HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
clang
lib
AST
Decl.cpp
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Decl subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Decl.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Stmt.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/Module.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "llvm/Support/ErrorHandling.h" #include
using namespace clang; Decl *clang::getPrimaryMergedDecl(Decl *D) { return D->getASTContext().getPrimaryMergedDecl(D); } // Defined here so that it can be inlined into its direct callers. bool Decl::isOutOfLine() const { return !getLexicalDeclContext()->Equals(getDeclContext()); } TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) : Decl(TranslationUnit, nullptr, SourceLocation()), DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) { Hidden = Ctx.getLangOpts().ModulesLocalVisibility; } //===----------------------------------------------------------------------===// // NamedDecl Implementation //===----------------------------------------------------------------------===// // Visibility rules aren't rigorously externally specified, but here // are the basic principles behind what we implement: // // 1. An explicit visibility attribute is generally a direct expression // of the user's intent and should be honored. Only the innermost // visibility attribute applies. If no visibility attribute applies, // global visibility settings are considered. // // 2. There is one caveat to the above: on or in a template pattern, // an explicit visibility attribute is just a default rule, and // visibility can be decreased by the visibility of template // arguments. But this, too, has an exception: an attribute on an // explicit specialization or instantiation causes all the visibility // restrictions of the template arguments to be ignored. // // 3. A variable that does not otherwise have explicit visibility can // be restricted by the visibility of its type. // // 4. A visibility restriction is explicit if it comes from an // attribute (or something like it), not a global visibility setting. // When emitting a reference to an external symbol, visibility // restrictions are ignored unless they are explicit. // // 5. When computing the visibility of a non-type, including a // non-type member of a class, only non-type visibility restrictions // are considered: the 'visibility' attribute, global value-visibility // settings, and a few special cases like __private_extern. // // 6. When computing the visibility of a type, including a type member // of a class, only type visibility restrictions are considered: // the 'type_visibility' attribute and global type-visibility settings. // However, a 'visibility' attribute counts as a 'type_visibility' // attribute on any declaration that only has the former. // // The visibility of a "secondary" entity, like a template argument, // is computed using the kind of that entity, not the kind of the // primary entity for which we are computing visibility. For example, // the visibility of a specialization of either of these templates: // template
bool has_match(list
, X); // template
class matcher; // is restricted according to the type visibility of the argument 'T', // the type visibility of 'bool(&)(T,X)', and the value visibility of // the argument function 'compare'. That 'has_match' is a value // and 'matcher' is a type only matters when looking for attributes // and settings from the immediate context. const unsigned IgnoreExplicitVisibilityBit = 2; const unsigned IgnoreAllVisibilityBit = 4; /// Kinds of LV computation. The linkage side of the computation is /// always the same, but different things can change how visibility is /// computed. enum LVComputationKind { /// Do an LV computation for, ultimately, a type. /// Visibility may be restricted by type visibility settings and /// the visibility of template arguments. LVForType = NamedDecl::VisibilityForType, /// Do an LV computation for, ultimately, a non-type declaration. /// Visibility may be restricted by value visibility settings and /// the visibility of template arguments. LVForValue = NamedDecl::VisibilityForValue, /// Do an LV computation for, ultimately, a type that already has /// some sort of explicit visibility. Visibility may only be /// restricted by the visibility of template arguments. LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit), /// Do an LV computation for, ultimately, a non-type declaration /// that already has some sort of explicit visibility. Visibility /// may only be restricted by the visibility of template arguments. LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit), /// Do an LV computation when we only care about the linkage. LVForLinkageOnly = LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit }; /// Does this computation kind permit us to consider additional /// visibility settings from attributes and the like? static bool hasExplicitVisibilityAlready(LVComputationKind computation) { return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0); } /// Given an LVComputationKind, return one of the same type/value sort /// that records that it already has explicit visibility. static LVComputationKind withExplicitVisibilityAlready(LVComputationKind oldKind) { LVComputationKind newKind = static_cast
(unsigned(oldKind) | IgnoreExplicitVisibilityBit); assert(oldKind != LVForType || newKind == LVForExplicitType); assert(oldKind != LVForValue || newKind == LVForExplicitValue); assert(oldKind != LVForExplicitType || newKind == LVForExplicitType); assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue); return newKind; } static Optional
getExplicitVisibility(const NamedDecl *D, LVComputationKind kind) { assert(!hasExplicitVisibilityAlready(kind) && "asking for explicit visibility when we shouldn't be"); return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind); } /// Is the given declaration a "type" or a "value" for the purposes of /// visibility computation? static bool usesTypeVisibility(const NamedDecl *D) { return isa
(D) || isa
(D) || isa
(D); } /// Does the given declaration have member specialization information, /// and if so, is it an explicit specialization? template
static typename std::enable_if::value, bool>::type isExplicitMemberSpecialization(const T *D) { if (const MemberSpecializationInfo *member = D->getMemberSpecializationInfo()) { return member->isExplicitSpecialization(); } return false; } /// For templates, this question is easier: a member template can't be /// explicitly instantiated, so there's a single bit indicating whether /// or not this is an explicit member specialization. static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { return D->isMemberSpecialization(); } /// Given a visibility attribute, return the explicit visibility /// associated with it. template
static Visibility getVisibilityFromAttr(const T *attr) { switch (attr->getVisibility()) { case T::Default: return DefaultVisibility; case T::Hidden: return HiddenVisibility; case T::Protected: return ProtectedVisibility; } llvm_unreachable("bad visibility kind"); } /// Return the explicit visibility of the given declaration. static Optional
getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) { // If we're ultimately computing the visibility of a type, look for // a 'type_visibility' attribute before looking for 'visibility'. if (kind == NamedDecl::VisibilityForType) { if (const auto *A = D->getAttr
()) { return getVisibilityFromAttr(A); } } // If this declaration has an explicit visibility attribute, use it. if (const auto *A = D->getAttr
()) { return getVisibilityFromAttr(A); } // If we're on Mac OS X, an 'availability' for Mac OS X attribute // implies visibility(default). if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) { for (const auto *A : D->specific_attrs
()) if (A->getPlatform()->getName().equals("macos")) return DefaultVisibility; } return None; } static LinkageInfo getLVForType(const Type &T, LVComputationKind computation) { if (computation == LVForLinkageOnly) return LinkageInfo(T.getLinkage(), DefaultVisibility, true); return T.getLinkageAndVisibility(); } /// \brief Get the most restrictive linkage for the types in the given /// template parameter list. For visibility purposes, template /// parameters are part of the signature of a template. static LinkageInfo getLVForTemplateParameterList(const TemplateParameterList *Params, LVComputationKind computation) { LinkageInfo LV; for (const NamedDecl *P : *Params) { // Template type parameters are the most common and never // contribute to visibility, pack or not. if (isa
(P)) continue; // Non-type template parameters can be restricted by the value type, e.g. // template
class A { ... }; // We have to be careful here, though, because we can be dealing with // dependent types. if (const auto *NTTP = dyn_cast
(P)) { // Handle the non-pack case first. if (!NTTP->isExpandedParameterPack()) { if (!NTTP->getType()->isDependentType()) { LV.merge(getLVForType(*NTTP->getType(), computation)); } continue; } // Look at all the types in an expanded pack. for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { QualType type = NTTP->getExpansionType(i); if (!type->isDependentType()) LV.merge(type->getLinkageAndVisibility()); } continue; } // Template template parameters can be restricted by their // template parameters, recursively. const auto *TTP = cast
(P); // Handle the non-pack case first. if (!TTP->isExpandedParameterPack()) { LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), computation)); continue; } // Look at all expansions in an expanded pack. for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); i != n; ++i) { LV.merge(getLVForTemplateParameterList( TTP->getExpansionTemplateParameters(i), computation)); } } return LV; } /// getLVForDecl - Get the linkage and visibility for the given declaration. static LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation); static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { const Decl *Ret = nullptr; const DeclContext *DC = D->getDeclContext(); while (DC->getDeclKind() != Decl::TranslationUnit) { if (isa
(DC) || isa
(DC)) Ret = cast
(DC); DC = DC->getParent(); } return Ret; } /// \brief Get the most restrictive linkage for the types and /// declarations in the given template argument list. /// /// Note that we don't take an LVComputationKind because we always /// want to honor the visibility of template arguments in the same way. static LinkageInfo getLVForTemplateArgumentList(ArrayRef
Args, LVComputationKind computation) { LinkageInfo LV; for (const TemplateArgument &Arg : Args) { switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Expression: continue; case TemplateArgument::Type: LV.merge(getLVForType(*Arg.getAsType(), computation)); continue; case TemplateArgument::Declaration: if (const auto *ND = dyn_cast
(Arg.getAsDecl())) { assert(!usesTypeVisibility(ND)); LV.merge(getLVForDecl(ND, computation)); } continue; case TemplateArgument::NullPtr: LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility()); continue; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (TemplateDecl *Template = Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) LV.merge(getLVForDecl(Template, computation)); continue; case TemplateArgument::Pack: LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); continue; } llvm_unreachable("bad template argument kind"); } return LV; } static LinkageInfo getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, LVComputationKind computation) { return getLVForTemplateArgumentList(TArgs.asArray(), computation); } static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility. (Implicit instantiations won't // have a direct attribute.) if (!specInfo->isExplicitInstantiationOrSpecialization()) return true; return !fn->hasAttr
(); } /// Merge in template-related linkage and visibility for the given /// function template specialization. /// /// We don't need a computation kind here because we can assume /// LVForValue. /// /// \param[out] LV the computation to use for the parent static void mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(fn, specInfo); // Merge information from the template parameters. FunctionTemplateDecl *temp = specInfo->getTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); // Merge information from the template arguments. const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); LV.mergeMaybeWithVisibility(argsLV, considerVisibility); } /// Does the given declaration have a direct visibility attribute /// that would match the given rules? static bool hasDirectVisibilityAttribute(const NamedDecl *D, LVComputationKind computation) { switch (computation) { case LVForType: case LVForExplicitType: if (D->hasAttr
()) return true; // fallthrough case LVForValue: case LVForExplicitValue: if (D->hasAttr
