//===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ lambda expressions.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/DeclSpec.h"
#include "TypeLocBuilder.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/SemaLambda.h"
using namespace clang;
using namespace sema;
/// \brief Examines the FunctionScopeInfo stack to determine the nearest
/// enclosing lambda (to the current lambda) that is 'capture-ready' for
/// the variable referenced in the current lambda (i.e. \p VarToCapture).
/// If successful, returns the index into Sema's FunctionScopeInfo stack
/// of the capture-ready lambda's LambdaScopeInfo.
///
/// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
/// lambda - is on top) to determine the index of the nearest enclosing/outer
/// lambda that is ready to capture the \p VarToCapture being referenced in
/// the current lambda.
/// As we climb down the stack, we want the index of the first such lambda -
/// that is the lambda with the highest index that is 'capture-ready'.
///
/// A lambda 'L' is capture-ready for 'V' (var or this) if:
/// - its enclosing context is non-dependent
/// - and if the chain of lambdas between L and the lambda in which
/// V is potentially used (i.e. the lambda at the top of the scope info
/// stack), can all capture or have already captured V.
/// If \p VarToCapture is 'null' then we are trying to capture 'this'.
///
/// Note that a lambda that is deemed 'capture-ready' still needs to be checked
/// for whether it is 'capture-capable' (see
/// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
/// capture.
///
/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
/// is at the top of the stack and has the highest index.
/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
///
/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
/// which is capture-ready. If the return value evaluates to 'false' then
/// no lambda is capture-ready for \p VarToCapture.
static inline Optional<unsigned>
getStackIndexOfNearestEnclosingCaptureReadyLambda(
ArrayRef<const clang::sema::FunctionScopeInfo *> FunctionScopes,
VarDecl *VarToCapture) {
// Label failure to capture.
const Optional<unsigned> NoLambdaIsCaptureReady;
assert(
isa<clang::sema::LambdaScopeInfo>(
FunctionScopes[FunctionScopes.size() - 1]) &&
"The function on the top of sema's function-info stack must be a lambda");
// If VarToCapture is null, we are attempting to capture 'this'.
const bool IsCapturingThis = !VarToCapture;
const bool IsCapturingVariable = !IsCapturingThis;
// Start with the current lambda at the top of the stack (highest index).
unsigned CurScopeIndex = FunctionScopes.size() - 1;
DeclContext *EnclosingDC =
cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex])->CallOperator;
do {
const clang::sema::LambdaScopeInfo *LSI =
cast<sema::LambdaScopeInfo>(FunctionScopes[CurScopeIndex]);
// IF we have climbed down to an intervening enclosing lambda that contains
// the variable declaration - it obviously can/must not capture the
// variable.
// Since its enclosing DC is dependent, all the lambdas between it and the
// innermost nested lambda are dependent (otherwise we wouldn't have
// arrived here) - so we don't yet have a lambda that can capture the
// variable.
if (IsCapturingVariable &&
VarToCapture->getDeclContext()->Equals(EnclosingDC))
return NoLambdaIsCaptureReady;
// For an enclosing lambda to be capture ready for an entity, all
// intervening lambda's have to be able to capture that entity. If even
// one of the intervening lambda's is not capable of capturing the entity
// then no enclosing lambda can ever capture that entity.
// For e.g.
// const int x = 10;
// [=](auto a) { #1
// [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
// [=](auto c) { #3
// f(x, c); <-- can not lead to x's speculative capture by #1 or #2
// }; }; };
// If they do not have a default implicit capture, check to see
// if the entity has already been explicitly captured.
// If even a single dependent enclosing lambda lacks the capability
// to ever capture this variable, there is no further enclosing
// non-dependent lambda that can capture this variable.
if (LSI->ImpCaptureStyle == sema::LambdaScopeInfo::ImpCap_None) {
if (IsCapturingVariable && !LSI->isCaptured(VarToCapture))
return NoLambdaIsCaptureReady;
if (IsCapturingThis && !LSI->isCXXThisCaptured())
return NoLambdaIsCaptureReady;
}
EnclosingDC = getLambdaAwareParentOfDeclContext(EnclosingDC);
assert(CurScopeIndex);
--CurScopeIndex;
} while (!EnclosingDC->isTranslationUnit() &&
EnclosingDC->isDependentContext() &&
isLambdaCallOperator(EnclosingDC));
assert(CurScopeIndex < (FunctionScopes.size() - 1));
// If the enclosingDC is not dependent, then the immediately nested lambda
// (one index above) is capture-ready.
if (!EnclosingDC->isDependentContext())
return CurScopeIndex + 1;
return NoLambdaIsCaptureReady;
}
/// \brief Examines the FunctionScopeInfo stack to determine the nearest
/// enclosing lambda (to the current lambda) that is 'capture-capable' for
/// the variable referenced in the current lambda (i.e. \p VarToCapture).
/// If successful, returns the index into Sema's FunctionScopeInfo stack
/// of the capture-capable lambda's LambdaScopeInfo.
///
/// Given the current stack of lambdas being processed by Sema and
/// the variable of interest, to identify the nearest enclosing lambda (to the
/// current lambda at the top of the stack) that can truly capture
/// a variable, it has to have the following two properties:
/// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
/// - climb down the stack (i.e. starting from the innermost and examining
/// each outer lambda step by step) checking if each enclosing
/// lambda can either implicitly or explicitly capture the variable.
/// Record the first such lambda that is enclosed in a non-dependent
/// context. If no such lambda currently exists return failure.
/// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
/// capture the variable by checking all its enclosing lambdas:
/// - check if all outer lambdas enclosing the 'capture-ready' lambda
/// identified above in 'a' can also capture the variable (this is done
/// via tryCaptureVariable for variables and CheckCXXThisCapture for
/// 'this' by passing in the index of the Lambda identified in step 'a')
///
/// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
/// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
/// is at the top of the stack.
///
/// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
///
///
/// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
/// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
/// which is capture-capable. If the return value evaluates to 'false' then
/// no lambda is capture-capable for \p VarToCapture.
Optional<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
ArrayRef<const sema::FunctionScopeInfo *> FunctionScopes,
VarDecl *VarToCapture, Sema &S) {
const Optional<unsigned> NoLambdaIsCaptureCapable;
const Optional<unsigned> OptionalStackIndex =
getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes,
VarToCapture);
if (!OptionalStackIndex)
return NoLambdaIsCaptureCapable;
const unsigned IndexOfCaptureReadyLambda = OptionalStackIndex.getValue();
assert(((IndexOfCaptureReadyLambda != (FunctionScopes.size() - 1)) ||
S.getCurGenericLambda()) &&
"The capture ready lambda for a potential capture can only be the "
"current lambda if it is a generic lambda");
const sema::LambdaScopeInfo *const CaptureReadyLambdaLSI =
cast<sema::LambdaScopeInfo>(FunctionScopes[IndexOfCaptureReadyLambda]);
// If VarToCapture is null, we are attempting to capture 'this'
const bool IsCapturingThis = !VarToCapture;
const bool IsCapturingVariable = !IsCapturingThis;
if (IsCapturingVariable) {
// Check if the capture-ready lambda can truly capture the variable, by
// checking whether all enclosing lambdas of the capture-ready lambda allow
// the capture - i.e. make sure it is capture-capable.
