HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
clang
lib
Sema
SemaTemplateInstantiateDecl.cpp
//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. //===----------------------------------------------------------------------===/ // // This file implements C++ template instantiation for declarations. // //===----------------------------------------------------------------------===/ #include "clang/Sema/SemaInternal.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclVisitor.h" #include "clang/AST/DependentDiagnostic.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/TypeLoc.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/PrettyDeclStackTrace.h" #include "clang/Sema/Template.h" using namespace clang; static bool isDeclWithinFunction(const Decl *D) { const DeclContext *DC = D->getDeclContext(); if (DC->isFunctionOrMethod()) return true; if (DC->isRecord()) return cast
(DC)->isLocalClass(); return false; } template
static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl, const MultiLevelTemplateArgumentList &TemplateArgs) { if (!OldDecl->getQualifierLoc()) return false; assert((NewDecl->getFriendObjectKind() || !OldDecl->getLexicalDeclContext()->isDependentContext()) && "non-friend with qualified name defined in dependent context"); Sema::ContextRAII SavedContext( SemaRef, const_cast
(NewDecl->getFriendObjectKind() ? NewDecl->getLexicalDeclContext() : OldDecl->getLexicalDeclContext())); NestedNameSpecifierLoc NewQualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(), TemplateArgs); if (!NewQualifierLoc) return true; NewDecl->setQualifierInfo(NewQualifierLoc); return false; } bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl, DeclaratorDecl *NewDecl) { return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); } bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl, TagDecl *NewDecl) { return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs); } // Include attribute instantiation code. #include "clang/Sema/AttrTemplateInstantiate.inc" static void instantiateDependentAlignedAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) { if (Aligned->isAlignmentExpr()) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs); if (!Result.isInvalid()) S.AddAlignedAttr(Aligned->getLocation(), New, Result.getAs
(), Aligned->getSpellingListIndex(), IsPackExpansion); } else { TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(), TemplateArgs, Aligned->getLocation(), DeclarationName()); if (Result) S.AddAlignedAttr(Aligned->getLocation(), New, Result, Aligned->getSpellingListIndex(), IsPackExpansion); } } static void instantiateDependentAlignedAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AlignedAttr *Aligned, Decl *New) { if (!Aligned->isPackExpansion()) { instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); return; } SmallVector
Unexpanded; if (Aligned->isAlignmentExpr()) S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(), Unexpanded); else S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(), Unexpanded); assert(!Unexpanded.empty() && "Pack expansion without parameter packs?"); // Determine whether we can expand this attribute pack yet. bool Expand = true, RetainExpansion = false; Optional
NumExpansions; // FIXME: Use the actual location of the ellipsis. SourceLocation EllipsisLoc = Aligned->getLocation(); if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return; if (!Expand) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1); instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true); } else { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I); instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false); } } } static void instantiateDependentAssumeAlignedAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AssumeAlignedAttr *Aligned, Decl *New) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); Expr *E, *OE = nullptr; ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); if (Result.isInvalid()) return; E = Result.getAs
(); if (Aligned->getOffset()) { Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs); if (Result.isInvalid()) return; OE = Result.getAs
(); } S.AddAssumeAlignedAttr(Aligned->getLocation(), New, E, OE, Aligned->getSpellingListIndex()); } static void instantiateDependentAlignValueAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const AlignValueAttr *Aligned, Decl *New) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs); if (!Result.isInvalid()) S.AddAlignValueAttr(Aligned->getLocation(), New, Result.getAs
(), Aligned->getSpellingListIndex()); } static void instantiateDependentEnableIfAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const EnableIfAttr *A, const Decl *Tmpl, Decl *New) { Expr *Cond = nullptr; { EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); ExprResult Result = S.SubstExpr(A->getCond(), TemplateArgs); if (Result.isInvalid()) return; Cond = Result.getAs
(); } if (A->getCond()->isTypeDependent() && !Cond->isTypeDependent()) { ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); if (Converted.isInvalid()) return; Cond = Converted.get(); } SmallVector
Diags; if (A->getCond()->isValueDependent() && !Cond->isValueDependent() && !Expr::isPotentialConstantExprUnevaluated(Cond, cast
(Tmpl), Diags)) { S.Diag(A->getLocation(), diag::err_enable_if_never_constant_expr); for (int I = 0, N = Diags.size(); I != N; ++I) S.Diag(Diags[I].first, Diags[I].second); return; } EnableIfAttr *EIA = new (S.getASTContext()) EnableIfAttr(A->getLocation(), S.getASTContext(), Cond, A->getMessage(), A->getSpellingListIndex()); New->addAttr(EIA); } // Constructs and adds to New a new instance of CUDALaunchBoundsAttr using // template A as the base and arguments from TemplateArgs. static void instantiateDependentCUDALaunchBoundsAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const CUDALaunchBoundsAttr &Attr, Decl *New) { // The alignment expression is a constant expression. EnterExpressionEvaluationContext Unevaluated(S, Sema::ConstantEvaluated); ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs); if (Result.isInvalid()) return; Expr *MaxThreads = Result.getAs
(); Expr *MinBlocks = nullptr; if (Attr.getMinBlocks()) { Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs); if (Result.isInvalid()) return; MinBlocks = Result.getAs
(); } S.AddLaunchBoundsAttr(Attr.getLocation(), New, MaxThreads, MinBlocks, Attr.getSpellingListIndex()); } static void instantiateDependentModeAttr(Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const ModeAttr &Attr, Decl *New) { S.AddModeAttr(Attr.getRange(), New, Attr.getMode(), Attr.getSpellingListIndex(), /*InInstantiation=*/true); } /// Instantiation of 'declare simd' attribute and its arguments. static void instantiateOMPDeclareSimdDeclAttr( Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs, const OMPDeclareSimdDeclAttr &Attr, Decl *New) { // Allow 'this' in clauses with varlists. if (auto *FTD = dyn_cast
(New)) New = FTD->getTemplatedDecl(); auto *FD = cast
(New); auto *ThisContext = dyn_cast_or_null
(FD->getDeclContext()); SmallVector
Uniforms, Aligneds, Alignments, Linears, Steps; SmallVector
LinModifiers; auto &&Subst = [&](Expr *E) -> ExprResult { if (auto *DRE = dyn_cast
(E->IgnoreParenImpCasts())) if (auto *PVD = dyn_cast
(DRE->getDecl())) { Sema::ContextRAII SavedContext(S, FD); LocalInstantiationScope Local(S); if (FD->getNumParams() > PVD->getFunctionScopeIndex()) Local.InstantiatedLocal( PVD, FD->getParamDecl(PVD->getFunctionScopeIndex())); return S.SubstExpr(E, TemplateArgs); } Sema::CXXThisScopeRAII ThisScope(S, ThisContext, /*TypeQuals=*/0, FD->isCXXInstanceMember()); return S.SubstExpr(E, TemplateArgs); }; ExprResult Simdlen; if (auto *E = Attr.getSimdlen()) Simdlen = Subst(E); if (Attr.uniforms_size() > 0) { for(auto *E : Attr.uniforms()) { ExprResult Inst = Subst(E); if (Inst.isInvalid()) continue; Uniforms.push_back(Inst.get()); } } auto AI = Attr.alignments_begin(); for (auto *E : Attr.aligneds()) { ExprResult Inst = Subst(E); if (Inst.isInvalid()) continue; Aligneds.push_back(Inst.get()); Inst = ExprEmpty(); if (*AI) Inst = S.SubstExpr(*AI, TemplateArgs); Alignments.push_back(Inst.get()); ++AI; } auto SI = Attr.steps_begin(); for (auto *E : Attr.linears()) { ExprResult Inst = Subst(E); if (Inst.isInvalid()) continue; Linears.push_back(Inst.get()); Inst = ExprEmpty(); if (*SI) Inst = S.SubstExpr(*SI, TemplateArgs); Steps.push_back(Inst.get()); ++SI; } LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end()); (void)S.ActOnOpenMPDeclareSimdDirective( S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(), Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps, Attr.getRange()); } void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl, Decl *New, LateInstantiatedAttrVec *LateAttrs, LocalInstantiationScope *OuterMostScope) { for (const auto *TmplAttr : Tmpl->attrs()) { // FIXME: This should be generalized to more than just the AlignedAttr. const AlignedAttr *Aligned = dyn_cast