()) return true; return false; case LVForLinkageOnly: return false; } llvm_unreachable("bad visibility computation kind"); } /// Should we consider visibility associated with the template /// arguments and parameters of the given class template specialization? static bool shouldConsiderTemplateVisibility( const ClassTemplateSpecializationDecl *spec, LVComputationKind computation) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility (and note that implicit // instantiations won't have a direct attribute). // // Furthermore, we want to ignore template parameters and arguments // for an explicit specialization when computing the visibility of a // member thereof with explicit visibility. // // This is a bit complex; let's unpack it. // // An explicit class specialization is an independent, top-level // declaration. As such, if it or any of its members has an // explicit visibility attribute, that must directly express the // user's intent, and we should honor it. The same logic applies to // an explicit instantiation of a member of such a thing. // Fast path: if this is not an explicit instantiation or // specialization, we always want to consider template-related // visibility restrictions. if (!spec->isExplicitInstantiationOrSpecialization()) return true; // This is the 'member thereof' check. if (spec->isExplicitSpecialization() && hasExplicitVisibilityAlready(computation)) return false; return !hasDirectVisibilityAttribute(spec, computation); } /// Merge in template-related linkage and visibility for the given /// class template specialization. static void mergeTemplateLV(LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); // Merge information from the template parameters, but ignore // visibility if we're only considering template arguments. ClassTemplateDecl *temp = spec->getSpecializedTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility && !hasExplicitVisibilityAlready(computation)); // Merge information from the template arguments. We ignore // template-argument visibility if we've got an explicit // instantiation with a visibility attribute. const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); if (considerVisibility) LV.mergeVisibility(argsLV); LV.mergeExternalVisibility(argsLV); } /// Should we consider visibility associated with the template /// arguments and parameters of the given variable template /// specialization? As usual, follow class template specialization /// logic up to initialization. static bool shouldConsiderTemplateVisibility( const VarTemplateSpecializationDecl *spec, LVComputationKind computation) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility (and note that implicit // instantiations won't have a direct attribute). if (!spec->isExplicitInstantiationOrSpecialization()) return true; // An explicit variable specialization is an independent, top-level // declaration. As such, if it has an explicit visibility attribute, // that must directly express the user's intent, and we should honor // it. if (spec->isExplicitSpecialization() && hasExplicitVisibilityAlready(computation)) return false; return !hasDirectVisibilityAttribute(spec, computation); } /// Merge in template-related linkage and visibility for the given /// variable template specialization. As usual, follow class template /// specialization logic up to initialization. static void mergeTemplateLV(LinkageInfo &LV, const VarTemplateSpecializationDecl *spec, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); // Merge information from the template parameters, but ignore // visibility if we're only considering template arguments. VarTemplateDecl *temp = spec->getSpecializedTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility && !hasExplicitVisibilityAlready(computation)); // Merge information from the template arguments. We ignore // template-argument visibility if we've got an explicit // instantiation with a visibility attribute. const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); if (considerVisibility) LV.mergeVisibility(argsLV); LV.mergeExternalVisibility(argsLV); } static bool useInlineVisibilityHidden(const NamedDecl *D) { // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. const LangOptions &Opts = D->getASTContext().getLangOpts(); if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) return false; const auto *FD = dyn_cast
(D); if (!FD) return false; TemplateSpecializationKind TSK = TSK_Undeclared; if (FunctionTemplateSpecializationInfo *spec = FD->getTemplateSpecializationInfo()) { TSK = spec->getTemplateSpecializationKind(); } else if (MemberSpecializationInfo *MSI = FD->getMemberSpecializationInfo()) { TSK = MSI->getTemplateSpecializationKind(); } const FunctionDecl *Def = nullptr; // InlineVisibilityHidden only applies to definitions, and // isInlined() only gives meaningful answers on definitions // anyway. return TSK != TSK_ExplicitInstantiationDeclaration && TSK != TSK_ExplicitInstantiationDefinition && FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr
(); } template
static bool isFirstInExternCContext(T *D) { const T *First = D->getFirstDecl(); return First->isInExternCContext(); } static bool isSingleLineLanguageLinkage(const Decl &D) { if (const auto *SD = dyn_cast
(D.getDeclContext())) if (!SD->hasBraces()) return true; return false; } static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D, LVComputationKind computation) { assert(D->getDeclContext()->getRedeclContext()->isFileContext() && "Not a name having namespace scope"); ASTContext &Context = D->getASTContext(); // C++ [basic.link]p3: // A name having namespace scope (3.3.6) has internal linkage if it // is the name of // - an object, reference, function or function template that is // explicitly declared static; or, // (This bullet corresponds to C99 6.2.2p3.) if (const auto *Var = dyn_cast
(D)) { // Explicitly declared static. if (Var->getStorageClass() == SC_Static) return LinkageInfo::internal(); // - a non-inline, non-volatile object or reference that is explicitly // declared const or constexpr and neither explicitly declared extern // nor previously declared to have external linkage; or (there is no // equivalent in C99) if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() && !Var->getType().isVolatileQualified() && !Var->isInline()) { const VarDecl *PrevVar = Var->getPreviousDecl(); if (PrevVar) return getLVForDecl(PrevVar, computation); if (Var->getStorageClass() != SC_Extern && Var->getStorageClass() != SC_PrivateExtern && !isSingleLineLanguageLinkage(*Var)) return LinkageInfo::internal(); } for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; PrevVar = PrevVar->getPreviousDecl()) { if (PrevVar->getStorageClass() == SC_PrivateExtern && Var->getStorageClass() == SC_None) return PrevVar->getLinkageAndVisibility(); // Explicitly declared static. if (PrevVar->getStorageClass() == SC_Static) return LinkageInfo::internal(); } } else if (const FunctionDecl *Function = D->getAsFunction()) { // C++ [temp]p4: // A non-member function template can have internal linkage; any // other template name shall have external linkage. // Explicitly declared static. if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) return LinkageInfo(InternalLinkage, DefaultVisibility, false); } else if (const auto *IFD = dyn_cast
(D)) { // - a data member of an anonymous union. const VarDecl *VD = IFD->getVarDecl(); assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); return getLVForNamespaceScopeDecl(VD, computation); } assert(!isa
(D) && "Didn't expect a FieldDecl!"); if (D->isInAnonymousNamespace()) { const auto *Var = dyn_cast
(D); const auto *Func = dyn_cast
(D); // FIXME: In C++11 onwards, anonymous namespaces should give decls // within them internal linkage, not unique external linkage. if ((!Var || !isFirstInExternCContext(Var)) && (!Func || !isFirstInExternCContext(Func))) return LinkageInfo::uniqueExternal(); } // Set up the defaults. // C99 6.2.2p5: // If the declaration of an identifier for an object has file // scope and no storage-class specifier, its linkage is // external. LinkageInfo LV; if (!hasExplicitVisibilityAlready(computation)) { if (Optional
Vis = getExplicitVisibility(D, computation)) { LV.mergeVisibility(*Vis, true); } else { // If we're declared in a namespace with a visibility attribute, // use that namespace's visibility, and it still counts as explicit. for (const DeclContext *DC = D->getDeclContext(); !isa
(DC); DC = DC->getParent()) { const auto *ND = dyn_cast
(DC); if (!ND) continue; if (Optional
Vis = getExplicitVisibility(ND, computation)) { LV.mergeVisibility(*Vis, true); break; } } } // Add in global settings if the above didn't give us direct visibility. if (!LV.isVisibilityExplicit()) { // Use global type/value visibility as appropriate. Visibility globalVisibility; if (computation == LVForValue) { globalVisibility = Context.getLangOpts().getValueVisibilityMode(); } else { assert(computation == LVForType); globalVisibility = Context.getLangOpts().getTypeVisibilityMode(); } LV.mergeVisibility(globalVisibility, /*explicit*/ false); // If we're paying attention to global visibility, apply // -finline-visibility-hidden if this is an inline method. if (useInlineVisibilityHidden(D)) LV.mergeVisibility(HiddenVisibility, true); } } // C++ [basic.link]p4: // A name having namespace scope has external linkage if it is the // name of // // - an object or reference, unless it has internal linkage; or if (const auto *Var = dyn_cast
(D)) { // GCC applies the following optimization to variables and static // data members, but not to functions: // // Modify the variable's LV by the LV of its type unless this is // C or extern "C". This follows from [basic.link]p9: // A type without linkage shall not be used as the type of a // variable or function with external linkage unless // - the entity has C language linkage, or // - the entity is declared within an unnamed namespace, or // - the entity is not used or is defined in the same // translation unit. // and [basic.link]p10: // ...the types specified by all declarations referring to a // given variable or function shall be identical... // C does not have an equivalent rule. // // Ignore this if we've got an explicit attribute; the user // probably knows what they're doing. // // Note that we don't want to make the variable non-external // because of this, but unique-external linkage suits us. if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) { LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); if (TypeLV.getLinkage() != ExternalLinkage) return LinkageInfo::uniqueExternal(); if (!LV.isVisibilityExplicit()) LV.mergeVisibility(TypeLV); } if (Var->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); // Note that Sema::MergeVarDecl already takes care of implementing // C99 6.2.2p4 and propagating the visibility attribute, so we don't have // to do it here. // As per function and class template specializations (below), // consider LV for the template and template arguments. We're at file // scope, so we do not need to worry about nested specializations. if (const auto *spec = dyn_cast
(Var)) { mergeTemplateLV(LV, spec, computation); } // - a function, unless it has internal linkage; or } else if (const auto *Function = dyn_cast
(D)) { // In theory, we can modify the function's LV by the LV of its // type unless it has C linkage (see comment above about variables // for justification). In practice, GCC doesn't do this, so it's // just too painful to make work. if (Function->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); // Note that Sema::MergeCompatibleFunctionDecls already takes care of // merging storage classes and visibility attributes, so we don't have to // look at previous decls in here. // In C++, then if the type of the function uses a type with // unique-external linkage, it's not legally usable from outside // this translation unit. However, we should use the C linkage // rules instead for extern "C" declarations. if (Context.getLangOpts().CPlusPlus && !Function->isInExternCContext()) { // Only look at the type-as-written. If this function has an auto-deduced // return type, we can't compute the linkage of that type because it could // require looking at the linkage of this function, and we don't need this // for correctness because the type is not part of the function's // signature. // FIXME: This is a hack. We should be able to solve this circularity and // the one in getLVForClassMember for Functions some other way. QualType TypeAsWritten = Function->getType(); if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) TypeAsWritten = TSI->getType(); if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) return LinkageInfo::uniqueExternal(); } // Consider LV from the template and the template arguments. // We're at file scope, so we do not need to worry about nested // specializations. if (FunctionTemplateSpecializationInfo *specInfo = Function->getTemplateSpecializationInfo()) { mergeTemplateLV(LV, Function, specInfo, computation); } // - a named class (Clause 9), or an unnamed class defined in a // typedef declaration in which the class has the typedef name // for linkage purposes (7.1.3); or // - a named enumeration (7.2), or an unnamed enumeration // defined in a typedef declaration in which the enumeration // has the typedef name for linkage purposes (7.1.3); or } else if (const auto *Tag = dyn_cast
(D)) { // Unnamed tags have no linkage. if (!Tag->hasNameForLinkage()) return LinkageInfo::none(); // If this is a class template specialization, consider the // linkage of the template and template arguments. We're at file // scope, so we do not need to worry about nested specializations. if (const auto *spec = dyn_cast
(Tag)) { mergeTemplateLV(LV, spec, computation); } // - an enumerator belonging to an enumeration with external linkage; } else if (isa
(D)) { LinkageInfo EnumLV = getLVForDecl(cast
(D->getDeclContext()), computation); if (!isExternalFormalLinkage(EnumLV.getLinkage())) return LinkageInfo::none(); LV.merge(EnumLV); // - a template, unless it is a function template that has // internal linkage (Clause 14); } else if (const auto *temp = dyn_cast
(D)) { bool considerVisibility = !hasExplicitVisibilityAlready(computation); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); // - a namespace (7.3), unless it is declared within an unnamed // namespace. } else if (isa
(D) && !D->isInAnonymousNamespace()) { return LV; // By extension, we assign external linkage to Objective-C // interfaces. } else if (isa
(D)) { // fallout } else if (auto *TD = dyn_cast
(D)) { // A typedef declaration has linkage if it gives a type a name for // linkage purposes. if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) return LinkageInfo::none(); // Everything not covered here has no linkage. } else { return LinkageInfo::none(); } // If we ended up with non-external linkage, visibility should // always be default. if (LV.getLinkage() != ExternalLinkage) return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); return LV; } static LinkageInfo getLVForClassMember(const NamedDecl *D, LVComputationKind computation) { // Only certain class members have linkage. Note that fields don't // really have linkage, but it's convenient to say they do for the // purposes of calculating linkage of pointer-to-data-member // template arguments. // // Templates also don't officially have linkage, but since we ignore // the C++ standard and look at template arguments when determining // linkage and visibility of a template specialization, we might hit // a template template argument that way. If we do, we need to // consider its linkage. if (!(isa