QualType CaptureType, DeclRefType;
const bool CanCaptureVariable =
!S.tryCaptureVariable(VarToCapture,
/*ExprVarIsUsedInLoc*/ SourceLocation(),
clang::Sema::TryCapture_Implicit,
/*EllipsisLoc*/ SourceLocation(),
/*BuildAndDiagnose*/ false, CaptureType,
DeclRefType, &IndexOfCaptureReadyLambda);
if (!CanCaptureVariable)
return NoLambdaIsCaptureCapable;
} else {
// Check if the capture-ready lambda can truly capture 'this' by checking
// whether all enclosing lambdas of the capture-ready lambda can capture
// 'this'.
const bool CanCaptureThis =
!S.CheckCXXThisCapture(
CaptureReadyLambdaLSI->PotentialThisCaptureLocation,
/*Explicit*/ false, /*BuildAndDiagnose*/ false,
&IndexOfCaptureReadyLambda);
if (!CanCaptureThis)
return NoLambdaIsCaptureCapable;
}
return IndexOfCaptureReadyLambda;
}
static inline TemplateParameterList *
getGenericLambdaTemplateParameterList(LambdaScopeInfo *LSI, Sema &SemaRef) {
if (LSI->GLTemplateParameterList)
return LSI->GLTemplateParameterList;
if (!LSI->AutoTemplateParams.empty()) {
SourceRange IntroRange = LSI->IntroducerRange;
SourceLocation LAngleLoc = IntroRange.getBegin();
SourceLocation RAngleLoc = IntroRange.getEnd();
LSI->GLTemplateParameterList = TemplateParameterList::Create(
SemaRef.Context,
/*Template kw loc*/ SourceLocation(), LAngleLoc,
llvm::makeArrayRef((NamedDecl *const *)LSI->AutoTemplateParams.data(),
LSI->AutoTemplateParams.size()),
RAngleLoc);
}
return LSI->GLTemplateParameterList;
}
CXXRecordDecl *Sema::createLambdaClosureType(SourceRange IntroducerRange,
TypeSourceInfo *Info,
bool KnownDependent,
LambdaCaptureDefault CaptureDefault) {
DeclContext *DC = CurContext;
while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
DC = DC->getParent();
bool IsGenericLambda = getGenericLambdaTemplateParameterList(getCurLambda(),
*this);
// Start constructing the lambda class.
CXXRecordDecl *Class = CXXRecordDecl::CreateLambda(Context, DC, Info,
IntroducerRange.getBegin(),
KnownDependent,
IsGenericLambda,
CaptureDefault);
DC->addDecl(Class);
return Class;
}
/// \brief Determine whether the given context is or is enclosed in an inline
/// function.
static bool isInInlineFunction(const DeclContext *DC) {
while (!DC->isFileContext()) {
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
if (FD->isInlined())
return true;
DC = DC->getLexicalParent();
}
return false;
}
MangleNumberingContext *
Sema::getCurrentMangleNumberContext(const DeclContext *DC,
Decl *&ManglingContextDecl) {
// Compute the context for allocating mangling numbers in the current
// expression, if the ABI requires them.
ManglingContextDecl = ExprEvalContexts.back().ManglingContextDecl;
enum ContextKind {
Normal,
DefaultArgument,
DataMember,
StaticDataMember
} Kind = Normal;
// Default arguments of member function parameters that appear in a class
// definition, as well as the initializers of data members, receive special
// treatment. Identify them.
if (ManglingContextDecl) {
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(ManglingContextDecl)) {
if (const DeclContext *LexicalDC
= Param->getDeclContext()->getLexicalParent())
if (LexicalDC->isRecord())
Kind = DefaultArgument;
} else if (VarDecl *Var = dyn_cast<VarDecl>(ManglingContextDecl)) {
if (Var->getDeclContext()->isRecord())
Kind = StaticDataMember;
} else if (isa<FieldDecl>(ManglingContextDecl)) {
Kind = DataMember;
}
}
// Itanium ABI [5.1.7]:
// In the following contexts [...] the one-definition rule requires closure
// types in different translation units to "correspond":
bool IsInNonspecializedTemplate =
!ActiveTemplateInstantiations.empty() || CurContext->isDependentContext();
switch (Kind) {
case Normal:
// -- the bodies of non-exported nonspecialized template functions
// -- the bodies of inline functions
if ((IsInNonspecializedTemplate &&
!(ManglingContextDecl && isa<ParmVarDecl>(ManglingContextDecl))) ||
isInInlineFunction(CurContext)) {
ManglingContextDecl = nullptr;
return &Context.getManglingNumberContext(DC);
}
ManglingContextDecl = nullptr;
return nullptr;
case StaticDataMember:
// -- the initializers of nonspecialized static members of template classes
if (!IsInNonspecializedTemplate) {
ManglingContextDecl = nullptr;
return nullptr;
}
// Fall through to get the current context.
case DataMember:
// -- the in-class initializers of class members
case DefaultArgument:
// -- default arguments appearing in class definitions
return &ExprEvalContexts.back().getMangleNumberingContext(Context);
}
llvm_unreachable("unexpected context");
}
MangleNumberingContext &
Sema::ExpressionEvaluationContextRecord::getMangleNumberingContext(
ASTContext &Ctx) {
assert(ManglingContextDecl && "Need to have a context declaration");
if (!MangleNumbering)
MangleNumbering = Ctx.createMangleNumberingContext();
return *MangleNumbering;
}
CXXMethodDecl *Sema::startLambdaDefinition(CXXRecordDecl *Class,
SourceRange IntroducerRange,
TypeSourceInfo *MethodTypeInfo,
SourceLocation EndLoc,
ArrayRef<ParmVarDecl *> Params,
const bool IsConstexprSpecified) {
QualType MethodType = MethodTypeInfo->getType();
TemplateParameterList *TemplateParams =
getGenericLambdaTemplateParameterList(getCurLambda(), *this);
// If a lambda appears in a dependent context or is a generic lambda (has
// template parameters) and has an 'auto' return type, deduce it to a
// dependent type.
if (Class->isDependentContext() || TemplateParams) {
const FunctionProtoType *FPT = MethodType->castAs<FunctionProtoType>();
QualType Result = FPT->getReturnType();
if (Result->isUndeducedType()) {
Result = SubstAutoType(Result, Context.DependentTy);
MethodType = Context.getFunctionType(Result, FPT->getParamTypes(),
FPT->getExtProtoInfo());
}
}
// C++11 [expr.prim.lambda]p5:
// The closure type for a lambda-expression has a public inline function
// call operator (13.5.4) whose parameters and return type are described by
// the lambda-expression's parameter-declaration-clause and
// trailing-return-type respectively.
DeclarationName MethodName
= Context.DeclarationNames.getCXXOperatorName(OO_Call);
DeclarationNameLoc MethodNameLoc;
MethodNameLoc.CXXOperatorName.BeginOpNameLoc
= IntroducerRange.getBegin().getRawEncoding();
MethodNameLoc.CXXOperatorName.EndOpNameLoc
= IntroducerRange.getEnd().getRawEncoding();
CXXMethodDecl *Method
= CXXMethodDecl::Create(Context, Class, EndLoc,
DeclarationNameInfo(MethodName,
IntroducerRange.getBegin(),
MethodNameLoc),
MethodType, MethodTypeInfo,
SC_None,
/*isInline=*/true,
IsConstexprSpecified,
EndLoc);
Method->setAccess(AS_public);
// Temporarily set the lexical declaration context to the current
// context, so that the Scope stack matches the lexical nesting.
Method->setLexicalDeclContext(CurContext);
// Create a function template if we have a template parameter list
FunctionTemplateDecl *const TemplateMethod = TemplateParams ?
FunctionTemplateDecl::Create(Context, Class,
Method->getLocation(), MethodName,
TemplateParams,
Method) : nullptr;
if (TemplateMethod) {
TemplateMethod->setLexicalDeclContext(CurContext);
TemplateMethod->setAccess(AS_public);
Method->setDescribedFunctionTemplate(TemplateMethod);
}
// Add parameters.
if (!Params.empty()) {
Method->setParams(Params);
CheckParmsForFunctionDef(Params,
/*CheckParameterNames=*/false);
for (auto P : Method->parameters())
P->setOwningFunction(Method);
}
Decl *ManglingContextDecl;
if (MangleNumberingContext *MCtx =
getCurrentMangleNumberContext(Class->getDeclContext(),
ManglingContextDecl)) {
unsigned ManglingNumber = MCtx->getManglingNumber(Method);
Class->setLambdaMangling(ManglingNumber, ManglingContextDecl);
}
return Method;
}
void Sema::buildLambdaScope(LambdaScopeInfo *LSI,
CXXMethodDecl *CallOperator,
SourceRange IntroducerRange,
LambdaCaptureDefault CaptureDefault,
SourceLocation CaptureDefaultLoc,
bool ExplicitParams,
bool ExplicitResultType,
bool Mutable) {
LSI->CallOperator = CallOperator;
CXXRecordDecl *LambdaClass = CallOperator->getParent();
LSI->Lambda = LambdaClass;
if (CaptureDefault == LCD_ByCopy)
LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByval;
else if (CaptureDefault == LCD_ByRef)
LSI->ImpCaptureStyle = LambdaScopeInfo::ImpCap_LambdaByref;
LSI->CaptureDefaultLoc = CaptureDefaultLoc;
LSI->IntroducerRange = IntroducerRange;
LSI->ExplicitParams = ExplicitParams;
LSI->Mutable = Mutable;
if (ExplicitResultType) {
LSI->ReturnType = CallOperator->getReturnType();
if (!LSI->ReturnType->isDependentType() &&
!LSI->ReturnType->isVoidType()) {
if (RequireCompleteType(CallOperator->getLocStart(), LSI->ReturnType,
diag::err_lambda_incomplete_result)) {
// Do nothing.