(TmplAttr); if (Aligned && Aligned->isAlignmentDependent()) { instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New); continue; } const AssumeAlignedAttr *AssumeAligned = dyn_cast
(TmplAttr); if (AssumeAligned) { instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New); continue; } const AlignValueAttr *AlignValue = dyn_cast
(TmplAttr); if (AlignValue) { instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New); continue; } const EnableIfAttr *EnableIf = dyn_cast
(TmplAttr); if (EnableIf && EnableIf->getCond()->isValueDependent()) { instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl, New); continue; } if (const CUDALaunchBoundsAttr *CUDALaunchBounds = dyn_cast
(TmplAttr)) { instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs, *CUDALaunchBounds, New); continue; } if (const ModeAttr *Mode = dyn_cast
(TmplAttr)) { instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New); continue; } if (const auto *OMPAttr = dyn_cast
(TmplAttr)) { instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New); continue; } // Existing DLL attribute on the instantiation takes precedence. if (TmplAttr->getKind() == attr::DLLExport || TmplAttr->getKind() == attr::DLLImport) { if (New->hasAttr
() || New->hasAttr
()) { continue; } } if (auto ABIAttr = dyn_cast
(TmplAttr)) { AddParameterABIAttr(ABIAttr->getRange(), New, ABIAttr->getABI(), ABIAttr->getSpellingListIndex()); continue; } if (isa
(TmplAttr) || isa
(TmplAttr)) { AddNSConsumedAttr(TmplAttr->getRange(), New, TmplAttr->getSpellingListIndex(), isa
(TmplAttr), /*template instantiation*/ true); continue; } assert(!TmplAttr->isPackExpansion()); if (TmplAttr->isLateParsed() && LateAttrs) { // Late parsed attributes must be instantiated and attached after the // enclosing class has been instantiated. See Sema::InstantiateClass. LocalInstantiationScope *Saved = nullptr; if (CurrentInstantiationScope) Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope); LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New)); } else { // Allow 'this' within late-parsed attributes. NamedDecl *ND = dyn_cast
(New); CXXRecordDecl *ThisContext = dyn_cast_or_null
(ND->getDeclContext()); CXXThisScopeRAII ThisScope(*this, ThisContext, /*TypeQuals*/0, ND && ND->isCXXInstanceMember()); Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context, *this, TemplateArgs); if (NewAttr) New->addAttr(NewAttr); } } } /// Get the previous declaration of a declaration for the purposes of template /// instantiation. If this finds a previous declaration, then the previous /// declaration of the instantiation of D should be an instantiation of the /// result of this function. template
static DeclT *getPreviousDeclForInstantiation(DeclT *D) { DeclT *Result = D->getPreviousDecl(); // If the declaration is within a class, and the previous declaration was // merged from a different definition of that class, then we don't have a // previous declaration for the purpose of template instantiation. if (Result && isa
(D->getDeclContext()) && D->getLexicalDeclContext() != Result->getLexicalDeclContext()) return nullptr; return Result; } Decl * TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { llvm_unreachable("Translation units cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) { llvm_unreachable("pragma comment cannot be instantiated"); } Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl( PragmaDetectMismatchDecl *D) { llvm_unreachable("pragma comment cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) { llvm_unreachable("extern \"C\" context cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) { LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getIdentifier()); Owner->addDecl(Inst); return Inst; } Decl * TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { llvm_unreachable("Namespaces cannot be instantiated"); } Decl * TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) { NamespaceAliasDecl *Inst = NamespaceAliasDecl::Create(SemaRef.Context, Owner, D->getNamespaceLoc(), D->getAliasLoc(), D->getIdentifier(), D->getQualifierLoc(), D->getTargetNameLoc(), D->getNamespace()); Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D, bool IsTypeAlias) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isInstantiationDependentType() || DI->getType()->isVariablyModifiedType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { Invalid = true; DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy); } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } // HACK: g++ has a bug where it gets the value kind of ?: wrong. // libstdc++ relies upon this bug in its implementation of common_type. // If we happen to be processing that implementation, fake up the g++ ?: // semantics. See LWG issue 2141 for more information on the bug. const DecltypeType *DT = DI->getType()->getAs
(); CXXRecordDecl *RD = dyn_cast
(D->getDeclContext()); if (DT && RD && isa
(DT->getUnderlyingExpr()) && DT->isReferenceType() && RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() && RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") && D->getIdentifier() && D->getIdentifier()->isStr("type") && SemaRef.getSourceManager().isInSystemHeader(D->getLocStart())) // Fold it to the (non-reference) type which g++ would have produced. DI = SemaRef.Context.getTrivialTypeSourceInfo( DI->getType().getNonReferenceType()); // Create the new typedef TypedefNameDecl *Typedef; if (IsTypeAlias) Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), DI); else Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), DI); if (Invalid) Typedef->setInvalidDecl(); // If the old typedef was the name for linkage purposes of an anonymous // tag decl, re-establish that relationship for the new typedef. if (const TagType *oldTagType = D->getUnderlyingType()->getAs
()) { TagDecl *oldTag = oldTagType->getDecl(); if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) { TagDecl *newTag = DI->getType()->castAs
()->getDecl(); assert(!newTag->hasNameForLinkage()); newTag->setTypedefNameForAnonDecl(Typedef); } } if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) { NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev, TemplateArgs); if (!InstPrev) return nullptr; TypedefNameDecl *InstPrevTypedef = cast
(InstPrev); // If the typedef types are not identical, reject them. SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef); Typedef->setPreviousDecl(InstPrevTypedef); } SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef); Typedef->setAccess(D->getAccess()); return Typedef; } Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false); if (Typedef) Owner->addDecl(Typedef); return Typedef; } Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) { Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true); if (Typedef) Owner->addDecl(Typedef); return Typedef; } Decl * TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) { // Create a local instantiation scope for this type alias template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; TypeAliasDecl *Pattern = D->getTemplatedDecl(); TypeAliasTemplateDecl *PrevAliasTemplate = nullptr; if (getPreviousDeclForInstantiation
(Pattern)) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (!Found.empty()) { PrevAliasTemplate = dyn_cast
(Found.front()); } } TypeAliasDecl *AliasInst = cast_or_null
( InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true)); if (!AliasInst) return nullptr; TypeAliasTemplateDecl *Inst = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), InstParams, AliasInst); AliasInst->setDescribedAliasTemplate(Inst); if (PrevAliasTemplate) Inst->setPreviousDecl(PrevAliasTemplate); Inst->setAccess(D->getAccess()); if (!PrevAliasTemplate) Inst->setInstantiatedFromMemberTemplate(D); Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false); } Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D, bool InstantiatingVarTemplate) { // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName()); if (!DI) return nullptr; if (DI->getType()->isFunctionType()) { SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) << D->isStaticDataMember() << DI->getType(); return nullptr; } DeclContext *DC = Owner; if (D->isLocalExternDecl()) SemaRef.adjustContextForLocalExternDecl(DC); // Build the instantiated declaration. VarDecl *Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), D->getLocation(), D->getIdentifier(), DI->getType(), DI, D->getStorageClass()); // In ARC, infer 'retaining' for variables of retainable type. if (SemaRef.getLangOpts().ObjCAutoRefCount && SemaRef.inferObjCARCLifetime(Var)) Var->setInvalidDecl(); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Var)) return nullptr; SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, StartingScope, InstantiatingVarTemplate); if (D->isNRVOVariable()) { QualType ReturnType = cast
(DC)->getReturnType(); if (SemaRef.isCopyElisionCandidate(ReturnType, Var, false)) Var->setNRVOVariable(true); } Var->setImplicit(D->isImplicit()); return Var; } Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) { AccessSpecDecl* AD = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner, D->getAccessSpecifierLoc(), D->getColonLoc()); Owner->addHiddenDecl(AD); return AD; } Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isInstantiationDependentType() || DI->getType()->isVariablyModifiedType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { DI = D->getTypeSourceInfo(); Invalid = true; } else if (DI->getType()->isFunctionType()) { // C++ [temp.arg.type]p3: // If a declaration acquires a function type through a type // dependent on a template-parameter and this causes a // declaration that does not use the syntactic form of a // function declarator to have function type, the program is // ill-formed. SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) << DI->getType(); Invalid = true; } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } Expr *BitWidth = D->getBitWidth(); if (Invalid) BitWidth = nullptr; else if (BitWidth) { // The bit-width expression is a constant expression. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); ExprResult InstantiatedBitWidth = SemaRef.SubstExpr(BitWidth, TemplateArgs); if (InstantiatedBitWidth.isInvalid()) { Invalid = true; BitWidth = nullptr; } else BitWidth = InstantiatedBitWidth.getAs
(); } FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), DI->getType(), DI, cast
(Owner), D->getLocation(), D->isMutable(), BitWidth, D->getInClassInitStyle(), D->getInnerLocStart(), D->getAccess(), nullptr); if (!Field) { cast
(Owner)->setInvalidDecl(); return nullptr; } SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope); if (Field->hasAttrs()) SemaRef.CheckAlignasUnderalignment(Field); if (Invalid) Field->setInvalidDecl(); if (!Field->getDeclName()) { // Keep track of where this decl came from. SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D); } if (CXXRecordDecl *Parent= dyn_cast
(Field->getDeclContext())) { if (Parent->isAnonymousStructOrUnion() && Parent->getRedeclContext()->isFunctionOrMethod()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field); } Field->setImplicit(D->isImplicit()); Field->setAccess(D->getAccess()); Owner->addDecl(Field); return Field; } Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) { bool Invalid = false; TypeSourceInfo *DI = D->getTypeSourceInfo(); if (DI->getType()->isVariablyModifiedType()) { SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified) << D; Invalid = true; } else if (DI->getType()->isInstantiationDependentType()) { DI = SemaRef.SubstType(DI, TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) { DI = D->getTypeSourceInfo(); Invalid = true; } else if (DI->getType()->isFunctionType()) { // C++ [temp.arg.type]p3: // If a declaration acquires a function type through a type // dependent on a template-parameter and this causes a // declaration that does not use the syntactic form of a // function declarator to have function type, the program is // ill-formed. SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) << DI->getType(); Invalid = true; } } else { SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType()); } MSPropertyDecl *Property = MSPropertyDecl::Create( SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(), DI, D->getLocStart(), D->getGetterId(), D->getSetterId()); SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs, StartingScope); if (Invalid) Property->setInvalidDecl(); Property->setAccess(D->getAccess()); Owner->addDecl(Property); return Property; } Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) { NamedDecl **NamedChain = new (SemaRef.Context)NamedDecl*[D->getChainingSize()]; int i = 0; for (auto *PI : D->chain()) { NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI, TemplateArgs); if (!Next) return nullptr; NamedChain[i++] = Next; } QualType T = cast
(NamedChain[i-1])->getType(); IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T, {NamedChain, D->getChainingSize()}); for (const auto *Attr : D->attrs()) IndirectField->addAttr(Attr->clone(SemaRef.Context)); IndirectField->setImplicit(D->isImplicit()); IndirectField->setAccess(D->getAccess()); Owner->addDecl(IndirectField); return IndirectField; } Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) { // Handle friend type expressions by simply substituting template // parameters into the pattern type and checking the result. if (TypeSourceInfo *Ty = D->getFriendType()) { TypeSourceInfo *InstTy; // If this is an unsupported friend, don't bother substituting template // arguments into it. The actual type referred to won't be used by any // parts of Clang, and may not be valid for instantiating. Just use the // same info for the instantiated friend. if (D->isUnsupportedFriend()) { InstTy = Ty; } else { InstTy = SemaRef.SubstType(Ty, TemplateArgs, D->getLocation(), DeclarationName()); } if (!InstTy) return nullptr; FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getLocStart(), D->getFriendLoc(), InstTy); if (!FD) return nullptr; FD->setAccess(AS_public); FD->setUnsupportedFriend(D->isUnsupportedFriend()); Owner->addDecl(FD); return FD; } NamedDecl *ND = D->getFriendDecl(); assert(ND && "friend decl must be a decl or a type!"); // All of the Visit implementations for the various potential friend // declarations have to be carefully written to work for friend // objects, with the most important detail being that the target // decl should almost certainly not be placed in Owner. Decl *NewND = Visit(ND); if (!NewND) return nullptr; FriendDecl *FD = FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(), cast
(NewND), D->getFriendLoc()); FD->setAccess(AS_public); FD->setUnsupportedFriend(D->isUnsupportedFriend()); Owner->addDecl(FD); return FD; } Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { Expr *AssertExpr = D->getAssertExpr(); // The expression in a static assertion is a constant expression. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); ExprResult InstantiatedAssertExpr = SemaRef.SubstExpr(AssertExpr, TemplateArgs); if (InstantiatedAssertExpr.isInvalid()) return nullptr; return SemaRef.BuildStaticAssertDeclaration(D->getLocation(), InstantiatedAssertExpr.get(), D->getMessage(), D->getRParenLoc(), D->isFailed()); } Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { EnumDecl *PrevDecl = nullptr; if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), PatternPrev, TemplateArgs); if (!Prev) return nullptr; PrevDecl = cast