(D) || isa
(D) || isa
(D) || isa
(D) || isa
(D) || isa
(D))) return LinkageInfo::none(); LinkageInfo LV; // If we have an explicit visibility attribute, merge that in. if (!hasExplicitVisibilityAlready(computation)) { if (Optional
Vis = getExplicitVisibility(D, computation)) LV.mergeVisibility(*Vis, true); // If we're paying attention to global visibility, apply // -finline-visibility-hidden if this is an inline method. // // Note that we do this before merging information about // the class visibility. if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) LV.mergeVisibility(HiddenVisibility, true); } // If this class member has an explicit visibility attribute, the only // thing that can change its visibility is the template arguments, so // only look for them when processing the class. LVComputationKind classComputation = computation; if (LV.isVisibilityExplicit()) classComputation = withExplicitVisibilityAlready(computation); LinkageInfo classLV = getLVForDecl(cast
(D->getDeclContext()), classComputation); // If the class already has unique-external linkage, we can't improve. if (classLV.getLinkage() == UniqueExternalLinkage) return LinkageInfo::uniqueExternal(); if (!isExternallyVisible(classLV.getLinkage())) return LinkageInfo::none(); // Otherwise, don't merge in classLV yet, because in certain cases // we need to completely ignore the visibility from it. // Specifically, if this decl exists and has an explicit attribute. const NamedDecl *explicitSpecSuppressor = nullptr; if (const auto *MD = dyn_cast
(D)) { // If the type of the function uses a type with unique-external // linkage, it's not legally usable from outside this translation unit. // But only look at the type-as-written. If this function has an // auto-deduced return type, we can't compute the linkage of that type // because it could require looking at the linkage of this function, and we // don't need this for correctness because the type is not part of the // function's signature. // FIXME: This is a hack. We should be able to solve this circularity and // the one in getLVForNamespaceScopeDecl for Functions some other way. { QualType TypeAsWritten = MD->getType(); if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) TypeAsWritten = TSI->getType(); if (TypeAsWritten->getLinkage() == UniqueExternalLinkage) return LinkageInfo::uniqueExternal(); } // If this is a method template specialization, use the linkage for // the template parameters and arguments. if (FunctionTemplateSpecializationInfo *spec = MD->getTemplateSpecializationInfo()) { mergeTemplateLV(LV, MD, spec, computation); if (spec->isExplicitSpecialization()) { explicitSpecSuppressor = MD; } else if (isExplicitMemberSpecialization(spec->getTemplate())) { explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); } } else if (isExplicitMemberSpecialization(MD)) { explicitSpecSuppressor = MD; } } else if (const auto *RD = dyn_cast
(D)) { if (const auto *spec = dyn_cast
(RD)) { mergeTemplateLV(LV, spec, computation); if (spec->isExplicitSpecialization()) { explicitSpecSuppressor = spec; } else { const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); if (isExplicitMemberSpecialization(temp)) { explicitSpecSuppressor = temp->getTemplatedDecl(); } } } else if (isExplicitMemberSpecialization(RD)) { explicitSpecSuppressor = RD; } // Static data members. } else if (const auto *VD = dyn_cast
(D)) { if (const auto *spec = dyn_cast
(VD)) mergeTemplateLV(LV, spec, computation); // Modify the variable's linkage by its type, but ignore the // type's visibility unless it's a definition. LinkageInfo typeLV = getLVForType(*VD->getType(), computation); if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) LV.mergeVisibility(typeLV); LV.mergeExternalVisibility(typeLV); if (isExplicitMemberSpecialization(VD)) { explicitSpecSuppressor = VD; } // Template members. } else if (const auto *temp = dyn_cast
(D)) { bool considerVisibility = (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit() && !hasExplicitVisibilityAlready(computation)); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); if (const auto *redeclTemp = dyn_cast
(temp)) { if (isExplicitMemberSpecialization(redeclTemp)) { explicitSpecSuppressor = temp->getTemplatedDecl(); } } } // We should never be looking for an attribute directly on a template. assert(!explicitSpecSuppressor || !isa
(explicitSpecSuppressor)); // If this member is an explicit member specialization, and it has // an explicit attribute, ignore visibility from the parent. bool considerClassVisibility = true; if (explicitSpecSuppressor && // optimization: hasDVA() is true only with explicit visibility. LV.isVisibilityExplicit() && classLV.getVisibility() != DefaultVisibility && hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { considerClassVisibility = false; } // Finally, merge in information from the class. LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); return LV; } void NamedDecl::anchor() { } static LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation); bool NamedDecl::isLinkageValid() const { if (!hasCachedLinkage()) return true; return computeLVForDecl(this, LVForLinkageOnly).getLinkage() == getCachedLinkage(); } ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { StringRef name = getName(); if (name.empty()) return SFF_None; if (name.front() == 'C') if (name == "CFStringCreateWithFormat" || name == "CFStringCreateWithFormatAndArguments" || name == "CFStringAppendFormat" || name == "CFStringAppendFormatAndArguments") return SFF_CFString; return SFF_None; } Linkage NamedDecl::getLinkageInternal() const { // We don't care about visibility here, so ask for the cheapest // possible visibility analysis. return getLVForDecl(this, LVForLinkageOnly).getLinkage(); } LinkageInfo NamedDecl::getLinkageAndVisibility() const { LVComputationKind computation = (usesTypeVisibility(this) ? LVForType : LVForValue); return getLVForDecl(this, computation); } static Optional
getExplicitVisibilityAux(const NamedDecl *ND, NamedDecl::ExplicitVisibilityKind kind, bool IsMostRecent) { assert(!IsMostRecent || ND == ND->getMostRecentDecl()); // Check the declaration itself first. if (Optional
V = getVisibilityOf(ND, kind)) return V; // If this is a member class of a specialization of a class template // and the corresponding decl has explicit visibility, use that. if (const auto *RD = dyn_cast
(ND)) { CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); } // If there wasn't explicit visibility there, and this is a // specialization of a class template, check for visibility // on the pattern. if (const auto *spec = dyn_cast
(ND)) return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(), kind); // Use the most recent declaration. if (!IsMostRecent && !isa
(ND)) { const NamedDecl *MostRecent = ND->getMostRecentDecl(); if (MostRecent != ND) return getExplicitVisibilityAux(MostRecent, kind, true); } if (const auto *Var = dyn_cast
(ND)) { if (Var->isStaticDataMember()) { VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); } if (const auto *VTSD = dyn_cast
(Var)) return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), kind); return None; } // Also handle function template specializations. if (const auto *fn = dyn_cast
(ND)) { // If the function is a specialization of a template with an // explicit visibility attribute, use that. if (FunctionTemplateSpecializationInfo *templateInfo = fn->getTemplateSpecializationInfo()) return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), kind); // If the function is a member of a specialization of a class template // and the corresponding decl has explicit visibility, use that. FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); return None; } // The visibility of a template is stored in the templated decl. if (const auto *TD = dyn_cast
(ND)) return getVisibilityOf(TD->getTemplatedDecl(), kind); return None; } Optional
NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { return getExplicitVisibilityAux(this, kind, false); } static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl, LVComputationKind computation) { // This lambda has its linkage/visibility determined by its owner. if (ContextDecl) { if (isa
(ContextDecl)) DC = ContextDecl->getDeclContext()->getRedeclContext(); else return getLVForDecl(cast
(ContextDecl), computation); } if (const auto *ND = dyn_cast
(DC)) return getLVForDecl(ND, computation); return LinkageInfo::external(); } static LinkageInfo getLVForLocalDecl(const NamedDecl *D, LVComputationKind computation) { if (const auto *Function = dyn_cast
(D)) { if (Function->isInAnonymousNamespace() && !Function->isInExternCContext()) return LinkageInfo::uniqueExternal(); // This is a "void f();" which got merged with a file static. if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) return LinkageInfo::internal(); LinkageInfo LV; if (!hasExplicitVisibilityAlready(computation)) { if (Optional
Vis = getExplicitVisibility(Function, computation)) LV.mergeVisibility(*Vis, true); } // Note that Sema::MergeCompatibleFunctionDecls already takes care of // merging storage classes and visibility attributes, so we don't have to // look at previous decls in here. return LV; } if (const auto *Var = dyn_cast
(D)) { if (Var->hasExternalStorage()) { if (Var->isInAnonymousNamespace() && !Var->isInExternCContext()) return LinkageInfo::uniqueExternal(); LinkageInfo LV; if (Var->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); else if (!hasExplicitVisibilityAlready(computation)) { if (Optional
Vis = getExplicitVisibility(Var, computation)) LV.mergeVisibility(*Vis, true); } if (const VarDecl *Prev = Var->getPreviousDecl()) { LinkageInfo PrevLV = getLVForDecl(Prev, computation); if (PrevLV.getLinkage()) LV.setLinkage(PrevLV.getLinkage()); LV.mergeVisibility(PrevLV); } return LV; } if (!Var->isStaticLocal()) return LinkageInfo::none(); } ASTContext &Context = D->getASTContext(); if (!Context.getLangOpts().CPlusPlus) return LinkageInfo::none(); const Decl *OuterD = getOutermostFuncOrBlockContext(D); if (!OuterD || OuterD->isInvalidDecl()) return LinkageInfo::none(); LinkageInfo LV; if (const auto *BD = dyn_cast
(OuterD)) { if (!BD->getBlockManglingNumber()) return LinkageInfo::none(); LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), BD->getBlockManglingContextDecl(), computation); } else { const auto *FD = cast
(OuterD); if (!FD->isInlined() && !isTemplateInstantiation(FD->getTemplateSpecializationKind())) return LinkageInfo::none(); LV = getLVForDecl(FD, computation); } if (!isExternallyVisible(LV.getLinkage())) return LinkageInfo::none(); return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), LV.isVisibilityExplicit()); } static inline const CXXRecordDecl* getOutermostEnclosingLambda(const CXXRecordDecl *Record) { const CXXRecordDecl *Ret = Record; while (Record && Record->isLambda()) { Ret = Record; if (!Record->getParent()) break; // Get the Containing Class of this Lambda Class Record = dyn_cast_or_null
( Record->getParent()->getParent()); } return Ret; } static LinkageInfo computeLVForDecl(const NamedDecl *D, LVComputationKind computation) { // Internal_linkage attribute overrides other considerations. if (D->hasAttr
()) return LinkageInfo::internal(); // Objective-C: treat all Objective-C declarations as having external // linkage. switch (D->getKind()) { default: break; // Per C++ [basic.link]p2, only the names of objects, references, // functions, types, templates, namespaces, and values ever have linkage. // // Note that the name of a typedef, namespace alias, using declaration, // and so on are not the name of the corresponding type, namespace, or // declaration, so they do *not* have linkage. case Decl::ImplicitParam: case Decl::Label: case Decl::NamespaceAlias: case Decl::ParmVar: case Decl::Using: case Decl::UsingShadow: case Decl::UsingDirective: return LinkageInfo::none(); case Decl::EnumConstant: // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. return getLVForDecl(cast
(D->getDeclContext()), computation); case Decl::Typedef: case Decl::TypeAlias: // A typedef declaration has linkage if it gives a type a name for // linkage purposes. if (!D->getASTContext().getLangOpts().CPlusPlus || !cast
(D) ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) return LinkageInfo::none(); break; case Decl::TemplateTemplateParm: // count these as external case Decl::NonTypeTemplateParm: case Decl::ObjCAtDefsField: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCCompatibleAlias: case Decl::ObjCImplementation: case Decl::ObjCMethod: case Decl::ObjCProperty: case Decl::ObjCPropertyImpl: case Decl::ObjCProtocol: return LinkageInfo::external(); case Decl::CXXRecord: { const auto *Record = cast
(D); if (Record->isLambda()) { if (!Record->getLambdaManglingNumber()) { // This lambda has no mangling number, so it's internal. return LinkageInfo::internal(); } // This lambda has its linkage/visibility determined: // - either by the outermost lambda if that lambda has no mangling // number. // - or by the parent of the outer most lambda // This prevents infinite recursion in settings such as nested lambdas // used in NSDMI's, for e.g. // struct L { // int t{}; // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t); // }; const CXXRecordDecl *OuterMostLambda = getOutermostEnclosingLambda(Record); if (!OuterMostLambda->getLambdaManglingNumber()) return LinkageInfo::internal(); return getLVForClosure( OuterMostLambda->getDeclContext()->getRedeclContext(), OuterMostLambda->getLambdaContextDecl(), computation); } break; } } // Handle linkage for namespace-scope names. if (D->getDeclContext()->getRedeclContext()->isFileContext()) return getLVForNamespaceScopeDecl(D, computation); // C++ [basic.link]p5: // In addition, a member function, static data member, a named // class or enumeration of class scope, or an unnamed class or // enumeration defined in a class-scope typedef declaration such // that the class or enumeration has the typedef name for linkage // purposes (7.1.3), has external linkage if the name of the class // has external linkage. if (D->getDeclContext()->isRecord()) return getLVForClassMember(D, computation); // C++ [basic.link]p6: // The name of a function declared in block scope and the name of // an object declared by a block scope extern declaration have // linkage. If there is a visible declaration of an entity with // linkage having the same name and type, ignoring entities // declared outside the innermost enclosing namespace scope, the // block scope declaration declares that same entity and receives // the linkage of the previous declaration. If there is more than // one such matching entity, the program is ill-formed. Otherwise, // if no matching entity is found, the block scope entity receives // external linkage. if (D->getDeclContext()->isFunctionOrMethod()) return getLVForLocalDecl(D, computation); // C++ [basic.link]p6: // Names not covered by these rules have no linkage. return LinkageInfo::none(); } namespace clang { class LinkageComputer { public: static LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation) { // Internal_linkage attribute overrides other considerations. if (D->hasAttr