}
}
} else {
LSI->HasImplicitReturnType = true;
}
}
void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo *LSI) {
LSI->finishedExplicitCaptures();
}
void Sema::addLambdaParameters(CXXMethodDecl *CallOperator, Scope *CurScope) {
// Introduce our parameters into the function scope
for (unsigned p = 0, NumParams = CallOperator->getNumParams();
p < NumParams; ++p) {
ParmVarDecl *Param = CallOperator->getParamDecl(p);
// If this has an identifier, add it to the scope stack.
if (CurScope && Param->getIdentifier()) {
CheckShadow(CurScope, Param);
PushOnScopeChains(Param, CurScope);
}
}
}
/// If this expression is an enumerator-like expression of some type
/// T, return the type T; otherwise, return null.
///
/// Pointer comparisons on the result here should always work because
/// it's derived from either the parent of an EnumConstantDecl
/// (i.e. the definition) or the declaration returned by
/// EnumType::getDecl() (i.e. the definition).
static EnumDecl *findEnumForBlockReturn(Expr *E) {
// An expression is an enumerator-like expression of type T if,
// ignoring parens and parens-like expressions:
E = E->IgnoreParens();
// - it is an enumerator whose enum type is T or
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (EnumConstantDecl *D
= dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
return cast<EnumDecl>(D->getDeclContext());
}
return nullptr;
}
// - it is a comma expression whose RHS is an enumerator-like
// expression of type T or
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma)
return findEnumForBlockReturn(BO->getRHS());
return nullptr;
}
// - it is a statement-expression whose value expression is an
// enumerator-like expression of type T or
if (StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
if (Expr *last = dyn_cast_or_null<Expr>(SE->getSubStmt()->body_back()))
return findEnumForBlockReturn(last);
return nullptr;
}
// - it is a ternary conditional operator (not the GNU ?:
// extension) whose second and third operands are
// enumerator-like expressions of type T or
if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
if (EnumDecl *ED = findEnumForBlockReturn(CO->getTrueExpr()))
if (ED == findEnumForBlockReturn(CO->getFalseExpr()))
return ED;
return nullptr;
}
// (implicitly:)
// - it is an implicit integral conversion applied to an
// enumerator-like expression of type T or
if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
// We can sometimes see integral conversions in valid
// enumerator-like expressions.
if (ICE->getCastKind() == CK_IntegralCast)
return findEnumForBlockReturn(ICE->getSubExpr());
// Otherwise, just rely on the type.
}
// - it is an expression of that formal enum type.
if (const EnumType *ET = E->getType()->getAs<EnumType>()) {
return ET->getDecl();
}
// Otherwise, nope.
return nullptr;
}
/// Attempt to find a type T for which the returned expression of the
/// given statement is an enumerator-like expression of that type.
static EnumDecl *findEnumForBlockReturn(ReturnStmt *ret) {
if (Expr *retValue = ret->getRetValue())
return findEnumForBlockReturn(retValue);
return nullptr;
}
/// Attempt to find a common type T for which all of the returned
/// expressions in a block are enumerator-like expressions of that
/// type.
static EnumDecl *findCommonEnumForBlockReturns(ArrayRef<ReturnStmt*> returns) {
ArrayRef<ReturnStmt*>::iterator i = returns.begin(), e = returns.end();
// Try to find one for the first return.
EnumDecl *ED = findEnumForBlockReturn(*i);
if (!ED) return nullptr;
// Check that the rest of the returns have the same enum.
for (++i; i != e; ++i) {
if (findEnumForBlockReturn(*i) != ED)
return nullptr;
}
// Never infer an anonymous enum type.
if (!ED->hasNameForLinkage()) return nullptr;
return ED;
}
/// Adjust the given return statements so that they formally return
/// the given type. It should require, at most, an IntegralCast.
static void adjustBlockReturnsToEnum(Sema &S, ArrayRef<ReturnStmt*> returns,
QualType returnType) {
for (ArrayRef<ReturnStmt*>::iterator
i = returns.begin(), e = returns.end(); i != e; ++i) {
ReturnStmt *ret = *i;
Expr *retValue = ret->getRetValue();
if (S.Context.hasSameType(retValue->getType(), returnType))
continue;
// Right now we only support integral fixup casts.
assert(returnType->isIntegralOrUnscopedEnumerationType());
assert(retValue->getType()->isIntegralOrUnscopedEnumerationType());
ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(retValue);
Expr *E = (cleanups ? cleanups->getSubExpr() : retValue);
E = ImplicitCastExpr::Create(S.Context, returnType, CK_IntegralCast,
E, /*base path*/ nullptr, VK_RValue);
if (cleanups) {
cleanups->setSubExpr(E);
} else {
ret->setRetValue(E);
}
}
}
void Sema::deduceClosureReturnType(CapturingScopeInfo &CSI) {
assert(CSI.HasImplicitReturnType);
// If it was ever a placeholder, it had to been deduced to DependentTy.
assert(CSI.ReturnType.isNull() || !CSI.ReturnType->isUndeducedType());
assert((!isa<LambdaScopeInfo>(CSI) || !getLangOpts().CPlusPlus14) &&
"lambda expressions use auto deduction in C++14 onwards");
// C++ core issue 975:
// If a lambda-expression does not include a trailing-return-type,
// it is as if the trailing-return-type denotes the following type:
// - if there are no return statements in the compound-statement,
// or all return statements return either an expression of type
// void or no expression or braced-init-list, the type void;
// - otherwise, if all return statements return an expression
// and the types of the returned expressions after
// lvalue-to-rvalue conversion (4.1 [conv.lval]),
// array-to-pointer conversion (4.2 [conv.array]), and
// function-to-pointer conversion (4.3 [conv.func]) are the
// same, that common type;
// - otherwise, the program is ill-formed.
//
// C++ core issue 1048 additionally removes top-level cv-qualifiers
// from the types of returned expressions to match the C++14 auto
// deduction rules.
//
// In addition, in blocks in non-C++ modes, if all of the return
// statements are enumerator-like expressions of some type T, where
// T has a name for linkage, then we infer the return type of the
// block to be that type.
// First case: no return statements, implicit void return type.
ASTContext &Ctx = getASTContext();
if (CSI.Returns.empty()) {
// It's possible there were simply no /valid/ return statements.
// In this case, the first one we found may have at least given us a type.
if (CSI.ReturnType.isNull())
CSI.ReturnType = Ctx.VoidTy;
return;
}
// Second case: at least one return statement has dependent type.
// Delay type checking until instantiation.
assert(!CSI.ReturnType.isNull() && "We should have a tentative return type.");
if (CSI.ReturnType->isDependentType())
return;
// Try to apply the enum-fuzz rule.
if (!getLangOpts().CPlusPlus) {
assert(isa<BlockScopeInfo>(CSI));
const EnumDecl *ED = findCommonEnumForBlockReturns(CSI.Returns);
if (ED) {
CSI.ReturnType = Context.getTypeDeclType(ED);
adjustBlockReturnsToEnum(*this, CSI.Returns, CSI.ReturnType);
return;
}
}
// Third case: only one return statement. Don't bother doing extra work!
SmallVectorImpl<ReturnStmt*>::iterator I = CSI.Returns.begin(),
E = CSI.Returns.end();
if (I+1 == E)
return;
// General case: many return statements.
// Check that they all have compatible return types.
// We require the return types to strictly match here.
// Note that we've already done the required promotions as part of
// processing the return statement.
for (; I != E; ++I) {
const ReturnStmt *RS = *I;
const Expr *RetE = RS->getRetValue();
QualType ReturnType =
(RetE ? RetE->getType() : Context.VoidTy).getUnqualifiedType();
if (Context.getCanonicalFunctionResultType(ReturnType) ==
Context.getCanonicalFunctionResultType(CSI.ReturnType))
continue;
// FIXME: This is a poor diagnostic for ReturnStmts without expressions.