(Prev); } EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), PrevDecl, D->isScoped(), D->isScopedUsingClassTag(), D->isFixed()); if (D->isFixed()) { if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) { // If we have type source information for the underlying type, it means it // has been explicitly set by the user. Perform substitution on it before // moving on. SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc, DeclarationName()); if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI)) Enum->setIntegerType(SemaRef.Context.IntTy); else Enum->setIntegerTypeSourceInfo(NewTI); } else { assert(!D->getIntegerType()->isDependentType() && "Dependent type without type source info"); Enum->setIntegerType(D->getIntegerType()); } } SemaRef.InstantiateAttrs(TemplateArgs, D, Enum); Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation); Enum->setAccess(D->getAccess()); // Forward the mangling number from the template to the instantiated decl. SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D)); // See if the old tag was defined along with a declarator. // If it did, mark the new tag as being associated with that declarator. if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD); // See if the old tag was defined along with a typedef. // If it did, mark the new tag as being associated with that typedef. if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND); if (SubstQualifier(D, Enum)) return nullptr; Owner->addDecl(Enum); EnumDecl *Def = D->getDefinition(); if (Def && Def != D) { // If this is an out-of-line definition of an enum member template, check // that the underlying types match in the instantiation of both // declarations. if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) { SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); QualType DefnUnderlying = SemaRef.SubstType(TI->getType(), TemplateArgs, UnderlyingLoc, DeclarationName()); SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(), DefnUnderlying, /*EnumUnderlyingIsImplicit=*/false, Enum); } } // C++11 [temp.inst]p1: The implicit instantiation of a class template // specialization causes the implicit instantiation of the declarations, but // not the definitions of scoped member enumerations. // // DR1484 clarifies that enumeration definitions inside of a template // declaration aren't considered entities that can be separately instantiated // from the rest of the entity they are declared inside of. if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) { SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum); InstantiateEnumDefinition(Enum, Def); } return Enum; } void TemplateDeclInstantiator::InstantiateEnumDefinition( EnumDecl *Enum, EnumDecl *Pattern) { Enum->startDefinition(); // Update the location to refer to the definition. Enum->setLocation(Pattern->getLocation()); SmallVector
Enumerators; EnumConstantDecl *LastEnumConst = nullptr; for (auto *EC : Pattern->enumerators()) { // The specified value for the enumerator. ExprResult Value((Expr *)nullptr); if (Expr *UninstValue = EC->getInitExpr()) { // The enumerator's value expression is a constant expression. EnterExpressionEvaluationContext Unevaluated(SemaRef, Sema::ConstantEvaluated); Value = SemaRef.SubstExpr(UninstValue, TemplateArgs); } // Drop the initial value and continue. bool isInvalid = false; if (Value.isInvalid()) { Value = nullptr; isInvalid = true; } EnumConstantDecl *EnumConst = SemaRef.CheckEnumConstant(Enum, LastEnumConst, EC->getLocation(), EC->getIdentifier(), Value.get()); if (isInvalid) { if (EnumConst) EnumConst->setInvalidDecl(); Enum->setInvalidDecl(); } if (EnumConst) { SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst); EnumConst->setAccess(Enum->getAccess()); Enum->addDecl(EnumConst); Enumerators.push_back(EnumConst); LastEnumConst = EnumConst; if (Pattern->getDeclContext()->isFunctionOrMethod() && !Enum->isScoped()) { // If the enumeration is within a function or method, record the enum // constant as a local. SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst); } } } // FIXME: Fixup LBraceLoc SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(), Enum->getRBraceLoc(), Enum, Enumerators, nullptr, nullptr); } Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { llvm_unreachable("EnumConstantDecls can only occur within EnumDecls."); } Decl * TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) { llvm_unreachable("BuiltinTemplateDecls cannot be instantiated."); } Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) { bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None); // Create a local instantiation scope for this class template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; CXXRecordDecl *Pattern = D->getTemplatedDecl(); // Instantiate the qualifier. We have to do this first in case // we're a friend declaration, because if we are then we need to put // the new declaration in the appropriate context. NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return nullptr; } CXXRecordDecl *PrevDecl = nullptr; ClassTemplateDecl *PrevClassTemplate = nullptr; if (!isFriend && getPreviousDeclForInstantiation(Pattern)) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (!Found.empty()) { PrevClassTemplate = dyn_cast
(Found.front()); if (PrevClassTemplate) PrevDecl = PrevClassTemplate->getTemplatedDecl(); } } // If this isn't a friend, then it's a member template, in which // case we just want to build the instantiation in the // specialization. If it is a friend, we want to build it in // the appropriate context. DeclContext *DC = Owner; if (isFriend) { if (QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (!DC) return nullptr; } else { DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(), Pattern->getDeclContext(), TemplateArgs); } // Look for a previous declaration of the template in the owning // context. LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(), Sema::LookupOrdinaryName, Sema::ForRedeclaration); SemaRef.LookupQualifiedName(R, DC); if (R.isSingleResult()) { PrevClassTemplate = R.getAsSingle
(); if (PrevClassTemplate) PrevDecl = PrevClassTemplate->getTemplatedDecl(); } if (!PrevClassTemplate && QualifierLoc) { SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope) << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange(); return nullptr; } bool AdoptedPreviousTemplateParams = false; if (PrevClassTemplate) { bool Complain = true; // HACK: libstdc++ 4.2.1 contains an ill-formed friend class // template for struct std::tr1::__detail::_Map_base, where the // template parameters of the friend declaration don't match the // template parameters of the original declaration. In this one // case, we don't complain about the ill-formed friend // declaration. if (isFriend && Pattern->getIdentifier() && Pattern->getIdentifier()->isStr("_Map_base") && DC->isNamespace() && cast
(DC)->getIdentifier() && cast
(DC)->getIdentifier()->isStr("__detail")) { DeclContext *DCParent = DC->getParent(); if (DCParent->isNamespace() && cast
(DCParent)->getIdentifier() && cast
(DCParent)->getIdentifier()->isStr("tr1")) { if (cast
(DCParent)->isInStdNamespace()) Complain = false; } } TemplateParameterList *PrevParams = PrevClassTemplate->getTemplateParameters(); // Make sure the parameter lists match. if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams, Complain, Sema::TPL_TemplateMatch)) { if (Complain) return nullptr; AdoptedPreviousTemplateParams = true; InstParams = PrevParams; } // Do some additional validation, then merge default arguments // from the existing declarations. if (!AdoptedPreviousTemplateParams && SemaRef.CheckTemplateParameterList(InstParams, PrevParams, Sema::TPC_ClassTemplate)) return nullptr; } } CXXRecordDecl *RecordInst = CXXRecordDecl::Create(SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getLocStart(), Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl, /*DelayTypeCreation=*/true); if (QualifierLoc) RecordInst->setQualifierInfo(QualifierLoc); ClassTemplateDecl *Inst = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, RecordInst, PrevClassTemplate); RecordInst->setDescribedClassTemplate(Inst); if (isFriend) { if (PrevClassTemplate) Inst->setAccess(PrevClassTemplate->getAccess()); else Inst->setAccess(D->getAccess()); Inst->setObjectOfFriendDecl(); // TODO: do we want to track the instantiation progeny of this // friend target decl? } else { Inst->setAccess(D->getAccess()); if (!PrevClassTemplate) Inst->setInstantiatedFromMemberTemplate(D); } // Trigger creation of the type for the instantiation. SemaRef.Context.getInjectedClassNameType(RecordInst, Inst->getInjectedClassNameSpecialization()); // Finish handling of friends. if (isFriend) { DC->makeDeclVisibleInContext(Inst); Inst->setLexicalDeclContext(Owner); RecordInst->setLexicalDeclContext(Owner); return Inst; } if (D->isOutOfLine()) { Inst->setLexicalDeclContext(D->getLexicalDeclContext()); RecordInst->setLexicalDeclContext(D->getLexicalDeclContext()); } Owner->addDecl(Inst); if (!PrevClassTemplate) { // Queue up any out-of-line partial specializations of this member // class template; the client will force their instantiation once // the enclosing class has been instantiated. SmallVector