()) return LinkageInfo::internal(); if (computation == LVForLinkageOnly && D->hasCachedLinkage()) return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); LinkageInfo LV = computeLVForDecl(D, computation); if (D->hasCachedLinkage()) assert(D->getCachedLinkage() == LV.getLinkage()); D->setCachedLinkage(LV.getLinkage()); #ifndef NDEBUG // In C (because of gnu inline) and in c++ with microsoft extensions an // static can follow an extern, so we can have two decls with different // linkages. const LangOptions &Opts = D->getASTContext().getLangOpts(); if (!Opts.CPlusPlus || Opts.MicrosoftExt) return LV; // We have just computed the linkage for this decl. By induction we know // that all other computed linkages match, check that the one we just // computed also does. NamedDecl *Old = nullptr; for (auto I : D->redecls()) { auto *T = cast
(I); if (T == D) continue; if (!T->isInvalidDecl() && T->hasCachedLinkage()) { Old = T; break; } } assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); #endif return LV; } }; } static LinkageInfo getLVForDecl(const NamedDecl *D, LVComputationKind computation) { return clang::LinkageComputer::getLVForDecl(D, computation); } std::string NamedDecl::getQualifiedNameAsString() const { std::string QualName; llvm::raw_string_ostream OS(QualName); printQualifiedName(OS, getASTContext().getPrintingPolicy()); return OS.str(); } void NamedDecl::printQualifiedName(raw_ostream &OS) const { printQualifiedName(OS, getASTContext().getPrintingPolicy()); } void NamedDecl::printQualifiedName(raw_ostream &OS, const PrintingPolicy &P) const { const DeclContext *Ctx = getDeclContext(); if (Ctx->isFunctionOrMethod()) { printName(OS); return; } typedef SmallVector
ContextsTy; ContextsTy Contexts; // Collect contexts. while (Ctx && isa
(Ctx)) { Contexts.push_back(Ctx); Ctx = Ctx->getParent(); } for (const DeclContext *DC : reverse(Contexts)) { if (const auto *Spec = dyn_cast
(DC)) { OS << Spec->getName(); const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); TemplateSpecializationType::PrintTemplateArgumentList( OS, TemplateArgs.asArray(), P); } else if (const auto *ND = dyn_cast
(DC)) { if (P.SuppressUnwrittenScope && (ND->isAnonymousNamespace() || ND->isInline())) continue; if (ND->isAnonymousNamespace()) { OS << (P.MSVCFormatting ? "`anonymous namespace\'" : "(anonymous namespace)"); } else OS << *ND; } else if (const auto *RD = dyn_cast
(DC)) { if (!RD->getIdentifier()) OS << "(anonymous " << RD->getKindName() << ')'; else OS << *RD; } else if (const auto *FD = dyn_cast
(DC)) { const FunctionProtoType *FT = nullptr; if (FD->hasWrittenPrototype()) FT = dyn_cast
(FD->getType()->castAs
()); OS << *FD << '('; if (FT) { unsigned NumParams = FD->getNumParams(); for (unsigned i = 0; i < NumParams; ++i) { if (i) OS << ", "; OS << FD->getParamDecl(i)->getType().stream(P); } if (FT->isVariadic()) { if (NumParams > 0) OS << ", "; OS << "..."; } } OS << ')'; } else if (const auto *ED = dyn_cast
(DC)) { // C++ [dcl.enum]p10: Each enum-name and each unscoped // enumerator is declared in the scope that immediately contains // the enum-specifier. Each scoped enumerator is declared in the // scope of the enumeration. if (ED->isScoped() || ED->getIdentifier()) OS << *ED; else continue; } else { OS << *cast
(DC); } OS << "::"; } if (getDeclName()) OS << *this; else OS << "(anonymous)"; } void NamedDecl::getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { if (Qualified) printQualifiedName(OS, Policy); else printName(OS); } template
static bool isRedeclarableImpl(Redeclarable
*) { return true; } static bool isRedeclarableImpl(...) { return false; } static bool isRedeclarable(Decl::Kind K) { switch (K) { #define DECL(Type, Base) \ case Decl::Type: \ return isRedeclarableImpl((Type##Decl *)nullptr); #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } llvm_unreachable("unknown decl kind"); } bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); // Never replace one imported declaration with another; we need both results // when re-exporting. if (OldD->isFromASTFile() && isFromASTFile()) return false; // A kind mismatch implies that the declaration is not replaced. if (OldD->getKind() != getKind()) return false; // For method declarations, we never replace. (Why?) if (isa
(this)) return false; // For parameters, pick the newer one. This is either an error or (in // Objective-C) permitted as an extension. if (isa
(this)) return true; // Inline namespaces can give us two declarations with the same // name and kind in the same scope but different contexts; we should // keep both declarations in this case. if (!this->getDeclContext()->getRedeclContext()->Equals( OldD->getDeclContext()->getRedeclContext())) return false; // Using declarations can be replaced if they import the same name from the // same context. if (auto *UD = dyn_cast
(this)) { ASTContext &Context = getASTContext(); return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == Context.getCanonicalNestedNameSpecifier( cast
(OldD)->getQualifier()); } if (auto *UUVD = dyn_cast
(this)) { ASTContext &Context = getASTContext(); return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == Context.getCanonicalNestedNameSpecifier( cast
(OldD)->getQualifier()); } // UsingDirectiveDecl's are not really NamedDecl's, and all have same name. // They can be replaced if they nominate the same namespace. // FIXME: Is this true even if they have different module visibility? if (auto *UD = dyn_cast
(this)) return UD->getNominatedNamespace()->getOriginalNamespace() == cast
(OldD)->getNominatedNamespace() ->getOriginalNamespace(); if (isRedeclarable(getKind())) { if (getCanonicalDecl() != OldD->getCanonicalDecl()) return false; if (IsKnownNewer) return true; // Check whether this is actually newer than OldD. We want to keep the // newer declaration. This loop will usually only iterate once, because // OldD is usually the previous declaration. for (auto D : redecls()) { if (D == OldD) break; // If we reach the canonical declaration, then OldD is not actually older // than this one. // // FIXME: In this case, we should not add this decl to the lookup table. if (D->isCanonicalDecl()) return false; } // It's a newer declaration of the same kind of declaration in the same // scope: we want this decl instead of the existing one. return true; } // In all other cases, we need to keep both declarations in case they have // different visibility. Any attempt to use the name will result in an // ambiguity if more than one is visible. return false; } bool NamedDecl::hasLinkage() const { return getFormalLinkage() != NoLinkage; } NamedDecl *NamedDecl::getUnderlyingDeclImpl() { NamedDecl *ND = this; while (auto *UD = dyn_cast
(ND)) ND = UD->getTargetDecl(); if (auto *AD = dyn_cast
(ND)) return AD->getClassInterface(); if (auto *AD = dyn_cast
(ND)) return AD->getNamespace(); return ND; } bool NamedDecl::isCXXInstanceMember() const { if (!isCXXClassMember()) return false; const NamedDecl *D = this; if (isa
(D)) D = cast
(D)->getTargetDecl(); if (isa
(D) || isa
(D) || isa
(D)) return true; if (const auto *MD = dyn_cast_or_null
(D->getAsFunction())) return MD->isInstance(); return false; } //===----------------------------------------------------------------------===// // DeclaratorDecl Implementation //===----------------------------------------------------------------------===// template
static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { if (decl->getNumTemplateParameterLists() > 0) return decl->getTemplateParameterList(0)->getTemplateLoc(); else return decl->getInnerLocStart(); } SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { TypeSourceInfo *TSI = getTypeSourceInfo(); if (TSI) return TSI->getTypeLoc().getBeginLoc(); return SourceLocation(); } void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { if (QualifierLoc) { // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. auto *savedTInfo = DeclInfo.get
(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set qualifier info. getExtInfo()->QualifierLoc = QualifierLoc; } else { // Here Qualifier == 0, i.e., we are removing the qualifier (if any). if (hasExtInfo()) { if (getExtInfo()->NumTemplParamLists == 0) { // Save type source info pointer. TypeSourceInfo *savedTInfo = getExtInfo()->TInfo; // Deallocate the extended decl info. getASTContext().Deallocate(getExtInfo()); // Restore savedTInfo into (non-extended) decl info. DeclInfo = savedTInfo; } else getExtInfo()->QualifierLoc = QualifierLoc; } } } void DeclaratorDecl::setTemplateParameterListsInfo( ASTContext &Context, ArrayRef
TPLists) { assert(!TPLists.empty()); // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. auto *savedTInfo = DeclInfo.get
(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set the template parameter lists info. getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); } SourceLocation DeclaratorDecl::getOuterLocStart() const { return getTemplateOrInnerLocStart(this); } namespace { // Helper function: returns true if QT is or contains a type // having a postfix component. bool typeIsPostfix(clang::QualType QT) { while (true) { const Type* T = QT.getTypePtr(); switch (T->getTypeClass()) { default: return false; case Type::Pointer: QT = cast
(T)->getPointeeType(); break; case Type::BlockPointer: QT = cast
(T)->getPointeeType(); break; case Type::MemberPointer: QT = cast
(T)->getPointeeType(); break; case Type::LValueReference: case Type::RValueReference: QT = cast
(T)->getPointeeType(); break; case Type::PackExpansion: QT = cast
(T)->getPattern(); break; case Type::Paren: case Type::ConstantArray: case Type::DependentSizedArray: case Type::IncompleteArray: case Type::VariableArray: case Type::FunctionProto: case Type::FunctionNoProto: return true; } } } } // namespace SourceRange DeclaratorDecl::getSourceRange() const { SourceLocation RangeEnd = getLocation(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { // If the declaration has no name or the type extends past the name take the // end location of the type. if (!getDeclName() || typeIsPostfix(TInfo->getType())) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); } return SourceRange(getOuterLocStart(), RangeEnd); } void QualifierInfo::setTemplateParameterListsInfo( ASTContext &Context, ArrayRef
TPLists) { // Free previous template parameters (if any). if (NumTemplParamLists > 0) { Context.Deallocate(TemplParamLists); TemplParamLists = nullptr; NumTemplParamLists = 0; } // Set info on matched template parameter lists (if any). if (!TPLists.empty()) { TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; NumTemplParamLists = TPLists.size(); std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); } } //===----------------------------------------------------------------------===// // VarDecl Implementation //===----------------------------------------------------------------------===// const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { switch (SC) { case SC_None: break; case SC_Auto: return "auto"; case SC_Extern: return "extern"; case SC_PrivateExtern: return "__private_extern__"; case SC_Register: return "register"; case SC_Static: return "static"; } llvm_unreachable("Invalid storage class"); } VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass SC) : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), redeclarable_base(C), Init() { static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), "VarDeclBitfields too large!"); static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), "ParmVarDeclBitfields too large!"); static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), "NonParmVarDeclBitfields too large!"); AllBits = 0; VarDeclBits.SClass = SC; // Everything else is implicitly initialized to false. } VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL, SourceLocation IdL, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S) { return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); } VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, QualType(), nullptr, SC_None); } void VarDecl::setStorageClass(StorageClass SC) { assert(isLegalForVariable(SC)); VarDeclBits.SClass = SC; } VarDecl::TLSKind VarDecl::getTLSKind() const { switch (VarDeclBits.TSCSpec) { case TSCS_unspecified: if (!hasAttr
() && !(getASTContext().getLangOpts().OpenMPUseTLS && getASTContext().getTargetInfo().isTLSSupported() && hasAttr
())) return TLS_None; return ((getASTContext().getLangOpts().isCompatibleWithMSVC( LangOptions::MSVC2015)) || hasAttr
()) ? TLS_Dynamic : TLS_Static; case TSCS___thread: // Fall through. case TSCS__Thread_local: return TLS_Static; case TSCS_thread_local: return TLS_Dynamic; } llvm_unreachable("Unknown thread storage class specifier!"); } SourceRange VarDecl::getSourceRange() const { if (const Expr *Init = getInit()) { SourceLocation InitEnd = Init->getLocEnd(); // If Init is implicit, ignore its source range and fallback on // DeclaratorDecl::getSourceRange() to handle postfix elements. if (InitEnd.isValid() && InitEnd != getLocation()) return SourceRange(getOuterLocStart(), InitEnd); } return DeclaratorDecl::getSourceRange(); } template