// TODO: It's possible that the *first* return is the divergent one.
Diag(RS->getLocStart(),
diag::err_typecheck_missing_return_type_incompatible)
<< ReturnType << CSI.ReturnType
<< isa<LambdaScopeInfo>(CSI);
// Continue iterating so that we keep emitting diagnostics.
}
}
QualType Sema::buildLambdaInitCaptureInitialization(SourceLocation Loc,
bool ByRef,
IdentifierInfo *Id,
bool IsDirectInit,
Expr *&Init) {
// Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
// deduce against.
QualType DeductType = Context.getAutoDeductType();
TypeLocBuilder TLB;
TLB.pushTypeSpec(DeductType).setNameLoc(Loc);
if (ByRef) {
DeductType = BuildReferenceType(DeductType, true, Loc, Id);
assert(!DeductType.isNull() && "can't build reference to auto");
TLB.push<ReferenceTypeLoc>(DeductType).setSigilLoc(Loc);
}
TypeSourceInfo *TSI = TLB.getTypeSourceInfo(Context, DeductType);
// Deduce the type of the init capture.
QualType DeducedType = deduceVarTypeFromInitializer(
/*VarDecl*/nullptr, DeclarationName(Id), DeductType, TSI,
SourceRange(Loc, Loc), IsDirectInit, Init);
if (DeducedType.isNull())
return QualType();
// Are we a non-list direct initialization?
ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
// Perform initialization analysis and ensure any implicit conversions
// (such as lvalue-to-rvalue) are enforced.
InitializedEntity Entity =
InitializedEntity::InitializeLambdaCapture(Id, DeducedType, Loc);
InitializationKind Kind =
IsDirectInit
? (CXXDirectInit ? InitializationKind::CreateDirect(
Loc, Init->getLocStart(), Init->getLocEnd())
: InitializationKind::CreateDirectList(Loc))
: InitializationKind::CreateCopy(Loc, Init->getLocStart());
MultiExprArg Args = Init;
if (CXXDirectInit)
Args =
MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs());
QualType DclT;
InitializationSequence InitSeq(*this, Entity, Kind, Args);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
if (Result.isInvalid())
return QualType();
Init = Result.getAs<Expr>();
// The init-capture initialization is a full-expression that must be
// processed as one before we enter the declcontext of the lambda's
// call-operator.
Result = ActOnFinishFullExpr(Init, Loc, /*DiscardedValue*/ false,
/*IsConstexpr*/ false,
/*IsLambdaInitCaptureInitalizer*/ true);
if (Result.isInvalid())
return QualType();
Init = Result.getAs<Expr>();
return DeducedType;
}
VarDecl *Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc,
QualType InitCaptureType,
IdentifierInfo *Id,
unsigned InitStyle, Expr *Init) {
TypeSourceInfo *TSI = Context.getTrivialTypeSourceInfo(InitCaptureType,
Loc);
// Create a dummy variable representing the init-capture. This is not actually
// used as a variable, and only exists as a way to name and refer to the
// init-capture.
// FIXME: Pass in separate source locations for '&' and identifier.
VarDecl *NewVD = VarDecl::Create(Context, CurContext, Loc,
Loc, Id, InitCaptureType, TSI, SC_Auto);
NewVD->setInitCapture(true);
NewVD->setReferenced(true);
// FIXME: Pass in a VarDecl::InitializationStyle.
NewVD->setInitStyle(static_cast<VarDecl::InitializationStyle>(InitStyle));
NewVD->markUsed(Context);
NewVD->setInit(Init);
return NewVD;
}
FieldDecl *Sema::buildInitCaptureField(LambdaScopeInfo *LSI, VarDecl *Var) {
FieldDecl *Field = FieldDecl::Create(
Context, LSI->Lambda, Var->getLocation(), Var->getLocation(),
nullptr, Var->getType(), Var->getTypeSourceInfo(), nullptr, false,
ICIS_NoInit);
Field->setImplicit(true);
Field->setAccess(AS_private);
LSI->Lambda->addDecl(Field);
LSI->addCapture(Var, /*isBlock*/false, Var->getType()->isReferenceType(),
/*isNested*/false, Var->getLocation(), SourceLocation(),
Var->getType(), Var->getInit());
return Field;
}
void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer &Intro,
Declarator &ParamInfo,
Scope *CurScope) {
// Determine if we're within a context where we know that the lambda will
// be dependent, because there are template parameters in scope.
bool KnownDependent = false;
LambdaScopeInfo *const LSI = getCurLambda();
assert(LSI && "LambdaScopeInfo should be on stack!");
// The lambda-expression's closure type might be dependent even if its
// semantic context isn't, if it appears within a default argument of a
// function template.
if (CurScope->getTemplateParamParent())
KnownDependent = true;
// Determine the signature of the call operator.
TypeSourceInfo *MethodTyInfo;
bool ExplicitParams = true;
bool ExplicitResultType = true;
bool ContainsUnexpandedParameterPack = false;
SourceLocation EndLoc;
SmallVector<ParmVarDecl *, 8> Params;
if (ParamInfo.getNumTypeObjects() == 0) {
// C++11 [expr.prim.lambda]p4:
// If a lambda-expression does not include a lambda-declarator, it is as
// if the lambda-declarator were ().
FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
/*IsVariadic=*/false, /*IsCXXMethod=*/true));
EPI.HasTrailingReturn = true;
EPI.TypeQuals |= DeclSpec::TQ_const;
// C++1y [expr.prim.lambda]:
// The lambda return type is 'auto', which is replaced by the
// trailing-return type if provided and/or deduced from 'return'
// statements
// We don't do this before C++1y, because we don't support deduced return
// types there.
QualType DefaultTypeForNoTrailingReturn =
getLangOpts().CPlusPlus14 ? Context.getAutoDeductType()
: Context.DependentTy;
QualType MethodTy =
Context.getFunctionType(DefaultTypeForNoTrailingReturn, None, EPI);
MethodTyInfo = Context.getTrivialTypeSourceInfo(MethodTy);
ExplicitParams = false;
ExplicitResultType = false;
EndLoc = Intro.Range.getEnd();
} else {
assert(ParamInfo.isFunctionDeclarator() &&
"lambda-declarator is a function");
DeclaratorChunk::FunctionTypeInfo &FTI = ParamInfo.getFunctionTypeInfo();
// C++11 [expr.prim.lambda]p5:
// This function call operator is declared const (9.3.1) if and only if
// the lambda-expression's parameter-declaration-clause is not followed
// by mutable. It is neither virtual nor declared volatile. [...]
if (!FTI.hasMutableQualifier())
FTI.TypeQuals |= DeclSpec::TQ_const;
MethodTyInfo = GetTypeForDeclarator(ParamInfo, CurScope);
assert(MethodTyInfo && "no type from lambda-declarator");
EndLoc = ParamInfo.getSourceRange().getEnd();
ExplicitResultType = FTI.hasTrailingReturnType();
if (FTIHasNonVoidParameters(FTI)) {
Params.reserve(FTI.NumParams);
for (unsigned i = 0, e = FTI.NumParams; i != e; ++i)
Params.push_back(cast<ParmVarDecl>(FTI.Params[i].Param));
}
// Check for unexpanded parameter packs in the method type.
if (MethodTyInfo->getType()->containsUnexpandedParameterPack())
ContainsUnexpandedParameterPack = true;
}
CXXRecordDecl *Class = createLambdaClosureType(Intro.Range, MethodTyInfo,
KnownDependent, Intro.Default);
CXXMethodDecl *Method =
startLambdaDefinition(Class, Intro.Range, MethodTyInfo, EndLoc, Params,
ParamInfo.getDeclSpec().isConstexprSpecified());
if (ExplicitParams)
CheckCXXDefaultArguments(Method);
// Attributes on the lambda apply to the method.
ProcessDeclAttributes(CurScope, Method, ParamInfo);
// Introduce the function call operator as the current declaration context.