PartialSpecs; D->getPartialSpecializations(PartialSpecs); for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I])); } return Inst; } Decl * TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl( ClassTemplatePartialSpecializationDecl *D) { ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); // Lookup the already-instantiated declaration in the instantiation // of the class template and return that. DeclContext::lookup_result Found = Owner->lookup(ClassTemplate->getDeclName()); if (Found.empty()) return nullptr; ClassTemplateDecl *InstClassTemplate = dyn_cast
(Found.front()); if (!InstClassTemplate) return nullptr; if (ClassTemplatePartialSpecializationDecl *Result = InstClassTemplate->findPartialSpecInstantiatedFromMember(D)) return Result; return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D); } Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) { assert(D->getTemplatedDecl()->isStaticDataMember() && "Only static data member templates are allowed."); // Create a local instantiation scope for this variable template, which // will contain the instantiations of the template parameters. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; VarDecl *Pattern = D->getTemplatedDecl(); VarTemplateDecl *PrevVarTemplate = nullptr; if (getPreviousDeclForInstantiation(Pattern)) { DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName()); if (!Found.empty()) PrevVarTemplate = dyn_cast
(Found.front()); } VarDecl *VarInst = cast_or_null
(VisitVarDecl(Pattern, /*InstantiatingVarTemplate=*/true)); if (!VarInst) return nullptr; DeclContext *DC = Owner; VarTemplateDecl *Inst = VarTemplateDecl::Create( SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams, VarInst); VarInst->setDescribedVarTemplate(Inst); Inst->setPreviousDecl(PrevVarTemplate); Inst->setAccess(D->getAccess()); if (!PrevVarTemplate) Inst->setInstantiatedFromMemberTemplate(D); if (D->isOutOfLine()) { Inst->setLexicalDeclContext(D->getLexicalDeclContext()); VarInst->setLexicalDeclContext(D->getLexicalDeclContext()); } Owner->addDecl(Inst); if (!PrevVarTemplate) { // Queue up any out-of-line partial specializations of this member // variable template; the client will force their instantiation once // the enclosing class has been instantiated. SmallVector
PartialSpecs; D->getPartialSpecializations(PartialSpecs); for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) if (PartialSpecs[I]->getFirstDecl()->isOutOfLine()) OutOfLineVarPartialSpecs.push_back( std::make_pair(Inst, PartialSpecs[I])); } return Inst; } Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl( VarTemplatePartialSpecializationDecl *D) { assert(D->isStaticDataMember() && "Only static data member templates are allowed."); VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); // Lookup the already-instantiated declaration and return that. DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName()); assert(!Found.empty() && "Instantiation found nothing?"); VarTemplateDecl *InstVarTemplate = dyn_cast
(Found.front()); assert(InstVarTemplate && "Instantiation did not find a variable template?"); if (VarTemplatePartialSpecializationDecl *Result = InstVarTemplate->findPartialSpecInstantiatedFromMember(D)) return Result; return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D); } Decl * TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) { // Create a local instantiation scope for this function template, which // will contain the instantiations of the template parameters and then get // merged with the local instantiation scope for the function template // itself. LocalInstantiationScope Scope(SemaRef); TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; FunctionDecl *Instantiated = nullptr; if (CXXMethodDecl *DMethod = dyn_cast
(D->getTemplatedDecl())) Instantiated = cast_or_null
(VisitCXXMethodDecl(DMethod, InstParams)); else Instantiated = cast_or_null
(VisitFunctionDecl( D->getTemplatedDecl(), InstParams)); if (!Instantiated) return nullptr; // Link the instantiated function template declaration to the function // template from which it was instantiated. FunctionTemplateDecl *InstTemplate = Instantiated->getDescribedFunctionTemplate(); InstTemplate->setAccess(D->getAccess()); assert(InstTemplate && "VisitFunctionDecl/CXXMethodDecl didn't create a template!"); bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None); // Link the instantiation back to the pattern *unless* this is a // non-definition friend declaration. if (!InstTemplate->getInstantiatedFromMemberTemplate() && !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition())) InstTemplate->setInstantiatedFromMemberTemplate(D); // Make declarations visible in the appropriate context. if (!isFriend) { Owner->addDecl(InstTemplate); } else if (InstTemplate->getDeclContext()->isRecord() && !getPreviousDeclForInstantiation(D)) { SemaRef.CheckFriendAccess(InstTemplate); } return InstTemplate; } Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { CXXRecordDecl *PrevDecl = nullptr; if (D->isInjectedClassName()) PrevDecl = cast
(Owner); else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) { NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(), PatternPrev, TemplateArgs); if (!Prev) return nullptr; PrevDecl = cast
(Prev); } CXXRecordDecl *Record = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, D->getLocStart(), D->getLocation(), D->getIdentifier(), PrevDecl); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Record)) return nullptr; Record->setImplicit(D->isImplicit()); // FIXME: Check against AS_none is an ugly hack to work around the issue that // the tag decls introduced by friend class declarations don't have an access // specifier. Remove once this area of the code gets sorted out. if (D->getAccess() != AS_none) Record->setAccess(D->getAccess()); if (!D->isInjectedClassName()) Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); // If the original function was part of a friend declaration, // inherit its namespace state. if (D->getFriendObjectKind()) Record->setObjectOfFriendDecl(); // Make sure that anonymous structs and unions are recorded. if (D->isAnonymousStructOrUnion()) Record->setAnonymousStructOrUnion(true); if (D->isLocalClass()) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record); // Forward the mangling number from the template to the instantiated decl. SemaRef.Context.setManglingNumber(Record, SemaRef.Context.getManglingNumber(D)); // See if the old tag was defined along with a declarator. // If it did, mark the new tag as being associated with that declarator. if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D)) SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD); // See if the old tag was defined along with a typedef. // If it did, mark the new tag as being associated with that typedef. if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D)) SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND); Owner->addDecl(Record); // DR1484 clarifies that the members of a local class are instantiated as part // of the instantiation of their enclosing entity. if (D->isCompleteDefinition() && D->isLocalClass()) { Sema::SavePendingLocalImplicitInstantiationsRAII SavedPendingLocalImplicitInstantiations(SemaRef); SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs, TSK_ImplicitInstantiation, /*Complain=*/true); SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs, TSK_ImplicitInstantiation); // This class may have local implicit instantiations that need to be // performed within this scope. SemaRef.PerformPendingInstantiations(/*LocalOnly=*/true); } SemaRef.DiagnoseUnusedNestedTypedefs(Record); return Record; } /// \brief Adjust the given function type for an instantiation of the /// given declaration, to cope with modifications to the function's type that /// aren't reflected in the type-source information. /// /// \param D The declaration we're instantiating. /// \param TInfo The already-instantiated type. static QualType adjustFunctionTypeForInstantiation(ASTContext &Context, FunctionDecl *D, TypeSourceInfo *TInfo) { const FunctionProtoType *OrigFunc = D->getType()->castAs
(); const FunctionProtoType *NewFunc = TInfo->getType()->castAs
(); if (OrigFunc->getExtInfo() == NewFunc->getExtInfo()) return TInfo->getType(); FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo(); NewEPI.ExtInfo = OrigFunc->getExtInfo(); return Context.getFunctionType(NewFunc->getReturnType(), NewFunc->getParamTypes(), NewEPI); } /// Normal class members are of more specific types and therefore /// don't make it here. This function serves two purposes: /// 1) instantiating function templates /// 2) substituting friend declarations Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D, TemplateParameterList *TemplateParams) { // Check whether there is already a function template specialization for // this declaration. FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); if (FunctionTemplate && !TemplateParams) { ArrayRef