static LanguageLinkage getDeclLanguageLinkage(const T &D) { // C++ [dcl.link]p1: All function types, function names with external linkage, // and variable names with external linkage have a language linkage. if (!D.hasExternalFormalLinkage()) return NoLanguageLinkage; // Language linkage is a C++ concept, but saying that everything else in C has // C language linkage fits the implementation nicely. ASTContext &Context = D.getASTContext(); if (!Context.getLangOpts().CPlusPlus) return CLanguageLinkage; // C++ [dcl.link]p4: A C language linkage is ignored in determining the // language linkage of the names of class members and the function type of // class member functions. const DeclContext *DC = D.getDeclContext(); if (DC->isRecord()) return CXXLanguageLinkage; // If the first decl is in an extern "C" context, any other redeclaration // will have C language linkage. If the first one is not in an extern "C" // context, we would have reported an error for any other decl being in one. if (isFirstInExternCContext(&D)) return CLanguageLinkage; return CXXLanguageLinkage; } template
static bool isDeclExternC(const T &D) { // Since the context is ignored for class members, they can only have C++ // language linkage or no language linkage. const DeclContext *DC = D.getDeclContext(); if (DC->isRecord()) { assert(D.getASTContext().getLangOpts().CPlusPlus); return false; } return D.getLanguageLinkage() == CLanguageLinkage; } LanguageLinkage VarDecl::getLanguageLinkage() const { return getDeclLanguageLinkage(*this); } bool VarDecl::isExternC() const { return isDeclExternC(*this); } bool VarDecl::isInExternCContext() const { return getLexicalDeclContext()->isExternCContext(); } bool VarDecl::isInExternCXXContext() const { return getLexicalDeclContext()->isExternCXXContext(); } VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(ASTContext &C) const { // C++ [basic.def]p2: // A declaration is a definition unless [...] it contains the 'extern' // specifier or a linkage-specification and neither an initializer [...], // it declares a non-inline static data member in a class declaration [...], // it declares a static data member outside a class definition and the variable // was defined within the class with the constexpr specifier [...], // C++1y [temp.expl.spec]p15: // An explicit specialization of a static data member or an explicit // specialization of a static data member template is a definition if the // declaration includes an initializer; otherwise, it is a declaration. // // FIXME: How do you declare (but not define) a partial specialization of // a static data member template outside the containing class? if (isStaticDataMember()) { if (isOutOfLine() && !(getCanonicalDecl()->isInline() && getCanonicalDecl()->isConstexpr()) && (hasInit() || // If the first declaration is out-of-line, this may be an // instantiation of an out-of-line partial specialization of a variable // template for which we have not yet instantiated the initializer. (getFirstDecl()->isOutOfLine() ? getTemplateSpecializationKind() == TSK_Undeclared : getTemplateSpecializationKind() != TSK_ExplicitSpecialization) || isa
(this))) return Definition; else if (!isOutOfLine() && isInline()) return Definition; else return DeclarationOnly; } // C99 6.7p5: // A definition of an identifier is a declaration for that identifier that // [...] causes storage to be reserved for that object. // Note: that applies for all non-file-scope objects. // C99 6.9.2p1: // If the declaration of an identifier for an object has file scope and an // initializer, the declaration is an external definition for the identifier if (hasInit()) return Definition; if (hasDefiningAttr()) return Definition; if (const auto *SAA = getAttr
()) if (!SAA->isInherited()) return Definition; // A variable template specialization (other than a static data member // template or an explicit specialization) is a declaration until we // instantiate its initializer. if (isa
(this) && getTemplateSpecializationKind() != TSK_ExplicitSpecialization) return DeclarationOnly; if (hasExternalStorage()) return DeclarationOnly; // [dcl.link] p7: // A declaration directly contained in a linkage-specification is treated // as if it contains the extern specifier for the purpose of determining // the linkage of the declared name and whether it is a definition. if (isSingleLineLanguageLinkage(*this)) return DeclarationOnly; // C99 6.9.2p2: // A declaration of an object that has file scope without an initializer, // and without a storage class specifier or the scs 'static', constitutes // a tentative definition. // No such thing in C++. if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) return TentativeDefinition; // What's left is (in C, block-scope) declarations without initializers or // external storage. These are definitions. return Definition; } VarDecl *VarDecl::getActingDefinition() { DefinitionKind Kind = isThisDeclarationADefinition(); if (Kind != TentativeDefinition) return nullptr; VarDecl *LastTentative = nullptr; VarDecl *First = getFirstDecl(); for (auto I : First->redecls()) { Kind = I->isThisDeclarationADefinition(); if (Kind == Definition) return nullptr; else if (Kind == TentativeDefinition) LastTentative = I; } return LastTentative; } VarDecl *VarDecl::getDefinition(ASTContext &C) { VarDecl *First = getFirstDecl(); for (auto I : First->redecls()) { if (I->isThisDeclarationADefinition(C) == Definition) return I; } return nullptr; } VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { DefinitionKind Kind = DeclarationOnly; const VarDecl *First = getFirstDecl(); for (auto I : First->redecls()) { Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); if (Kind == Definition) break; } return Kind; } const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { for (auto I : redecls()) { if (auto Expr = I->getInit()) { D = I; return Expr; } } return nullptr; } bool VarDecl::hasInit() const { if (auto *P = dyn_cast
(this)) if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) return false; return !Init.isNull(); } Expr *VarDecl::getInit() { if (!hasInit()) return nullptr; if (auto *S = Init.dyn_cast
()) return cast
(S); return cast_or_null
(Init.get
()->Value); } Stmt **VarDecl::getInitAddress() { if (auto *ES = Init.dyn_cast
()) return &ES->Value; return Init.getAddrOfPtr1(); } bool VarDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; if (!isStaticDataMember()) return false; // If this static data member was instantiated from a static data member of // a class template, check whether that static data member was defined // out-of-line. if (VarDecl *VD = getInstantiatedFromStaticDataMember()) return VD->isOutOfLine(); return false; } void VarDecl::setInit(Expr *I) { if (auto *Eval = Init.dyn_cast
()) { Eval->~EvaluatedStmt(); getASTContext().Deallocate(Eval); } Init = I; } bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const { const LangOptions &Lang = C.getLangOpts(); if (!Lang.CPlusPlus) return false; // In C++11, any variable of reference type can be used in a constant // expression if it is initialized by a constant expression. if (Lang.CPlusPlus11 && getType()->isReferenceType()) return true; // Only const objects can be used in constant expressions in C++. C++98 does // not require the variable to be non-volatile, but we consider this to be a // defect. if (!getType().isConstQualified() || getType().isVolatileQualified()) return false; // In C++, const, non-volatile variables of integral or enumeration types // can be used in constant expressions. if (getType()->isIntegralOrEnumerationType()) return true; // Additionally, in C++11, non-volatile constexpr variables can be used in // constant expressions. return Lang.CPlusPlus11 && isConstexpr(); } /// Convert the initializer for this declaration to the elaborated EvaluatedStmt /// form, which contains extra information on the evaluated value of the /// initializer. EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { auto *Eval = Init.dyn_cast
(); if (!Eval) { // Note: EvaluatedStmt contains an APValue, which usually holds // resources not allocated from the ASTContext. We need to do some // work to avoid leaking those, but we do so in VarDecl::evaluateValue // where we can detect whether there's anything to clean up or not. Eval = new (getASTContext()) EvaluatedStmt; Eval->Value = Init.get
(); Init = Eval; } return Eval; } APValue *VarDecl::evaluateValue() const { SmallVector
Notes; return evaluateValue(Notes); } namespace { // Destroy an APValue that was allocated in an ASTContext. void DestroyAPValue(void* UntypedValue) { static_cast
(UntypedValue)->~APValue(); } } // namespace APValue *VarDecl::evaluateValue( SmallVectorImpl
&Notes) const { EvaluatedStmt *Eval = ensureEvaluatedStmt(); // We only produce notes indicating why an initializer is non-constant the // first time it is evaluated. FIXME: The notes won't always be emitted the // first time we try evaluation, so might not be produced at all. if (Eval->WasEvaluated) return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated; const auto *Init = cast
(Eval->Value); assert(!Init->isValueDependent()); if (Eval->IsEvaluating) { // FIXME: Produce a diagnostic for self-initialization. Eval->CheckedICE = true; Eval->IsICE = false; return nullptr; } Eval->IsEvaluating = true; bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), this, Notes); // Ensure the computed APValue is cleaned up later if evaluation succeeded, // or that it's empty (so that there's nothing to clean up) if evaluation // failed. if (!Result) Eval->Evaluated = APValue(); else if (Eval->Evaluated.needsCleanup()) getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated); Eval->IsEvaluating = false; Eval->WasEvaluated = true; // In C++11, we have determined whether the initializer was a constant // expression as a side-effect. if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { Eval->CheckedICE = true; Eval->IsICE = Result && Notes.empty(); } return Result ? &Eval->Evaluated : nullptr; } APValue *VarDecl::getEvaluatedValue() const { if (EvaluatedStmt *Eval = Init.dyn_cast
()) if (Eval->WasEvaluated) return &Eval->Evaluated; return nullptr; } bool VarDecl::isInitKnownICE() const { if (EvaluatedStmt *Eval = Init.dyn_cast
()) return Eval->CheckedICE; return false; } bool VarDecl::isInitICE() const { assert(isInitKnownICE() && "Check whether we already know that the initializer is an ICE"); return Init.get
()->IsICE; } bool VarDecl::checkInitIsICE() const { // Initializers of weak variables are never ICEs. if (isWeak()) return false; EvaluatedStmt *Eval = ensureEvaluatedStmt(); if (Eval->CheckedICE) // We have already checked whether this subexpression is an // integral constant expression. return Eval->IsICE; const auto *Init = cast
(Eval->Value); assert(!Init->isValueDependent()); // In C++11, evaluate the initializer to check whether it's a constant // expression. if (getASTContext().getLangOpts().CPlusPlus11) { SmallVector
Notes; evaluateValue(Notes); return Eval->IsICE; } // It's an ICE whether or not the definition we found is // out-of-line. See DR 721 and the discussion in Clang PR // 6206 for details. if (Eval->CheckingICE) return false; Eval->CheckingICE = true; Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); Eval->CheckingICE = false; Eval->CheckedICE = true; return Eval->IsICE; } VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return cast
(MSI->getInstantiatedFrom()); return nullptr; } TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { if (const auto *Spec = dyn_cast
(this)) return Spec->getSpecializationKind(); if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } SourceLocation VarDecl::getPointOfInstantiation() const { if (const auto *Spec = dyn_cast
(this)) return Spec->getPointOfInstantiation(); if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getPointOfInstantiation(); return SourceLocation(); } VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { return getASTContext().getTemplateOrSpecializationInfo(this) .dyn_cast
(); } void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { getASTContext().setTemplateOrSpecializationInfo(this, Template); } MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { if (isStaticDataMember()) // FIXME: Remove ? // return getASTContext().getInstantiatedFromStaticDataMember(this); return getASTContext().getTemplateOrSpecializationInfo(this) .dyn_cast
(); return nullptr; } void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { assert((isa
(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"); if (VarTemplateSpecializationDecl *Spec = dyn_cast
(this)) { Spec->setSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && Spec->getPointOfInstantiation().isInvalid()) Spec->setPointOfInstantiation(PointOfInstantiation); } if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) MSI->setPointOfInstantiation(PointOfInstantiation); } } void VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, TemplateSpecializationKind TSK) { assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && "Previous template or instantiation?"); getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); } //===----------------------------------------------------------------------===// // ParmVarDecl Implementation //===----------------------------------------------------------------------===// ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg) { return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, S, DefArg); } QualType ParmVarDecl::getOriginalType() const { TypeSourceInfo *TSI = getTypeSourceInfo(); QualType T = TSI ? TSI->getType() : getType(); if (const auto *DT = dyn_cast
(T)) return DT->getOriginalType(); return T; } ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), nullptr, QualType(), nullptr, SC_None, nullptr); } SourceRange ParmVarDecl::getSourceRange() const { if (!hasInheritedDefaultArg()) { SourceRange ArgRange = getDefaultArgRange(); if (ArgRange.isValid()) return SourceRange(getOuterLocStart(), ArgRange.getEnd()); } // DeclaratorDecl considers the range of postfix types as overlapping with the // declaration name, but this is not the case with parameters in ObjC methods. if (isa
(getDeclContext())) return SourceRange(DeclaratorDecl::getLocStart(), getLocation()); return DeclaratorDecl::getSourceRange(); } Expr *ParmVarDecl::getDefaultArg() { assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); assert(!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"); Expr *Arg = getInit(); if (auto *E = dyn_cast_or_null