PushDeclContext(CurScope, Method);
// Build the lambda scope.
buildLambdaScope(LSI, Method, Intro.Range, Intro.Default, Intro.DefaultLoc,
ExplicitParams, ExplicitResultType, !Method->isConst());
// C++11 [expr.prim.lambda]p9:
// A lambda-expression whose smallest enclosing scope is a block scope is a
// local lambda expression; any other lambda expression shall not have a
// capture-default or simple-capture in its lambda-introducer.
//
// For simple-captures, this is covered by the check below that any named
// entity is a variable that can be captured.
//
// For DR1632, we also allow a capture-default in any context where we can
// odr-use 'this' (in particular, in a default initializer for a non-static
// data member).
if (Intro.Default != LCD_None && !Class->getParent()->isFunctionOrMethod() &&
(getCurrentThisType().isNull() ||
CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
/*BuildAndDiagnose*/false)))
Diag(Intro.DefaultLoc, diag::err_capture_default_non_local);
// Distinct capture names, for diagnostics.
llvm::SmallSet<IdentifierInfo*, 8> CaptureNames;
// Handle explicit captures.
SourceLocation PrevCaptureLoc
= Intro.Default == LCD_None? Intro.Range.getBegin() : Intro.DefaultLoc;
for (auto C = Intro.Captures.begin(), E = Intro.Captures.end(); C != E;
PrevCaptureLoc = C->Loc, ++C) {
if (C->Kind == LCK_This || C->Kind == LCK_StarThis) {
if (C->Kind == LCK_StarThis)
Diag(C->Loc, !getLangOpts().CPlusPlus1z
? diag::ext_star_this_lambda_capture_cxx1z
: diag::warn_cxx14_compat_star_this_lambda_capture);
// C++11 [expr.prim.lambda]p8:
// An identifier or this shall not appear more than once in a
// lambda-capture.
if (LSI->isCXXThisCaptured()) {
Diag(C->Loc, diag::err_capture_more_than_once)
<< "'this'" << SourceRange(LSI->getCXXThisCapture().getLocation())
<< FixItHint::CreateRemoval(
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
continue;
}
// C++1z [expr.prim.lambda]p8:
// If a lambda-capture includes a capture-default that is =, each
// simple-capture of that lambda-capture shall be of the form "&
// identifier" or "* this". [ Note: The form [&,this] is redundant but
// accepted for compatibility with ISO C++14. --end note ]
if (Intro.Default == LCD_ByCopy && C->Kind != LCK_StarThis) {
Diag(C->Loc, diag::err_this_capture_with_copy_default)
<< FixItHint::CreateRemoval(
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
continue;
}
// C++11 [expr.prim.lambda]p12:
// If this is captured by a local lambda expression, its nearest
// enclosing function shall be a non-static member function.
QualType ThisCaptureType = getCurrentThisType();
if (ThisCaptureType.isNull()) {
Diag(C->Loc, diag::err_this_capture) << true;
continue;
}
CheckCXXThisCapture(C->Loc, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
/*FunctionScopeIndexToStopAtPtr*/ nullptr,
C->Kind == LCK_StarThis);
continue;
}
assert(C->Id && "missing identifier for capture");
if (C->Init.isInvalid())
continue;
VarDecl *Var = nullptr;
if (C->Init.isUsable()) {
Diag(C->Loc, getLangOpts().CPlusPlus14
? diag::warn_cxx11_compat_init_capture
: diag::ext_init_capture);
if (C->Init.get()->containsUnexpandedParameterPack())
ContainsUnexpandedParameterPack = true;
// If the initializer expression is usable, but the InitCaptureType
// is not, then an error has occurred - so ignore the capture for now.
// for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
// FIXME: we should create the init capture variable and mark it invalid
// in this case.
if (C->InitCaptureType.get().isNull())
continue;
unsigned InitStyle;
switch (C->InitKind) {
case LambdaCaptureInitKind::NoInit:
llvm_unreachable("not an init-capture?");
case LambdaCaptureInitKind::CopyInit:
InitStyle = VarDecl::CInit;
break;
case LambdaCaptureInitKind::DirectInit:
InitStyle = VarDecl::CallInit;
break;
case LambdaCaptureInitKind::ListInit:
InitStyle = VarDecl::ListInit;
break;
}
Var = createLambdaInitCaptureVarDecl(C->Loc, C->InitCaptureType.get(),
C->Id, InitStyle, C->Init.get());
// C++1y [expr.prim.lambda]p11:
// An init-capture behaves as if it declares and explicitly
// captures a variable [...] whose declarative region is the
// lambda-expression's compound-statement
if (Var)
PushOnScopeChains(Var, CurScope, false);
} else {
assert(C->InitKind == LambdaCaptureInitKind::NoInit &&
"init capture has valid but null init?");
// C++11 [expr.prim.lambda]p8:
// If a lambda-capture includes a capture-default that is &, the
// identifiers in the lambda-capture shall not be preceded by &.
// If a lambda-capture includes a capture-default that is =, [...]
// each identifier it contains shall be preceded by &.
if (C->Kind == LCK_ByRef && Intro.Default == LCD_ByRef) {
Diag(C->Loc, diag::err_reference_capture_with_reference_default)
<< FixItHint::CreateRemoval(
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
continue;
} else if (C->Kind == LCK_ByCopy && Intro.Default == LCD_ByCopy) {
Diag(C->Loc, diag::err_copy_capture_with_copy_default)
<< FixItHint::CreateRemoval(
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
continue;
}
// C++11 [expr.prim.lambda]p10:
// The identifiers in a capture-list are looked up using the usual
// rules for unqualified name lookup (3.4.1)
DeclarationNameInfo Name(C->Id, C->Loc);
LookupResult R(*this, Name, LookupOrdinaryName);
LookupName(R, CurScope);
if (R.isAmbiguous())
continue;
if (R.empty()) {
// FIXME: Disable corrections that would add qualification?
CXXScopeSpec ScopeSpec;
if (DiagnoseEmptyLookup(CurScope, ScopeSpec, R,
llvm::make_unique<DeclFilterCCC<VarDecl>>()))
continue;
}
Var = R.getAsSingle<VarDecl>();
if (Var && DiagnoseUseOfDecl(Var, C->Loc))
continue;
}
// C++11 [expr.prim.lambda]p8:
// An identifier or this shall not appear more than once in a
// lambda-capture.
if (!CaptureNames.insert(C->Id).second) {
if (Var && LSI->isCaptured(Var)) {
Diag(C->Loc, diag::err_capture_more_than_once)
<< C->Id << SourceRange(LSI->getCapture(Var).getLocation())
<< FixItHint::CreateRemoval(
SourceRange(getLocForEndOfToken(PrevCaptureLoc), C->Loc));
} else
// Previous capture captured something different (one or both was
// an init-cpature): no fixit.
Diag(C->Loc, diag::err_capture_more_than_once) << C->Id;
continue;
}
// C++11 [expr.prim.lambda]p10:
// [...] each such lookup shall find a variable with automatic storage
// duration declared in the reaching scope of the local lambda expression.
// Note that the 'reaching scope' check happens in tryCaptureVariable().
if (!Var) {
Diag(C->Loc, diag::err_capture_does_not_name_variable) << C->Id;
continue;
}
// Ignore invalid decls; they'll just confuse the code later.
if (Var->isInvalidDecl())
continue;
if (!Var->hasLocalStorage()) {
Diag(C->Loc, diag::err_capture_non_automatic_variable) << C->Id;
Diag(Var->getLocation(), diag::note_previous_decl) << C->Id;
continue;
}
// C++11 [expr.prim.lambda]p23:
// A capture followed by an ellipsis is a pack expansion (14.5.3).
SourceLocation EllipsisLoc;
if (C->EllipsisLoc.isValid()) {
if (Var->isParameterPack()) {
EllipsisLoc = C->EllipsisLoc;
} else {
Diag(C->EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< SourceRange(C->Loc);
// Just ignore the ellipsis.
}
} else if (Var->isParameterPack()) {
ContainsUnexpandedParameterPack = true;
}
if (C->Init.isUsable()) {
buildInitCaptureField(LSI, Var);
} else {
TryCaptureKind Kind = C->Kind == LCK_ByRef ? TryCapture_ExplicitByRef :
TryCapture_ExplicitByVal;
tryCaptureVariable(Var, C->Loc, Kind, EllipsisLoc);
}
}
finishLambdaExplicitCaptures(LSI);
LSI->ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
// Add lambda parameters into scope.
addLambdaParameters(Method, CurScope);
// Enter a new evaluation context to insulate the lambda from any
// cleanups from the enclosing full-expression.