Innermost = TemplateArgs.getInnermost(); void *InsertPos = nullptr; FunctionDecl *SpecFunc = FunctionTemplate->findSpecialization(Innermost, InsertPos); // If we already have a function template specialization, return it. if (SpecFunc) return SpecFunc; } bool isFriend; if (FunctionTemplate) isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); else isFriend = (D->getFriendObjectKind() != Decl::FOK_None); bool MergeWithParentScope = (TemplateParams != nullptr) || Owner->isFunctionOrMethod() || !(isa
(Owner) && cast
(Owner)->isDefinedOutsideFunctionOrMethod()); LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); SmallVector
Params; TypeSourceInfo *TInfo = SubstFunctionType(D, Params); if (!TInfo) return nullptr; QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return nullptr; } // If we're instantiating a local function declaration, put the result // in the enclosing namespace; otherwise we need to find the instantiated // context. DeclContext *DC; if (D->isLocalExternDecl()) { DC = Owner; SemaRef.adjustContextForLocalExternDecl(DC); } else if (isFriend && QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (!DC) return nullptr; } else { DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), TemplateArgs); } FunctionDecl *Function = FunctionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(), D->getNameInfo(), T, TInfo, D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(), D->hasWrittenPrototype(), D->isConstexpr()); Function->setRangeEnd(D->getSourceRange().getEnd()); if (D->isInlined()) Function->setImplicitlyInline(); if (QualifierLoc) Function->setQualifierInfo(QualifierLoc); if (D->isLocalExternDecl()) Function->setLocalExternDecl(); DeclContext *LexicalDC = Owner; if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) { assert(D->getDeclContext()->isFileContext()); LexicalDC = D->getDeclContext(); } Function->setLexicalDeclContext(LexicalDC); // Attach the parameters for (unsigned P = 0; P < Params.size(); ++P) if (Params[P]) Params[P]->setOwningFunction(Function); Function->setParams(Params); SourceLocation InstantiateAtPOI; if (TemplateParams) { // Our resulting instantiation is actually a function template, since we // are substituting only the outer template parameters. For example, given // // template
// struct X { // template
friend void f(T, U); // }; // // X
x; // // We are instantiating the friend function template "f" within X
, // which means substituting int for T, but leaving "f" as a friend function // template. // Build the function template itself. FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC, Function->getLocation(), Function->getDeclName(), TemplateParams, Function); Function->setDescribedFunctionTemplate(FunctionTemplate); FunctionTemplate->setLexicalDeclContext(LexicalDC); if (isFriend && D->isThisDeclarationADefinition()) { // TODO: should we remember this connection regardless of whether // the friend declaration provided a body? FunctionTemplate->setInstantiatedFromMemberTemplate( D->getDescribedFunctionTemplate()); } } else if (FunctionTemplate) { // Record this function template specialization. ArrayRef
Innermost = TemplateArgs.getInnermost(); Function->setFunctionTemplateSpecialization(FunctionTemplate, TemplateArgumentList::CreateCopy(SemaRef.Context, Innermost), /*InsertPos=*/nullptr); } else if (isFriend) { // Note, we need this connection even if the friend doesn't have a body. // Its body may exist but not have been attached yet due to deferred // parsing. // FIXME: It might be cleaner to set this when attaching the body to the // friend function declaration, however that would require finding all the // instantiations and modifying them. Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); } if (InitFunctionInstantiation(Function, D)) Function->setInvalidDecl(); bool isExplicitSpecialization = false; LookupResult Previous( SemaRef, Function->getDeclName(), SourceLocation(), D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage : Sema::LookupOrdinaryName, Sema::ForRedeclaration); if (DependentFunctionTemplateSpecializationInfo *Info = D->getDependentSpecializationInfo()) { assert(isFriend && "non-friend has dependent specialization info?"); // This needs to be set now for future sanity. Function->setObjectOfFriendDecl(); // Instantiate the explicit template arguments. TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(), Info->getRAngleLoc()); if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(), ExplicitArgs, TemplateArgs)) return nullptr; // Map the candidate templates to their instantiations. for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) { Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(), Info->getTemplate(I), TemplateArgs); if (!Temp) return nullptr; Previous.addDecl(cast
(Temp)); } if (SemaRef.CheckFunctionTemplateSpecialization(Function, &ExplicitArgs, Previous)) Function->setInvalidDecl(); isExplicitSpecialization = true; } else if (TemplateParams || !FunctionTemplate) { // Look only into the namespace where the friend would be declared to // find a previous declaration. This is the innermost enclosing namespace, // as described in ActOnFriendFunctionDecl. SemaRef.LookupQualifiedName(Previous, DC); // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (Previous.isSingleTagDecl()) Previous.clear(); } SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous, isExplicitSpecialization); NamedDecl *PrincipalDecl = (TemplateParams ? cast
(FunctionTemplate) : Function); // If the original function was part of a friend declaration, // inherit its namespace state and add it to the owner. if (isFriend) { PrincipalDecl->setObjectOfFriendDecl(); DC->makeDeclVisibleInContext(PrincipalDecl); bool QueuedInstantiation = false; // C++11 [temp.friend]p4 (DR329): // When a function is defined in a friend function declaration in a class // template, the function is instantiated when the function is odr-used. // The same restrictions on multiple declarations and definitions that // apply to non-template function declarations and definitions also apply // to these implicit definitions. if (D->isThisDeclarationADefinition()) { // Check for a function body. const FunctionDecl *Definition = nullptr; if (Function->isDefined(Definition) && Definition->getTemplateSpecializationKind() == TSK_Undeclared) { SemaRef.Diag(Function->getLocation(), diag::err_redefinition) << Function->getDeclName(); SemaRef.Diag(Definition->getLocation(), diag::note_previous_definition); } // Check for redefinitions due to other instantiations of this or // a similar friend function. else for (auto R : Function->redecls()) { if (R == Function) continue; // If some prior declaration of this function has been used, we need // to instantiate its definition. if (!QueuedInstantiation && R->isUsed(false)) { if (MemberSpecializationInfo *MSInfo = Function->getMemberSpecializationInfo()) { if (MSInfo->getPointOfInstantiation().isInvalid()) { SourceLocation Loc = R->getLocation(); // FIXME MSInfo->setPointOfInstantiation(Loc); SemaRef.PendingLocalImplicitInstantiations.push_back( std::make_pair(Function, Loc)); QueuedInstantiation = true; } } } // If some prior declaration of this function was a friend with an // uninstantiated definition, reject it. if (R->getFriendObjectKind()) { if (const FunctionDecl *RPattern = R->getTemplateInstantiationPattern()) { if (RPattern->isDefined(RPattern)) { SemaRef.Diag(Function->getLocation(), diag::err_redefinition) << Function->getDeclName(); SemaRef.Diag(R->getLocation(), diag::note_previous_definition); break; } } } } } } if (Function->isLocalExternDecl() && !Function->getPreviousDecl()) DC->makeDeclVisibleInContext(PrincipalDecl); if (Function->isOverloadedOperator() && !DC->isRecord() && PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) PrincipalDecl->setNonMemberOperator(); assert(!D->isDefaulted() && "only methods should be defaulted"); return Function; } Decl * TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D, TemplateParameterList *TemplateParams, bool IsClassScopeSpecialization) { FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); if (FunctionTemplate && !TemplateParams) { // We are creating a function template specialization from a function // template. Check whether there is already a function template // specialization for this particular set of template arguments. ArrayRef