(Arg)) return E->getSubExpr(); return Arg; } void ParmVarDecl::setDefaultArg(Expr *defarg) { ParmVarDeclBits.DefaultArgKind = DAK_Normal; Init = defarg; } SourceRange ParmVarDecl::getDefaultArgRange() const { switch (ParmVarDeclBits.DefaultArgKind) { case DAK_None: case DAK_Unparsed: // Nothing we can do here. return SourceRange(); case DAK_Uninstantiated: return getUninstantiatedDefaultArg()->getSourceRange(); case DAK_Normal: if (const Expr *E = getInit()) return E->getSourceRange(); // Missing an actual expression, may be invalid. return SourceRange(); } llvm_unreachable("Invalid default argument kind."); } void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; Init = arg; } Expr *ParmVarDecl::getUninstantiatedDefaultArg() { assert(hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"); return cast_or_null
(Init.get
()); } bool ParmVarDecl::hasDefaultArg() const { // FIXME: We should just return false for DAK_None here once callers are // prepared for the case that we encountered an invalid default argument and // were unable to even build an invalid expression. return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || !Init.isNull(); } bool ParmVarDecl::isParameterPack() const { return isa
(getType()); } void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { getASTContext().setParameterIndex(this, parameterIndex); ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; } unsigned ParmVarDecl::getParameterIndexLarge() const { return getASTContext().getParameterIndex(this); } //===----------------------------------------------------------------------===// // FunctionDecl Implementation //===----------------------------------------------------------------------===// void FunctionDecl::getNameForDiagnostic( raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); if (TemplateArgs) TemplateSpecializationType::PrintTemplateArgumentList( OS, TemplateArgs->asArray(), Policy); } bool FunctionDecl::isVariadic() const { if (const auto *FT = getType()->getAs
()) return FT->isVariadic(); return false; } bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { for (auto I : redecls()) { if (I->Body || I->IsLateTemplateParsed) { Definition = I; return true; } } return false; } bool FunctionDecl::hasTrivialBody() const { Stmt *S = getBody(); if (!S) { // Since we don't have a body for this function, we don't know if it's // trivial or not. return false; } if (isa
(S) && cast
(S)->body_empty()) return true; return false; } bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { for (auto I : redecls()) { if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed || I->hasDefiningAttr()) { Definition = I->IsDeleted ? I->getCanonicalDecl() : I; return true; } } return false; } Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { if (!hasBody(Definition)) return nullptr; if (Definition->Body) return Definition->Body.get(getASTContext().getExternalSource()); return nullptr; } void FunctionDecl::setBody(Stmt *B) { Body = B; if (B) EndRangeLoc = B->getLocEnd(); } void FunctionDecl::setPure(bool P) { IsPure = P; if (P) if (auto *Parent = dyn_cast
(getDeclContext())) Parent->markedVirtualFunctionPure(); } template
static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { IdentifierInfo *II = ND->getIdentifier(); return II && II->isStr(Str); } bool FunctionDecl::isMain() const { const TranslationUnitDecl *tunit = dyn_cast
(getDeclContext()->getRedeclContext()); return tunit && !tunit->getASTContext().getLangOpts().Freestanding && isNamed(this, "main"); } bool FunctionDecl::isMSVCRTEntryPoint() const { const TranslationUnitDecl *TUnit = dyn_cast
(getDeclContext()->getRedeclContext()); if (!TUnit) return false; // Even though we aren't really targeting MSVCRT if we are freestanding, // semantic analysis for these functions remains the same. // MSVCRT entry points only exist on MSVCRT targets. if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) return false; // Nameless functions like constructors cannot be entry points. if (!getIdentifier()) return false; return llvm::StringSwitch
(getName()) .Cases("main", // an ANSI console app "wmain", // a Unicode console App "WinMain", // an ANSI GUI app "wWinMain", // a Unicode GUI app "DllMain", // a DLL true) .Default(false); } bool FunctionDecl::isReservedGlobalPlacementOperator() const { assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); assert(getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) return false; const auto *proto = getType()->castAs
(); if (proto->getNumParams() != 2 || proto->isVariadic()) return false; ASTContext &Context = cast
(getDeclContext()->getRedeclContext()) ->getASTContext(); // The result type and first argument type are constant across all // these operators. The second argument must be exactly void*. return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); } bool FunctionDecl::isReplaceableGlobalAllocationFunction() const { if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) return false; if (getDeclName().getCXXOverloadedOperator() != OO_New && getDeclName().getCXXOverloadedOperator() != OO_Delete && getDeclName().getCXXOverloadedOperator() != OO_Array_New && getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) return false; if (isa
(getDeclContext())) return false; // This can only fail for an invalid 'operator new' declaration. if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) return false; const auto *FPT = getType()->castAs
(); if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic()) return false; // If this is a single-parameter function, it must be a replaceable global // allocation or deallocation function. if (FPT->getNumParams() == 1) return true; // Otherwise, we're looking for a second parameter whose type is // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'. QualType Ty = FPT->getParamType(1); ASTContext &Ctx = getASTContext(); if (Ctx.getLangOpts().SizedDeallocation && Ctx.hasSameType(Ty, Ctx.getSizeType())) return true; if (!Ty->isReferenceType()) return false; Ty = Ty->getPointeeType(); if (Ty.getCVRQualifiers() != Qualifiers::Const) return false; const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace(); } LanguageLinkage FunctionDecl::getLanguageLinkage() const { return getDeclLanguageLinkage(*this); } bool FunctionDecl::isExternC() const { return isDeclExternC(*this); } bool FunctionDecl::isInExternCContext() const { return getLexicalDeclContext()->isExternCContext(); } bool FunctionDecl::isInExternCXXContext() const { return getLexicalDeclContext()->isExternCXXContext(); } bool FunctionDecl::isGlobal() const { if (const auto *Method = dyn_cast
(this)) return Method->isStatic(); if (getCanonicalDecl()->getStorageClass() == SC_Static) return false; for (const DeclContext *DC = getDeclContext(); DC->isNamespace(); DC = DC->getParent()) { if (const auto *Namespace = cast
(DC)) { if (!Namespace->getDeclName()) return false; break; } } return true; } bool FunctionDecl::isNoReturn() const { return hasAttr
() || hasAttr
() || hasAttr
() || getType()->getAs
()->getNoReturnAttr(); } void FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { redeclarable_base::setPreviousDecl(PrevDecl); if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { FunctionTemplateDecl *PrevFunTmpl = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); FunTmpl->setPreviousDecl(PrevFunTmpl); } if (PrevDecl && PrevDecl->IsInline) IsInline = true; } FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } /// \brief Returns a value indicating whether this function /// corresponds to a builtin function. /// /// The function corresponds to a built-in function if it is /// declared at translation scope or within an extern "C" block and /// its name matches with the name of a builtin. The returned value /// will be 0 for functions that do not correspond to a builtin, a /// value of type \c Builtin::ID if in the target-independent range /// \c [1,Builtin::First), or a target-specific builtin value. unsigned FunctionDecl::getBuiltinID() const { if (!getIdentifier()) return 0; unsigned BuiltinID = getIdentifier()->getBuiltinID(); if (!BuiltinID) return 0; ASTContext &Context = getASTContext(); if (Context.getLangOpts().CPlusPlus) { const auto *LinkageDecl = dyn_cast
(getFirstDecl()->getDeclContext()); // In C++, the first declaration of a builtin is always inside an implicit // extern "C". // FIXME: A recognised library function may not be directly in an extern "C" // declaration, for instance "extern "C" { namespace std { decl } }". if (!LinkageDecl) { if (BuiltinID == Builtin::BI__GetExceptionInfo && Context.getTargetInfo().getCXXABI().isMicrosoft()) return Builtin::BI__GetExceptionInfo; return 0; } if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c) return 0; } // If the function is marked "overloadable", it has a different mangled name // and is not the C library function. if (hasAttr
()) return 0; if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return BuiltinID; // This function has the name of a known C library // function. Determine whether it actually refers to the C library // function or whether it just has the same name. // If this is a static function, it's not a builtin. if (getStorageClass() == SC_Static) return 0; // OpenCL v1.2 s6.9.f - The library functions defined in // the C99 standard headers are not available. if (Context.getLangOpts().OpenCL && Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return 0; return BuiltinID; } /// getNumParams - Return the number of parameters this function must have /// based on its FunctionType. This is the length of the ParamInfo array /// after it has been created. unsigned FunctionDecl::getNumParams() const { const auto *FPT = getType()->getAs
(); return FPT ? FPT->getNumParams() : 0; } void FunctionDecl::setParams(ASTContext &C, ArrayRef
NewParamInfo) { assert(!ParamInfo && "Already has param info!"); assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); // Zero params -> null pointer. if (!NewParamInfo.empty()) { ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); } } void FunctionDecl::setDeclsInPrototypeScope(ArrayRef
NewDecls) { assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!"); if (!NewDecls.empty()) { NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()]; std::copy(NewDecls.begin(), NewDecls.end(), A); DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size()); // Move declarations introduced in prototype to the function context. for (auto I : NewDecls) { DeclContext *DC = I->getDeclContext(); // Forward-declared reference to an enumeration is not added to // declaration scope, so skip declaration that is absent from its // declaration contexts. if (DC->containsDecl(I)) { DC->removeDecl(I); I->setDeclContext(this); addDecl(I); } } } } /// getMinRequiredArguments - Returns the minimum number of arguments /// needed to call this function. This may be fewer than the number of /// function parameters, if some of the parameters have default /// arguments (in C++) or are parameter packs (C++11). unsigned FunctionDecl::getMinRequiredArguments() const { if (!getASTContext().getLangOpts().CPlusPlus) return getNumParams(); unsigned NumRequiredArgs = 0; for (auto *Param : parameters()) if (!Param->isParameterPack() && !Param->hasDefaultArg()) ++NumRequiredArgs; return NumRequiredArgs; } /// \brief The combination of the extern and inline keywords under MSVC forces /// the function to be required. /// /// Note: This function assumes that we will only get called when isInlined() /// would return true for this FunctionDecl. bool FunctionDecl::isMSExternInline() const { assert(isInlined() && "expected to get called on an inlined function!"); const ASTContext &Context = getASTContext(); if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && !hasAttr
()) return false; for (const FunctionDecl *FD = getMostRecentDecl(); FD; FD = FD->getPreviousDecl()) if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) return true; return false; } static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { if (Redecl->getStorageClass() != SC_Extern) return false; for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; FD = FD->getPreviousDecl()) if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) return false; return true; } static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { // Only consider file-scope declarations in this test. if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) return false; // Only consider explicit declarations; the presence of a builtin for a // libcall shouldn't affect whether a definition is externally visible. if (Redecl->isImplicit()) return false; if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) return true; // Not an inline definition return false; } /// \brief For a function declaration in C or C++, determine whether this /// declaration causes the definition to be externally visible. /// /// For instance, this determines if adding the current declaration to the set /// of redeclarations of the given functions causes /// isInlineDefinitionExternallyVisible to change from false to true. bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { assert(!doesThisDeclarationHaveABody() && "Must have a declaration without a body."); ASTContext &Context = getASTContext(); if (Context.getLangOpts().MSVCCompat) { const FunctionDecl *Definition; if (hasBody(Definition) && Definition->isInlined() && redeclForcesDefMSVC(this)) return true; } if (Context.getLangOpts().GNUInline || hasAttr
()) { // With GNU inlining, a declaration with 'inline' but not 'extern', forces // an externally visible definition. // // FIXME: What happens if gnu_inline gets added on after the first // declaration? if (!isInlineSpecified() || getStorageClass() == SC_Extern) return false; const FunctionDecl *Prev = this; bool FoundBody = false; while ((Prev = Prev->getPreviousDecl())) { FoundBody |= Prev->Body.isValid(); if (Prev->Body) { // If it's not the case that both 'inline' and 'extern' are // specified on the definition, then it is always externally visible. if (!Prev->isInlineSpecified() || Prev->getStorageClass() != SC_Extern) return false; } else if (Prev->isInlineSpecified() && Prev->getStorageClass() != SC_Extern) { return false; } } return FoundBody; } if (Context.getLangOpts().CPlusPlus) return false; // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. if (isInlineSpecified() && getStorageClass() != SC_Extern) return false; const FunctionDecl *Prev = this; bool FoundBody = false; while ((Prev = Prev->getPreviousDecl())) { FoundBody |= Prev->Body.isValid(); if (RedeclForcesDefC99(Prev)) return false; } return FoundBody; } SourceRange FunctionDecl::getReturnTypeSourceRange() const { const TypeSourceInfo *TSI = getTypeSourceInfo(); if (!TSI) return SourceRange(); FunctionTypeLoc FTL = TSI->getTypeLoc().IgnoreParens().getAs