PushExpressionEvaluationContext(PotentiallyEvaluated);
}
void Sema::ActOnLambdaError(SourceLocation StartLoc, Scope *CurScope,
bool IsInstantiation) {
LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(FunctionScopes.back());
// Leave the expression-evaluation context.
DiscardCleanupsInEvaluationContext();
PopExpressionEvaluationContext();
// Leave the context of the lambda.
if (!IsInstantiation)
PopDeclContext();
// Finalize the lambda.
CXXRecordDecl *Class = LSI->Lambda;
Class->setInvalidDecl();
SmallVector<Decl*, 4> Fields(Class->fields());
ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
SourceLocation(), nullptr);
CheckCompletedCXXClass(Class);
PopFunctionScopeInfo();
}
/// \brief Add a lambda's conversion to function pointer, as described in
/// C++11 [expr.prim.lambda]p6.
static void addFunctionPointerConversion(Sema &S,
SourceRange IntroducerRange,
CXXRecordDecl *Class,
CXXMethodDecl *CallOperator) {
// This conversion is explicitly disabled if the lambda's function has
// pass_object_size attributes on any of its parameters.
if (llvm::any_of(CallOperator->parameters(),
std::mem_fn(&ParmVarDecl::hasAttr<PassObjectSizeAttr>)))
return;
// Add the conversion to function pointer.
const FunctionProtoType *CallOpProto =
CallOperator->getType()->getAs<FunctionProtoType>();
const FunctionProtoType::ExtProtoInfo CallOpExtInfo =
CallOpProto->getExtProtoInfo();
QualType PtrToFunctionTy;
QualType InvokerFunctionTy;
{
FunctionProtoType::ExtProtoInfo InvokerExtInfo = CallOpExtInfo;
CallingConv CC = S.Context.getDefaultCallingConvention(
CallOpProto->isVariadic(), /*IsCXXMethod=*/false);
InvokerExtInfo.ExtInfo = InvokerExtInfo.ExtInfo.withCallingConv(CC);
InvokerExtInfo.TypeQuals = 0;
assert(InvokerExtInfo.RefQualifier == RQ_None &&
"Lambda's call operator should not have a reference qualifier");
InvokerFunctionTy =
S.Context.getFunctionType(CallOpProto->getReturnType(),
CallOpProto->getParamTypes(), InvokerExtInfo);
PtrToFunctionTy = S.Context.getPointerType(InvokerFunctionTy);
}
// Create the type of the conversion function.
FunctionProtoType::ExtProtoInfo ConvExtInfo(
S.Context.getDefaultCallingConvention(
/*IsVariadic=*/false, /*IsCXXMethod=*/true));
// The conversion function is always const.
ConvExtInfo.TypeQuals = Qualifiers::Const;
QualType ConvTy =
S.Context.getFunctionType(PtrToFunctionTy, None, ConvExtInfo);
SourceLocation Loc = IntroducerRange.getBegin();
DeclarationName ConversionName
= S.Context.DeclarationNames.getCXXConversionFunctionName(
S.Context.getCanonicalType(PtrToFunctionTy));
DeclarationNameLoc ConvNameLoc;
// Construct a TypeSourceInfo for the conversion function, and wire
// all the parameters appropriately for the FunctionProtoTypeLoc
// so that everything works during transformation/instantiation of
// generic lambdas.
// The main reason for wiring up the parameters of the conversion
// function with that of the call operator is so that constructs
// like the following work:
// auto L = [](auto b) { <-- 1
// return [](auto a) -> decltype(a) { <-- 2
// return a;
// };
// };
// int (*fp)(int) = L(5);
// Because the trailing return type can contain DeclRefExprs that refer
// to the original call operator's variables, we hijack the call
// operators ParmVarDecls below.
TypeSourceInfo *ConvNamePtrToFunctionTSI =
S.Context.getTrivialTypeSourceInfo(PtrToFunctionTy, Loc);
ConvNameLoc.NamedType.TInfo = ConvNamePtrToFunctionTSI;
// The conversion function is a conversion to a pointer-to-function.
TypeSourceInfo *ConvTSI = S.Context.getTrivialTypeSourceInfo(ConvTy, Loc);
FunctionProtoTypeLoc ConvTL =
ConvTSI->getTypeLoc().getAs<FunctionProtoTypeLoc>();
// Get the result of the conversion function which is a pointer-to-function.
PointerTypeLoc PtrToFunctionTL =
ConvTL.getReturnLoc().getAs<PointerTypeLoc>();
// Do the same for the TypeSourceInfo that is used to name the conversion
// operator.
PointerTypeLoc ConvNamePtrToFunctionTL =
ConvNamePtrToFunctionTSI->getTypeLoc().getAs<PointerTypeLoc>();
// Get the underlying function types that the conversion function will
// be converting to (should match the type of the call operator).
FunctionProtoTypeLoc CallOpConvTL =
PtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
FunctionProtoTypeLoc CallOpConvNameTL =
ConvNamePtrToFunctionTL.getPointeeLoc().getAs<FunctionProtoTypeLoc>();
// Wire up the FunctionProtoTypeLocs with the call operator's parameters.
// These parameter's are essentially used to transform the name and
// the type of the conversion operator. By using the same parameters
// as the call operator's we don't have to fix any back references that
// the trailing return type of the call operator's uses (such as
// decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
// - we can simply use the return type of the call operator, and
// everything should work.
SmallVector<ParmVarDecl *, 4> InvokerParams;
for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
ParmVarDecl *From = CallOperator->getParamDecl(I);
InvokerParams.push_back(ParmVarDecl::Create(S.Context,
// Temporarily add to the TU. This is set to the invoker below.
S.Context.getTranslationUnitDecl(),
From->getLocStart(),
From->getLocation(),
From->getIdentifier(),
From->getType(),
From->getTypeSourceInfo(),
From->getStorageClass(),
/*DefaultArg=*/nullptr));
CallOpConvTL.setParam(I, From);
CallOpConvNameTL.setParam(I, From);
}
CXXConversionDecl *Conversion
= CXXConversionDecl::Create(S.Context, Class, Loc,
DeclarationNameInfo(ConversionName,
Loc, ConvNameLoc),
ConvTy,
ConvTSI,
/*isInline=*/true, /*isExplicit=*/false,
/*isConstexpr=*/false,
CallOperator->getBody()->getLocEnd());
Conversion->setAccess(AS_public);
Conversion->setImplicit(true);
if (Class->isGenericLambda()) {
// Create a template version of the conversion operator, using the template
// parameter list of the function call operator.
FunctionTemplateDecl *TemplateCallOperator =
CallOperator->getDescribedFunctionTemplate();
FunctionTemplateDecl *ConversionTemplate =
FunctionTemplateDecl::Create(S.Context, Class,
Loc, ConversionName,
TemplateCallOperator->getTemplateParameters(),
Conversion);
ConversionTemplate->setAccess(AS_public);
ConversionTemplate->setImplicit(true);
Conversion->setDescribedFunctionTemplate(ConversionTemplate);
Class->addDecl(ConversionTemplate);
} else
Class->addDecl(Conversion);
// Add a non-static member function that will be the result of
// the conversion with a certain unique ID.
DeclarationName InvokerName = &S.Context.Idents.get(
getLambdaStaticInvokerName());
// FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
// we should get a prebuilt TrivialTypeSourceInfo from Context
// using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
// then rewire the parameters accordingly, by hoisting up the InvokeParams
// loop below and then use its Params to set Invoke->setParams(...) below.
// This would avoid the 'const' qualifier of the calloperator from
// contaminating the type of the invoker, which is currently adjusted
// in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
// trailing return type of the invoker would require a visitor to rebuild
// the trailing return type and adjusting all back DeclRefExpr's to refer
// to the new static invoker parameters - not the call operator's.