Innermost = TemplateArgs.getInnermost(); void *InsertPos = nullptr; FunctionDecl *SpecFunc = FunctionTemplate->findSpecialization(Innermost, InsertPos); // If we already have a function template specialization, return it. if (SpecFunc) return SpecFunc; } bool isFriend; if (FunctionTemplate) isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None); else isFriend = (D->getFriendObjectKind() != Decl::FOK_None); bool MergeWithParentScope = (TemplateParams != nullptr) || !(isa
(Owner) && cast
(Owner)->isDefinedOutsideFunctionOrMethod()); LocalInstantiationScope Scope(SemaRef, MergeWithParentScope); // Instantiate enclosing template arguments for friends. SmallVector
TempParamLists; unsigned NumTempParamLists = 0; if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) { TempParamLists.resize(NumTempParamLists); for (unsigned I = 0; I != NumTempParamLists; ++I) { TemplateParameterList *TempParams = D->getTemplateParameterList(I); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; TempParamLists[I] = InstParams; } } SmallVector
Params; TypeSourceInfo *TInfo = SubstFunctionType(D, Params); if (!TInfo) return nullptr; QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo); NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc(); if (QualifierLoc) { QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); if (!QualifierLoc) return nullptr; } DeclContext *DC = Owner; if (isFriend) { if (QualifierLoc) { CXXScopeSpec SS; SS.Adopt(QualifierLoc); DC = SemaRef.computeDeclContext(SS); if (DC && SemaRef.RequireCompleteDeclContext(SS, DC)) return nullptr; } else { DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(), TemplateArgs); } if (!DC) return nullptr; } // Build the instantiated method declaration. CXXRecordDecl *Record = cast
(DC); CXXMethodDecl *Method = nullptr; SourceLocation StartLoc = D->getInnerLocStart(); DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); if (CXXConstructorDecl *Constructor = dyn_cast
(D)) { Method = CXXConstructorDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Constructor->isExplicit(), Constructor->isInlineSpecified(), false, Constructor->isConstexpr()); } else if (CXXDestructorDecl *Destructor = dyn_cast
(D)) { Method = CXXDestructorDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Destructor->isInlineSpecified(), false); } else if (CXXConversionDecl *Conversion = dyn_cast
(D)) { Method = CXXConversionDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, Conversion->isInlineSpecified(), Conversion->isExplicit(), Conversion->isConstexpr(), Conversion->getLocEnd()); } else { StorageClass SC = D->isStatic() ? SC_Static : SC_None; Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo, SC, D->isInlineSpecified(), D->isConstexpr(), D->getLocEnd()); } if (D->isInlined()) Method->setImplicitlyInline(); if (QualifierLoc) Method->setQualifierInfo(QualifierLoc); if (TemplateParams) { // Our resulting instantiation is actually a function template, since we // are substituting only the outer template parameters. For example, given // // template
// struct X { // template
void f(T, U); // }; // // X
x; // // We are instantiating the member template "f" within X
, which means // substituting int for T, but leaving "f" as a member function template. // Build the function template itself. FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record, Method->getLocation(), Method->getDeclName(), TemplateParams, Method); if (isFriend) { FunctionTemplate->setLexicalDeclContext(Owner); FunctionTemplate->setObjectOfFriendDecl(); } else if (D->isOutOfLine()) FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext()); Method->setDescribedFunctionTemplate(FunctionTemplate); } else if (FunctionTemplate) { // Record this function template specialization. ArrayRef
Innermost = TemplateArgs.getInnermost(); Method->setFunctionTemplateSpecialization(FunctionTemplate, TemplateArgumentList::CreateCopy(SemaRef.Context, Innermost), /*InsertPos=*/nullptr); } else if (!isFriend) { // Record that this is an instantiation of a member function. Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation); } // If we are instantiating a member function defined // out-of-line, the instantiation will have the same lexical // context (which will be a namespace scope) as the template. if (isFriend) { if (NumTempParamLists) Method->setTemplateParameterListsInfo( SemaRef.Context, llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists)); Method->setLexicalDeclContext(Owner); Method->setObjectOfFriendDecl(); } else if (D->isOutOfLine()) Method->setLexicalDeclContext(D->getLexicalDeclContext()); // Attach the parameters for (unsigned P = 0; P < Params.size(); ++P) Params[P]->setOwningFunction(Method); Method->setParams(Params); if (InitMethodInstantiation(Method, D)) Method->setInvalidDecl(); LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName, Sema::ForRedeclaration); if (!FunctionTemplate || TemplateParams || isFriend) { SemaRef.LookupQualifiedName(Previous, Record); // In C++, the previous declaration we find might be a tag type // (class or enum). In this case, the new declaration will hide the // tag type. Note that this does does not apply if we're declaring a // typedef (C++ [dcl.typedef]p4). if (Previous.isSingleTagDecl()) Previous.clear(); } if (!IsClassScopeSpecialization) SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous, false); if (D->isPure()) SemaRef.CheckPureMethod(Method, SourceRange()); // Propagate access. For a non-friend declaration, the access is // whatever we're propagating from. For a friend, it should be the // previous declaration we just found. if (isFriend && Method->getPreviousDecl()) Method->setAccess(Method->getPreviousDecl()->getAccess()); else Method->setAccess(D->getAccess()); if (FunctionTemplate) FunctionTemplate->setAccess(Method->getAccess()); SemaRef.CheckOverrideControl(Method); // If a function is defined as defaulted or deleted, mark it as such now. if (D->isExplicitlyDefaulted()) SemaRef.SetDeclDefaulted(Method, Method->getLocation()); if (D->isDeletedAsWritten()) SemaRef.SetDeclDeleted(Method, Method->getLocation()); // If there's a function template, let our caller handle it. if (FunctionTemplate) { // do nothing // Don't hide a (potentially) valid declaration with an invalid one. } else if (Method->isInvalidDecl() && !Previous.empty()) { // do nothing // Otherwise, check access to friends and make them visible. } else if (isFriend) { // We only need to re-check access for methods which we didn't // manage to match during parsing. if (!D->getPreviousDecl()) SemaRef.CheckFriendAccess(Method); Record->makeDeclVisibleInContext(Method); // Otherwise, add the declaration. We don't need to do this for // class-scope specializations because we'll have matched them with // the appropriate template. } else if (!IsClassScopeSpecialization) { Owner->addDecl(Method); } return Method; } Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { return VisitCXXMethodDecl(D); } Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None, /*ExpectParameterPack=*/ false); } Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl( TemplateTypeParmDecl *D) { // TODO: don't always clone when decls are refcounted. assert(D->getTypeForDecl()->isTemplateTypeParmType()); TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(SemaRef.Context, Owner, D->getLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getIndex(), D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack()); Inst->setAccess(AS_public); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { TypeSourceInfo *InstantiatedDefaultArg = SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs, D->getDefaultArgumentLoc(), D->getDeclName()); if (InstantiatedDefaultArg) Inst->setDefaultArgument(InstantiatedDefaultArg); } // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl( NonTypeTemplateParmDecl *D) { // Substitute into the type of the non-type template parameter. TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc(); SmallVector
ExpandedParameterPackTypesAsWritten; SmallVector