(); if (!FTL) return SourceRange(); // Skip self-referential return types. const SourceManager &SM = getASTContext().getSourceManager(); SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); SourceLocation Boundary = getNameInfo().getLocStart(); if (RTRange.isInvalid() || Boundary.isInvalid() || !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) return SourceRange(); return RTRange; } const Attr *FunctionDecl::getUnusedResultAttr() const { QualType RetType = getReturnType(); if (RetType->isRecordType()) { const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl(); const auto *MD = dyn_cast
(this); if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) { if (const auto *R = Ret->getAttr
()) return R; } } else if (const auto *ET = RetType->getAs
()) { if (const EnumDecl *ED = ET->getDecl()) { if (const auto *R = ED->getAttr
()) return R; } } return getAttr
(); } /// \brief For an inline function definition in C, or for a gnu_inline function /// in C++, determine whether the definition will be externally visible. /// /// Inline function definitions are always available for inlining optimizations. /// However, depending on the language dialect, declaration specifiers, and /// attributes, the definition of an inline function may or may not be /// "externally" visible to other translation units in the program. /// /// In C99, inline definitions are not externally visible by default. However, /// if even one of the global-scope declarations is marked "extern inline", the /// inline definition becomes externally visible (C99 6.7.4p6). /// /// In GNU89 mode, or if the gnu_inline attribute is attached to the function /// definition, we use the GNU semantics for inline, which are nearly the /// opposite of C99 semantics. In particular, "inline" by itself will create /// an externally visible symbol, but "extern inline" will not create an /// externally visible symbol. bool FunctionDecl::isInlineDefinitionExternallyVisible() const { assert(doesThisDeclarationHaveABody() && "Must have the function definition"); assert(isInlined() && "Function must be inline"); ASTContext &Context = getASTContext(); if (Context.getLangOpts().GNUInline || hasAttr
()) { // Note: If you change the logic here, please change // doesDeclarationForceExternallyVisibleDefinition as well. // // If it's not the case that both 'inline' and 'extern' are // specified on the definition, then this inline definition is // externally visible. if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) return true; // If any declaration is 'inline' but not 'extern', then this definition // is externally visible. for (auto Redecl : redecls()) { if (Redecl->isInlineSpecified() && Redecl->getStorageClass() != SC_Extern) return true; } return false; } // The rest of this function is C-only. assert(!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"); // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. for (auto Redecl : redecls()) { if (RedeclForcesDefC99(Redecl)) return true; } // C99 6.7.4p6: // An inline definition does not provide an external definition for the // function, and does not forbid an external definition in another // translation unit. return false; } /// getOverloadedOperator - Which C++ overloaded operator this /// function represents, if any. OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) return getDeclName().getCXXOverloadedOperator(); else return OO_None; } /// getLiteralIdentifier - The literal suffix identifier this function /// represents, if any. const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) return getDeclName().getCXXLiteralIdentifier(); else return nullptr; } FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { if (TemplateOrSpecialization.isNull()) return TK_NonTemplate; if (TemplateOrSpecialization.is
()) return TK_FunctionTemplate; if (TemplateOrSpecialization.is
()) return TK_MemberSpecialization; if (TemplateOrSpecialization.is
()) return TK_FunctionTemplateSpecialization; if (TemplateOrSpecialization.is
()) return TK_DependentFunctionTemplateSpecialization; llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); } FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) return cast
(Info->getInstantiatedFrom()); return nullptr; } MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { return TemplateOrSpecialization.dyn_cast
(); } void FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD, TemplateSpecializationKind TSK) { assert(TemplateOrSpecialization.isNull() && "Member function is already a specialization"); MemberSpecializationInfo *Info = new (C) MemberSpecializationInfo(FD, TSK); TemplateOrSpecialization = Info; } FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { return TemplateOrSpecialization.dyn_cast
(); } void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { TemplateOrSpecialization = Template; } bool FunctionDecl::isImplicitlyInstantiable() const { // If the function is invalid, it can't be implicitly instantiated. if (isInvalidDecl()) return false; switch (getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitInstantiationDefinition: return false; case TSK_ImplicitInstantiation: return true; // It is possible to instantiate TSK_ExplicitSpecialization kind // if the FunctionDecl has a class scope specialization pattern. case TSK_ExplicitSpecialization: return getClassScopeSpecializationPattern() != nullptr; case TSK_ExplicitInstantiationDeclaration: // Handled below. break; } // Find the actual template from which we will instantiate. const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); bool HasPattern = false; if (PatternDecl) HasPattern = PatternDecl->hasBody(PatternDecl); // C++0x [temp.explicit]p9: // Except for inline functions, other explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (!HasPattern || !PatternDecl) return true; return PatternDecl->isInlined(); } bool FunctionDecl::isTemplateInstantiation() const { switch (getTemplateSpecializationKind()) { case TSK_Undeclared: case TSK_ExplicitSpecialization: return false; case TSK_ImplicitInstantiation: case TSK_ExplicitInstantiationDeclaration: case TSK_ExplicitInstantiationDefinition: return true; } llvm_unreachable("All TSK values handled."); } FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const { // Handle class scope explicit specialization special case. if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization) return getClassScopeSpecializationPattern(); // If this is a generic lambda call operator specialization, its // instantiation pattern is always its primary template's pattern // even if its primary template was instantiated from another // member template (which happens with nested generic lambdas). // Since a lambda's call operator's body is transformed eagerly, // we don't have to go hunting for a prototype definition template // (i.e. instantiated-from-member-template) to use as an instantiation // pattern. if (isGenericLambdaCallOperatorSpecialization( dyn_cast
(this))) { assert(getPrimaryTemplate() && "A generic lambda specialization must be " "generated from a primary call operator " "template"); assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() && "A generic lambda call operator template must always have a body - " "even if instantiated from a prototype (i.e. as written) member " "template"); return getPrimaryTemplate()->getTemplatedDecl(); } if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { while (Primary->getInstantiatedFromMemberTemplate()) { // If we have hit a point where the user provided a specialization of // this template, we're done looking. if (Primary->isMemberSpecialization()) break; Primary = Primary->getInstantiatedFromMemberTemplate(); } return Primary->getTemplatedDecl(); } return getInstantiatedFromMemberFunction(); } FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast
()) { return Info->Template.getPointer(); } return nullptr; } FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const { return getASTContext().getClassScopeSpecializationPattern(this); } FunctionTemplateSpecializationInfo * FunctionDecl::getTemplateSpecializationInfo() const { return TemplateOrSpecialization .dyn_cast
(); } const TemplateArgumentList * FunctionDecl::getTemplateSpecializationArgs() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast
()) { return Info->TemplateArguments; } return nullptr; } const ASTTemplateArgumentListInfo * FunctionDecl::getTemplateSpecializationArgsAsWritten() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast
()) { return Info->TemplateArgumentsAsWritten; } return nullptr; } void FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation PointOfInstantiation) { assert(TSK != TSK_Undeclared && "Must specify the type of function template specialization"); FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization.dyn_cast
(); if (!Info) Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, PointOfInstantiation); TemplateOrSpecialization = Info; Template->addSpecialization(Info, InsertPos); } void FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, const UnresolvedSetImpl &Templates, const TemplateArgumentListInfo &TemplateArgs) { assert(TemplateOrSpecialization.isNull()); DependentFunctionTemplateSpecializationInfo *Info = DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, TemplateArgs); TemplateOrSpecialization = Info; } DependentFunctionTemplateSpecializationInfo * FunctionDecl::getDependentSpecializationInfo() const { return TemplateOrSpecialization .dyn_cast
(); } DependentFunctionTemplateSpecializationInfo * DependentFunctionTemplateSpecializationInfo::Create( ASTContext &Context, const UnresolvedSetImpl &Ts, const TemplateArgumentListInfo &TArgs) { void *Buffer = Context.Allocate( totalSizeToAlloc
( TArgs.size(), Ts.size())); return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); } DependentFunctionTemplateSpecializationInfo:: DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, const TemplateArgumentListInfo &TArgs) : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { NumTemplates = Ts.size(); NumArgs = TArgs.size(); FunctionTemplateDecl **TsArray = getTrailingObjects
(); for (unsigned I = 0, E = Ts.size(); I != E; ++I) TsArray[I] = cast
(Ts[I]->getUnderlyingDecl()); TemplateArgumentLoc *ArgsArray = getTrailingObjects
(); for (unsigned I = 0, E = TArgs.size(); I != E; ++I) new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); } TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { // For a function template specialization, query the specialization // information object. FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast
(); if (FTSInfo) return FTSInfo->getTemplateSpecializationKind(); MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast
(); if (MSInfo) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } void FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) { FTSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && FTSInfo->getPointOfInstantiation().isInvalid()) FTSInfo->setPointOfInstantiation(PointOfInstantiation); } else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast
()) { MSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSInfo->getPointOfInstantiation().isInvalid()) MSInfo->setPointOfInstantiation(PointOfInstantiation); } else llvm_unreachable("Function cannot have a template specialization kind"); } SourceLocation FunctionDecl::getPointOfInstantiation() const { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) return FTSInfo->getPointOfInstantiation(); else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast
()) return MSInfo->getPointOfInstantiation(); return SourceLocation(); } bool FunctionDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; // If this function was instantiated from a member function of a // class template, check whether that member function was defined out-of-line. if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { const FunctionDecl *Definition; if (FD->hasBody(Definition)) return Definition->isOutOfLine(); } // If this function was instantiated from a function template, // check whether that function template was defined out-of-line. if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { const FunctionDecl *Definition; if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) return Definition->isOutOfLine(); } return false; } SourceRange FunctionDecl::getSourceRange() const { return SourceRange(getOuterLocStart(), EndRangeLoc); } unsigned FunctionDecl::getMemoryFunctionKind() const { IdentifierInfo *FnInfo = getIdentifier(); if (!FnInfo) return 0; // Builtin handling. switch (getBuiltinID()) { case Builtin::BI__builtin_memset: case Builtin::BI__builtin___memset_chk: case Builtin::BImemset: return Builtin::BImemset; case Builtin::BI__builtin_memcpy: case Builtin::BI__builtin___memcpy_chk: case Builtin::BImemcpy: return Builtin::BImemcpy; case Builtin::BI__builtin_memmove: case Builtin::BI__builtin___memmove_chk: case Builtin::BImemmove: return Builtin::BImemmove; case Builtin::BIstrlcpy: case Builtin::BI__builtin___strlcpy_chk: return Builtin::BIstrlcpy; case Builtin::BIstrlcat: case Builtin::BI__builtin___strlcat_chk: return Builtin::BIstrlcat; case Builtin::BI__builtin_memcmp: case Builtin::BImemcmp: return Builtin::BImemcmp; case Builtin::BI__builtin_strncpy: case Builtin::BI__builtin___strncpy_chk: case Builtin::BIstrncpy: return Builtin::BIstrncpy; case Builtin::BI__builtin_strncmp: case Builtin::BIstrncmp: return Builtin::BIstrncmp; case Builtin::BI__builtin_strncasecmp: case Builtin::BIstrncasecmp: return Builtin::BIstrncasecmp; case Builtin::BI__builtin_strncat: case Builtin::BI__builtin___strncat_chk: case Builtin::BIstrncat: return Builtin::BIstrncat; case Builtin::BI__builtin_strndup: case Builtin::BIstrndup: return Builtin::BIstrndup; case Builtin::BI__builtin_strlen: case Builtin::BIstrlen: return Builtin::BIstrlen; default: if (isExternC()) { if (FnInfo->isStr("memset")) return Builtin::BImemset; else if (FnInfo->isStr("memcpy")) return Builtin::BImemcpy; else if (FnInfo->isStr("memmove")) return Builtin::BImemmove; else if (FnInfo->isStr("memcmp")) return Builtin::BImemcmp; else if (FnInfo->isStr("strncpy")) return Builtin::BIstrncpy; else if (FnInfo->isStr("strncmp")) return Builtin::BIstrncmp; else if (FnInfo->isStr("strncasecmp")) return Builtin::BIstrncasecmp; else if (FnInfo->isStr("strncat")) return Builtin::BIstrncat; else if (FnInfo->isStr("strndup")) return Builtin::BIstrndup; else if (FnInfo->isStr("strlen")) return Builtin::BIstrlen; } break; } return 0; } //===----------------------------------------------------------------------===// // FieldDecl Implementation //===----------------------------------------------------------------------===// FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle) { return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, BW, Mutable, InitStyle); } FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), SourceLocation(), nullptr, QualType(), nullptr, nullptr, false, ICIS_NoInit); } bool FieldDecl::isAnonymousStructOrUnion() const { if (!isImplicit() || getDeclName()) return false; if (const auto *Record = getType()->getAs