CXXMethodDecl *Invoke
= CXXMethodDecl::Create(S.Context, Class, Loc,
DeclarationNameInfo(InvokerName, Loc),
InvokerFunctionTy,
CallOperator->getTypeSourceInfo(),
SC_Static, /*IsInline=*/true,
/*IsConstexpr=*/false,
CallOperator->getBody()->getLocEnd());
for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I)
InvokerParams[I]->setOwningFunction(Invoke);
Invoke->setParams(InvokerParams);
Invoke->setAccess(AS_private);
Invoke->setImplicit(true);
if (Class->isGenericLambda()) {
FunctionTemplateDecl *TemplateCallOperator =
CallOperator->getDescribedFunctionTemplate();
FunctionTemplateDecl *StaticInvokerTemplate = FunctionTemplateDecl::Create(
S.Context, Class, Loc, InvokerName,
TemplateCallOperator->getTemplateParameters(),
Invoke);
StaticInvokerTemplate->setAccess(AS_private);
StaticInvokerTemplate->setImplicit(true);
Invoke->setDescribedFunctionTemplate(StaticInvokerTemplate);
Class->addDecl(StaticInvokerTemplate);
} else
Class->addDecl(Invoke);
}
/// \brief Add a lambda's conversion to block pointer.
static void addBlockPointerConversion(Sema &S,
SourceRange IntroducerRange,
CXXRecordDecl *Class,
CXXMethodDecl *CallOperator) {
const FunctionProtoType *Proto =
CallOperator->getType()->getAs<FunctionProtoType>();
// The function type inside the block pointer type is the same as the call
// operator with some tweaks. The calling convention is the default free
// function convention, and the type qualifications are lost.
FunctionProtoType::ExtProtoInfo BlockEPI = Proto->getExtProtoInfo();
BlockEPI.ExtInfo =
BlockEPI.ExtInfo.withCallingConv(S.Context.getDefaultCallingConvention(
Proto->isVariadic(), /*IsCXXMethod=*/false));
BlockEPI.TypeQuals = 0;
QualType FunctionTy = S.Context.getFunctionType(
Proto->getReturnType(), Proto->getParamTypes(), BlockEPI);
QualType BlockPtrTy = S.Context.getBlockPointerType(FunctionTy);
FunctionProtoType::ExtProtoInfo ConversionEPI(
S.Context.getDefaultCallingConvention(
/*IsVariadic=*/false, /*IsCXXMethod=*/true));
ConversionEPI.TypeQuals = Qualifiers::Const;
QualType ConvTy = S.Context.getFunctionType(BlockPtrTy, None, ConversionEPI);
SourceLocation Loc = IntroducerRange.getBegin();
DeclarationName Name
= S.Context.DeclarationNames.getCXXConversionFunctionName(
S.Context.getCanonicalType(BlockPtrTy));
DeclarationNameLoc NameLoc;
NameLoc.NamedType.TInfo = S.Context.getTrivialTypeSourceInfo(BlockPtrTy, Loc);
CXXConversionDecl *Conversion
= CXXConversionDecl::Create(S.Context, Class, Loc,
DeclarationNameInfo(Name, Loc, NameLoc),
ConvTy,
S.Context.getTrivialTypeSourceInfo(ConvTy, Loc),
/*isInline=*/true, /*isExplicit=*/false,
/*isConstexpr=*/false,
CallOperator->getBody()->getLocEnd());
Conversion->setAccess(AS_public);
Conversion->setImplicit(true);
Class->addDecl(Conversion);
}
static ExprResult performLambdaVarCaptureInitialization(
Sema &S, LambdaScopeInfo::Capture &Capture,
FieldDecl *Field,
SmallVectorImpl<VarDecl *> &ArrayIndexVars,
SmallVectorImpl<unsigned> &ArrayIndexStarts) {
assert(Capture.isVariableCapture() && "not a variable capture");
auto *Var = Capture.getVariable();
SourceLocation Loc = Capture.getLocation();
// C++11 [expr.prim.lambda]p21:
// When the lambda-expression is evaluated, the entities that
// are captured by copy are used to direct-initialize each
// corresponding non-static data member of the resulting closure
// object. (For array members, the array elements are
// direct-initialized in increasing subscript order.) These
// initializations are performed in the (unspecified) order in
// which the non-static data members are declared.
// C++ [expr.prim.lambda]p12:
// An entity captured by a lambda-expression is odr-used (3.2) in
// the scope containing the lambda-expression.
ExprResult RefResult = S.BuildDeclarationNameExpr(
CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
if (RefResult.isInvalid())
return ExprError();
Expr *Ref = RefResult.get();
QualType FieldType = Field->getType();
// When the variable has array type, create index variables for each
// dimension of the array. We use these index variables to subscript
// the source array, and other clients (e.g., CodeGen) will perform
// the necessary iteration with these index variables.
//
// FIXME: This is dumb. Add a proper AST representation for array
// copy-construction and use it here.
SmallVector<VarDecl *, 4> IndexVariables;
QualType BaseType = FieldType;
QualType SizeType = S.Context.getSizeType();
ArrayIndexStarts.push_back(ArrayIndexVars.size());
while (const ConstantArrayType *Array
= S.Context.getAsConstantArrayType(BaseType)) {
// Create the iteration variable for this array index.
IdentifierInfo *IterationVarName = nullptr;
{
SmallString<8> Str;
llvm::raw_svector_ostream OS(Str);
OS << "__i" << IndexVariables.size();
IterationVarName = &S.Context.Idents.get(OS.str());
}
VarDecl *IterationVar = VarDecl::Create(
S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
IterationVar->setImplicit();
IndexVariables.push_back(IterationVar);
ArrayIndexVars.push_back(IterationVar);
// Create a reference to the iteration variable.
ExprResult IterationVarRef =
S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
assert(!IterationVarRef.isInvalid() &&
"Reference to invented variable cannot fail!");
IterationVarRef = S.DefaultLvalueConversion(IterationVarRef.get());
assert(!IterationVarRef.isInvalid() &&
"Conversion of invented variable cannot fail!");
// Subscript the array with this iteration variable.
ExprResult Subscript =
S.CreateBuiltinArraySubscriptExpr(Ref, Loc, IterationVarRef.get(), Loc);
if (Subscript.isInvalid())
return ExprError();
Ref = Subscript.get();
BaseType = Array->getElementType();
}
// Construct the entity that we will be initializing. For an array, this
// will be first element in the array, which may require several levels
// of array-subscript entities.
SmallVector<InitializedEntity, 4> Entities;
Entities.reserve(1 + IndexVariables.size());
Entities.push_back(InitializedEntity::InitializeLambdaCapture(
Var->getIdentifier(), FieldType, Loc));
for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
Entities.push_back(
InitializedEntity::InitializeElement(S.Context, 0, Entities.back()));
InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
InitializationSequence Init(S, Entities.back(), InitKind, Ref);
return Init.Perform(S, Entities.back(), InitKind, Ref);
}
ExprResult Sema::ActOnLambdaExpr(SourceLocation StartLoc, Stmt *Body,
Scope *CurScope) {
LambdaScopeInfo LSI = *cast<LambdaScopeInfo>(FunctionScopes.back());
ActOnFinishFunctionBody(LSI.CallOperator, Body);
return BuildLambdaExpr(StartLoc, Body->getLocEnd(), &LSI);
}
static LambdaCaptureDefault
mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS) {
switch (ICS) {
case CapturingScopeInfo::ImpCap_None:
return LCD_None;
case CapturingScopeInfo::ImpCap_LambdaByval:
return LCD_ByCopy;
case CapturingScopeInfo::ImpCap_CapturedRegion:
case CapturingScopeInfo::ImpCap_LambdaByref:
return LCD_ByRef;
case CapturingScopeInfo::ImpCap_Block:
llvm_unreachable("block capture in lambda");
}
llvm_unreachable("Unknown implicit capture style");
}
ExprResult Sema::BuildLambdaExpr(SourceLocation StartLoc, SourceLocation EndLoc,
LambdaScopeInfo *LSI) {
// Collect information from the lambda scope.
