
}
}; // end class TemplateDiff
} // end anonymous namespace
/// FormatTemplateTypeDiff - A helper static function to start the template
/// diff and return the properly formatted string. Returns true if the diff
/// is successful.
static bool FormatTemplateTypeDiff(ASTContext &Context, QualType FromType,
QualType ToType, bool PrintTree,
bool PrintFromType, bool ElideType,
bool ShowColors, raw_ostream &OS) {
if (PrintTree)
PrintFromType = true;
TemplateDiff TD(OS, Context, FromType, ToType, PrintTree, PrintFromType,
ElideType, ShowColors);
TD.DiffTemplate();
return TD.Emit();
}