()) return Record->getDecl()->isAnonymousStructOrUnion(); return false; } unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { assert(isBitField() && "not a bitfield"); auto *BitWidth = static_cast
(InitStorage.getPointer()); return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue(); } unsigned FieldDecl::getFieldIndex() const { const FieldDecl *Canonical = getCanonicalDecl(); if (Canonical != this) return Canonical->getFieldIndex(); if (CachedFieldIndex) return CachedFieldIndex - 1; unsigned Index = 0; const RecordDecl *RD = getParent(); for (auto *Field : RD->fields()) { Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; ++Index; } assert(CachedFieldIndex && "failed to find field in parent"); return CachedFieldIndex - 1; } SourceRange FieldDecl::getSourceRange() const { switch (InitStorage.getInt()) { // All three of these cases store an optional Expr*. case ISK_BitWidthOrNothing: case ISK_InClassCopyInit: case ISK_InClassListInit: if (const auto *E = static_cast
(InitStorage.getPointer())) return SourceRange(getInnerLocStart(), E->getLocEnd()); // FALLTHROUGH case ISK_CapturedVLAType: return DeclaratorDecl::getSourceRange(); } llvm_unreachable("bad init storage kind"); } void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && "capturing type in non-lambda or captured record."); assert(InitStorage.getInt() == ISK_BitWidthOrNothing && InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"); InitStorage.setPointerAndInt(const_cast
(VLAType), ISK_CapturedVLAType); } //===----------------------------------------------------------------------===// // TagDecl Implementation //===----------------------------------------------------------------------===// SourceLocation TagDecl::getOuterLocStart() const { return getTemplateOrInnerLocStart(this); } SourceRange TagDecl::getSourceRange() const { SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); return SourceRange(getOuterLocStart(), E); } TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { TypedefNameDeclOrQualifier = TDD; if (const Type *T = getTypeForDecl()) { (void)T; assert(T->isLinkageValid()); } assert(isLinkageValid()); } void TagDecl::startDefinition() { IsBeingDefined = true; if (auto *D = dyn_cast
(this)) { struct CXXRecordDecl::DefinitionData *Data = new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); for (auto I : redecls()) cast
(I)->DefinitionData = Data; } } void TagDecl::completeDefinition() { assert((!isa
(this) || cast
(this)->hasDefinition()) && "definition completed but not started"); IsCompleteDefinition = true; IsBeingDefined = false; if (ASTMutationListener *L = getASTMutationListener()) L->CompletedTagDefinition(this); } TagDecl *TagDecl::getDefinition() const { if (isCompleteDefinition()) return const_cast
(this); // If it's possible for us to have an out-of-date definition, check now. if (MayHaveOutOfDateDef) { if (IdentifierInfo *II = getIdentifier()) { if (II->isOutOfDate()) { updateOutOfDate(*II); } } } if (const auto *CXXRD = dyn_cast
(this)) return CXXRD->getDefinition(); for (auto R : redecls()) if (R->isCompleteDefinition()) return R; return nullptr; } void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { if (QualifierLoc) { // Make sure the extended qualifier info is allocated. if (!hasExtInfo()) TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; // Set qualifier info. getExtInfo()->QualifierLoc = QualifierLoc; } else { // Here Qualifier == 0, i.e., we are removing the qualifier (if any). if (hasExtInfo()) { if (getExtInfo()->NumTemplParamLists == 0) { getASTContext().Deallocate(getExtInfo()); TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; } else getExtInfo()->QualifierLoc = QualifierLoc; } } } void TagDecl::setTemplateParameterListsInfo( ASTContext &Context, ArrayRef
TPLists) { assert(!TPLists.empty()); // Make sure the extended decl info is allocated. if (!hasExtInfo()) // Allocate external info struct. TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; // Set the template parameter lists info. getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); } //===----------------------------------------------------------------------===// // EnumDecl Implementation //===----------------------------------------------------------------------===// void EnumDecl::anchor() { } EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed) { auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, IsScoped, IsScopedUsingClassTag, IsFixed); Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; C.getTypeDeclType(Enum, PrevDecl); return Enum; } EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { EnumDecl *Enum = new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr, false, false, false); Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules; return Enum; } SourceRange EnumDecl::getIntegerTypeRange() const { if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) return TI->getTypeLoc().getSourceRange(); return SourceRange(); } void EnumDecl::completeDefinition(QualType NewType, QualType NewPromotionType, unsigned NumPositiveBits, unsigned NumNegativeBits) { assert(!isCompleteDefinition() && "Cannot redefine enums!"); if (!IntegerType) IntegerType = NewType.getTypePtr(); PromotionType = NewPromotionType; setNumPositiveBits(NumPositiveBits); setNumNegativeBits(NumNegativeBits); TagDecl::completeDefinition(); } TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); assert(MSI && "Not an instantiated member enumeration?"); MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) MSI->setPointOfInstantiation(PointOfInstantiation); } EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { EnumDecl *ED = getInstantiatedFromMemberEnum(); while (auto *NewED = ED->getInstantiatedFromMemberEnum()) ED = NewED; return ED; } } assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && "couldn't find pattern for enum instantiation"); return nullptr; } EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { if (SpecializationInfo) return cast
(SpecializationInfo->getInstantiatedFrom()); return nullptr; } void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, TemplateSpecializationKind TSK) { assert(!SpecializationInfo && "Member enum is already a specialization"); SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); } //===----------------------------------------------------------------------===// // RecordDecl Implementation //===----------------------------------------------------------------------===// RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl) : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { HasFlexibleArrayMember = false; AnonymousStructOrUnion = false; HasObjectMember = false; HasVolatileMember = false; LoadedFieldsFromExternalStorage = false; assert(classof(static_cast
(this)) && "Invalid Kind!"); } RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl* PrevDecl) { RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl); R->MayHaveOutOfDateDef = C.getLangOpts().Modules; C.getTypeDeclType(R, PrevDecl); return R; } RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { RecordDecl *R = new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr); R->MayHaveOutOfDateDef = C.getLangOpts().Modules; return R; } bool RecordDecl::isInjectedClassName() const { return isImplicit() && getDeclName() && getDeclContext()->isRecord() && cast
(getDeclContext())->getDeclName() == getDeclName(); } bool RecordDecl::isLambda() const { if (auto RD = dyn_cast
(this)) return RD->isLambda(); return false; } bool RecordDecl::isCapturedRecord() const { return hasAttr
(); } void RecordDecl::setCapturedRecord() { addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); } RecordDecl::field_iterator RecordDecl::field_begin() const { if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage) LoadFieldsFromExternalStorage(); return field_iterator(decl_iterator(FirstDecl)); } /// completeDefinition - Notes that the definition of this type is now /// complete. void RecordDecl::completeDefinition() { assert(!isCompleteDefinition() && "Cannot redefine record!"); TagDecl::completeDefinition(); } /// isMsStruct - Get whether or not this record uses ms_struct layout. /// This which can be turned on with an attribute, pragma, or the /// -mms-bitfields command-line option. bool RecordDecl::isMsStruct(const ASTContext &C) const { return hasAttr
() || C.getLangOpts().MSBitfields == 1; } void RecordDecl::LoadFieldsFromExternalStorage() const { ExternalASTSource *Source = getASTContext().getExternalSource(); assert(hasExternalLexicalStorage() && Source && "No external storage?"); // Notify that we have a RecordDecl doing some initialization. ExternalASTSource::Deserializing TheFields(Source); SmallVector
Decls; LoadedFieldsFromExternalStorage = true; Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); }, Decls); #ifndef NDEBUG // Check that all decls we got were FieldDecls. for (unsigned i=0, e=Decls.size(); i != e; ++i) assert(isa
(Decls[i]) || isa
(Decls[i])); #endif if (Decls.empty()) return; std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, /*FieldsAlreadyLoaded=*/false); } bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { ASTContext &Context = getASTContext(); if (!Context.getLangOpts().Sanitize.hasOneOf( SanitizerKind::Address | SanitizerKind::KernelAddress) || !Context.getLangOpts().SanitizeAddressFieldPadding) return false; const auto &Blacklist = Context.getSanitizerBlacklist(); const auto *CXXRD = dyn_cast
(this); // We may be able to relax some of these requirements. int ReasonToReject = -1; if (!CXXRD || CXXRD->isExternCContext()) ReasonToReject = 0; // is not C++. else if (CXXRD->hasAttr
()) ReasonToReject = 1; // is packed. else if (CXXRD->isUnion()) ReasonToReject = 2; // is a union. else if (CXXRD->isTriviallyCopyable()) ReasonToReject = 3; // is trivially copyable. else if (CXXRD->hasTrivialDestructor()) ReasonToReject = 4; // has trivial destructor. else if (CXXRD->isStandardLayout()) ReasonToReject = 5; // is standard layout. else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding")) ReasonToReject = 6; // is in a blacklisted file. else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(), "field-padding")) ReasonToReject = 7; // is blacklisted. if (EmitRemark) { if (ReasonToReject >= 0) Context.getDiagnostics().Report( getLocation(), diag::remark_sanitize_address_insert_extra_padding_rejected) << getQualifiedNameAsString() << ReasonToReject; else Context.getDiagnostics().Report( getLocation(), diag::remark_sanitize_address_insert_extra_padding_accepted) << getQualifiedNameAsString(); } return ReasonToReject < 0; } const FieldDecl *RecordDecl::findFirstNamedDataMember() const { for (const auto *I : fields()) { if (I->getIdentifier()) return I; if (const auto *RT = I->getType()->getAs
()) if (const FieldDecl *NamedDataMember = RT->getDecl()->findFirstNamedDataMember()) return NamedDataMember; } // We didn't find a named data member. return nullptr; } //===----------------------------------------------------------------------===// // BlockDecl Implementation //===----------------------------------------------------------------------===// void BlockDecl::setParams(ArrayRef
NewParamInfo) { assert(!ParamInfo && "Already has param info!"); // Zero params -> null pointer. if (!NewParamInfo.empty()) { NumParams = NewParamInfo.size(); ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); } } void BlockDecl::setCaptures(ASTContext &Context, ArrayRef
Captures, bool CapturesCXXThis) { this->CapturesCXXThis = CapturesCXXThis; this->NumCaptures = Captures.size(); if (Captures.empty()) { this->Captures = nullptr; return; } this->Captures = Captures.copy(Context).data(); } bool BlockDecl::capturesVariable(const VarDecl *variable) const { for (const auto &I : captures()) // Only auto vars can be captured, so no redeclaration worries. if (I.getVariable() == variable) return true; return false; } SourceRange BlockDecl::getSourceRange() const { return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation()); } //===----------------------------------------------------------------------===// // Other Decl Allocation/Deallocation Method Implementations //===----------------------------------------------------------------------===// void TranslationUnitDecl::anchor() { } TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); } void PragmaCommentDecl::anchor() { } PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg) { PragmaCommentDecl *PCD = new (C, DC, additionalSizeToAlloc
(Arg.size() + 1)) PragmaCommentDecl(DC, CommentLoc, CommentKind); memcpy(PCD->getTrailingObjects
(), Arg.data(), Arg.size()); PCD->getTrailingObjects
()[Arg.size()] = '\0'; return PCD; } PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize) { return new (C, ID, additionalSizeToAlloc