SmallVector<LambdaCapture, 4> Captures;
SmallVector<Expr *, 4> CaptureInits;
SourceLocation CaptureDefaultLoc = LSI->CaptureDefaultLoc;
LambdaCaptureDefault CaptureDefault =
mapImplicitCaptureStyle(LSI->ImpCaptureStyle);
CXXRecordDecl *Class;
CXXMethodDecl *CallOperator;
SourceRange IntroducerRange;
bool ExplicitParams;
bool ExplicitResultType;
CleanupInfo LambdaCleanup;
bool ContainsUnexpandedParameterPack;
SmallVector<VarDecl *, 4> ArrayIndexVars;
SmallVector<unsigned, 4> ArrayIndexStarts;
{
CallOperator = LSI->CallOperator;
Class = LSI->Lambda;
IntroducerRange = LSI->IntroducerRange;
ExplicitParams = LSI->ExplicitParams;
ExplicitResultType = !LSI->HasImplicitReturnType;
LambdaCleanup = LSI->Cleanup;
ContainsUnexpandedParameterPack = LSI->ContainsUnexpandedParameterPack;
CallOperator->setLexicalDeclContext(Class);
Decl *TemplateOrNonTemplateCallOperatorDecl =
CallOperator->getDescribedFunctionTemplate()
? CallOperator->getDescribedFunctionTemplate()
: cast<Decl>(CallOperator);
TemplateOrNonTemplateCallOperatorDecl->setLexicalDeclContext(Class);
Class->addDecl(TemplateOrNonTemplateCallOperatorDecl);
PopExpressionEvaluationContext();
// Translate captures.
auto CurField = Class->field_begin();
for (unsigned I = 0, N = LSI->Captures.size(); I != N; ++I, ++CurField) {
LambdaScopeInfo::Capture From = LSI->Captures[I];
assert(!From.isBlockCapture() && "Cannot capture __block variables");
bool IsImplicit = I >= LSI->NumExplicitCaptures;
// Handle 'this' capture.
if (From.isThisCapture()) {
Captures.push_back(
LambdaCapture(From.getLocation(), IsImplicit,
From.isCopyCapture() ? LCK_StarThis : LCK_This));
CaptureInits.push_back(From.getInitExpr());
ArrayIndexStarts.push_back(ArrayIndexVars.size());
continue;
}
if (From.isVLATypeCapture()) {
Captures.push_back(
LambdaCapture(From.getLocation(), IsImplicit, LCK_VLAType));
CaptureInits.push_back(nullptr);
ArrayIndexStarts.push_back(ArrayIndexVars.size());
continue;
}
VarDecl *Var = From.getVariable();
LambdaCaptureKind Kind = From.isCopyCapture() ? LCK_ByCopy : LCK_ByRef;
Captures.push_back(LambdaCapture(From.getLocation(), IsImplicit, Kind,
Var, From.getEllipsisLoc()));
Expr *Init = From.getInitExpr();
if (!Init) {
auto InitResult = performLambdaVarCaptureInitialization(
*this, From, *CurField, ArrayIndexVars, ArrayIndexStarts);
if (InitResult.isInvalid())
return ExprError();
Init = InitResult.get();
} else {
ArrayIndexStarts.push_back(ArrayIndexVars.size());
}
CaptureInits.push_back(Init);
}
// C++11 [expr.prim.lambda]p6:
// The closure type for a lambda-expression with no lambda-capture
// has a public non-virtual non-explicit const conversion function
// to pointer to function having the same parameter and return
// types as the closure type's function call operator.
if (Captures.empty() && CaptureDefault == LCD_None)
addFunctionPointerConversion(*this, IntroducerRange, Class,
CallOperator);
// Objective-C++:
// The closure type for a lambda-expression has a public non-virtual
// non-explicit const conversion function to a block pointer having the
// same parameter and return types as the closure type's function call
// operator.
// FIXME: Fix generic lambda to block conversions.
if (getLangOpts().Blocks && getLangOpts().ObjC1 &&
!Class->isGenericLambda())
addBlockPointerConversion(*this, IntroducerRange, Class, CallOperator);
// Finalize the lambda class.
SmallVector<Decl*, 4> Fields(Class->fields());
ActOnFields(nullptr, Class->getLocation(), Class, Fields, SourceLocation(),
SourceLocation(), nullptr);
CheckCompletedCXXClass(Class);
}
Cleanup.mergeFrom(LambdaCleanup);
LambdaExpr *Lambda = LambdaExpr::Create(Context, Class, IntroducerRange,
CaptureDefault, CaptureDefaultLoc,
Captures,
ExplicitParams, ExplicitResultType,
CaptureInits, ArrayIndexVars,
ArrayIndexStarts, EndLoc,
ContainsUnexpandedParameterPack);
// If the lambda expression's call operator is not explicitly marked constexpr
// and we are not in a dependent context, analyze the call operator to infer
// its constexpr-ness, supressing diagnostics while doing so.
if (getLangOpts().CPlusPlus1z && !CallOperator->isInvalidDecl() &&
!CallOperator->isConstexpr() &&
!Class->getDeclContext()->isDependentContext()) {
TentativeAnalysisScope DiagnosticScopeGuard(*this);
CallOperator->setConstexpr(
CheckConstexprFunctionDecl(CallOperator) &&
CheckConstexprFunctionBody(CallOperator, CallOperator->getBody()));
}
if (!CurContext->isDependentContext()) {
switch (ExprEvalContexts.back().Context) {
// C++11 [expr.prim.lambda]p2:
// A lambda-expression shall not appear in an unevaluated operand
// (Clause 5).
case Unevaluated:
case UnevaluatedAbstract:
// C++1y [expr.const]p2:
// A conditional-expression e is a core constant expression unless the
// evaluation of e, following the rules of the abstract machine, would
// evaluate [...] a lambda-expression.
//
// This is technically incorrect, there are some constant evaluated contexts
// where this should be allowed. We should probably fix this when DR1607 is
// ratified, it lays out the exact set of conditions where we shouldn't
// allow a lambda-expression.
case ConstantEvaluated:
// We don't actually diagnose this case immediately, because we
// could be within a context where we might find out later that
// the expression is potentially evaluated (e.g., for typeid).
ExprEvalContexts.back().Lambdas.push_back(Lambda);
break;
case DiscardedStatement:
case PotentiallyEvaluated:
case PotentiallyEvaluatedIfUsed:
break;
}
}
return MaybeBindToTemporary(Lambda);
}
ExprResult Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation,
SourceLocation ConvLocation,
CXXConversionDecl *Conv,
Expr *Src) {
// Make sure that the lambda call operator is marked used.
CXXRecordDecl *Lambda = Conv->getParent();
CXXMethodDecl *CallOperator
= cast<CXXMethodDecl>(
Lambda->lookup(
Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
CallOperator->setReferenced();
CallOperator->markUsed(Context);
ExprResult Init = PerformCopyInitialization(
InitializedEntity::InitializeBlock(ConvLocation,
Src->getType(),
/*NRVO=*/false),
CurrentLocation, Src);
if (!Init.isInvalid())
Init = ActOnFinishFullExpr(Init.get());
if (Init.isInvalid())
return ExprError();
// Create the new block to be returned.
BlockDecl *Block = BlockDecl::Create(Context, CurContext, ConvLocation);
// Set the type information.
Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
Block->setIsVariadic(CallOperator->isVariadic());
Block->setBlockMissingReturnType(false);
// Add parameters.
SmallVector<ParmVarDecl *, 4> BlockParams;
for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
ParmVarDecl *From = CallOperator->getParamDecl(I);
BlockParams.push_back(ParmVarDecl::Create(Context, Block,
From->getLocStart(),
From->getLocation(),
From->getIdentifier(),
From->getType(),
From->getTypeSourceInfo(),
From->getStorageClass(),
/*DefaultArg=*/nullptr));
}
Block->setParams(BlockParams);
Block->setIsConversionFromLambda(true);
// Add capture. The capture uses a fake variable, which doesn't correspond
// to any actual memory location. However, the initializer copy-initializes
// the lambda object.
TypeSourceInfo *CapVarTSI =
Context.getTrivialTypeSourceInfo(Src->getType());
VarDecl *CapVar = VarDecl::Create(Context, Block, ConvLocation,
ConvLocation, nullptr,
Src->getType(), CapVarTSI,
SC_None);
BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
/*Nested=*/false, /*Copy=*/Init.get());
Block->setCaptures(Context, Capture, /*CapturesCXXThis=*/false);
// Add a fake function body to the block. IR generation is responsible
// for filling in the actual body, which cannot be expressed as an AST.
Block->setBody(new (Context) CompoundStmt(ConvLocation));
// Create the block literal expression.
Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
ExprCleanupObjects.push_back(Block);
Cleanup.setExprNeedsCleanups(true);
return BuildBlock;
}