ExpandedParameterPackTypes; bool IsExpandedParameterPack = false; TypeSourceInfo *DI; QualType T; bool Invalid = false; if (D->isExpandedParameterPack()) { // The non-type template parameter pack is an already-expanded pack // expansion of types. Substitute into each of the expanded types. ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes()); ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes()); for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) { TypeSourceInfo *NewDI =SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewDI) return nullptr; ExpandedParameterPackTypesAsWritten.push_back(NewDI); QualType NewT =SemaRef.CheckNonTypeTemplateParameterType(NewDI->getType(), D->getLocation()); if (NewT.isNull()) return nullptr; ExpandedParameterPackTypes.push_back(NewT); } IsExpandedParameterPack = true; DI = D->getTypeSourceInfo(); T = DI->getType(); } else if (D->isPackExpansion()) { // The non-type template parameter pack's type is a pack expansion of types. // Determine whether we need to expand this parameter pack into separate // types. PackExpansionTypeLoc Expansion = TL.castAs
(); TypeLoc Pattern = Expansion.getPatternLoc(); SmallVector
Unexpanded; SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional
OrigNumExpansions = Expansion.getTypePtr()->getNumExpansions(); Optional
NumExpansions = OrigNumExpansions; if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(), Pattern.getSourceRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return nullptr; if (Expand) { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewDI) return nullptr; ExpandedParameterPackTypesAsWritten.push_back(NewDI); QualType NewT = SemaRef.CheckNonTypeTemplateParameterType( NewDI->getType(), D->getLocation()); if (NewT.isNull()) return nullptr; ExpandedParameterPackTypes.push_back(NewT); } // Note that we have an expanded parameter pack. The "type" of this // expanded parameter pack is the original expansion type, but callers // will end up using the expanded parameter pack types for type-checking. IsExpandedParameterPack = true; DI = D->getTypeSourceInfo(); T = DI->getType(); } else { // We cannot fully expand the pack expansion now, so substitute into the // pattern and create a new pack expansion type. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs, D->getLocation(), D->getDeclName()); if (!NewPattern) return nullptr; DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(), NumExpansions); if (!DI) return nullptr; T = DI->getType(); } } else { // Simple case: substitution into a parameter that is not a parameter pack. DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getLocation(), D->getDeclName()); if (!DI) return nullptr; // Check that this type is acceptable for a non-type template parameter. T = SemaRef.CheckNonTypeTemplateParameterType(DI->getType(), D->getLocation()); if (T.isNull()) { T = SemaRef.Context.IntTy; Invalid = true; } } NonTypeTemplateParmDecl *Param; if (IsExpandedParameterPack) Param = NonTypeTemplateParmDecl::Create( SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes, ExpandedParameterPackTypesAsWritten); else Param = NonTypeTemplateParmDecl::Create(SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI); Param->setAccess(AS_public); if (Invalid) Param->setInvalidDecl(); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { EnterExpressionEvaluationContext ConstantEvaluated(SemaRef, Sema::ConstantEvaluated); ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs); if (!Value.isInvalid()) Param->setDefaultArgument(Value.get()); } // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); return Param; } static void collectUnexpandedParameterPacks( Sema &S, TemplateParameterList *Params, SmallVectorImpl
&Unexpanded) { for (const auto &P : *Params) { if (P->isTemplateParameterPack()) continue; if (NonTypeTemplateParmDecl *NTTP = dyn_cast
(P)) S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(), Unexpanded); if (TemplateTemplateParmDecl *TTP = dyn_cast
(P)) collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(), Unexpanded); } } Decl * TemplateDeclInstantiator::VisitTemplateTemplateParmDecl( TemplateTemplateParmDecl *D) { // Instantiate the template parameter list of the template template parameter. TemplateParameterList *TempParams = D->getTemplateParameters(); TemplateParameterList *InstParams; SmallVector
ExpandedParams; bool IsExpandedParameterPack = false; if (D->isExpandedParameterPack()) { // The template template parameter pack is an already-expanded pack // expansion of template parameters. Substitute into each of the expanded // parameters. ExpandedParams.reserve(D->getNumExpansionTemplateParameters()); for (unsigned I = 0, N = D->getNumExpansionTemplateParameters(); I != N; ++I) { LocalInstantiationScope Scope(SemaRef); TemplateParameterList *Expansion = SubstTemplateParams(D->getExpansionTemplateParameters(I)); if (!Expansion) return nullptr; ExpandedParams.push_back(Expansion); } IsExpandedParameterPack = true; InstParams = TempParams; } else if (D->isPackExpansion()) { // The template template parameter pack expands to a pack of template // template parameters. Determine whether we need to expand this parameter // pack into separate parameters. SmallVector
Unexpanded; collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(), Unexpanded); // Determine whether the set of unexpanded parameter packs can and should // be expanded. bool Expand = true; bool RetainExpansion = false; Optional
NumExpansions; if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(), TempParams->getSourceRange(), Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpansions)) return nullptr; if (Expand) { for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I); LocalInstantiationScope Scope(SemaRef); TemplateParameterList *Expansion = SubstTemplateParams(TempParams); if (!Expansion) return nullptr; ExpandedParams.push_back(Expansion); } // Note that we have an expanded parameter pack. The "type" of this // expanded parameter pack is the original expansion type, but callers // will end up using the expanded parameter pack types for type-checking. IsExpandedParameterPack = true; InstParams = TempParams; } else { // We cannot fully expand the pack expansion now, so just substitute // into the pattern. Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1); LocalInstantiationScope Scope(SemaRef); InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; } } else { // Perform the actual substitution of template parameters within a new, // local instantiation scope. LocalInstantiationScope Scope(SemaRef); InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; } // Build the template template parameter. TemplateTemplateParmDecl *Param; if (IsExpandedParameterPack) Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams); else Param = TemplateTemplateParmDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getDepth() - TemplateArgs.getNumLevels(), D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams); if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) { NestedNameSpecifierLoc QualifierLoc = D->getDefaultArgument().getTemplateQualifierLoc(); QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs); TemplateName TName = SemaRef.SubstTemplateName( QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(), D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs); if (!TName.isNull()) Param->setDefaultArgument( SemaRef.Context, TemplateArgumentLoc(TemplateArgument(TName), D->getDefaultArgument().getTemplateQualifierLoc(), D->getDefaultArgument().getTemplateNameLoc())); } Param->setAccess(AS_public); // Introduce this template parameter's instantiation into the instantiation // scope. SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); return Param; } Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) { // Using directives are never dependent (and never contain any types or // expressions), so they require no explicit instantiation work. UsingDirectiveDecl *Inst = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(), D->getNamespaceKeyLocation(), D->getQualifierLoc(), D->getIdentLocation(), D->getNominatedNamespace(), D->getCommonAncestor()); // Add the using directive to its declaration context // only if this is not a function or method. if (!Owner->isFunctionOrMethod()) Owner->addDecl(Inst); return Inst; } Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) { // The nested name specifier may be dependent, for example // template
struct t { // struct s1 { T f1(); }; // struct s2 : s1 { using s1::f1; }; // }; // template struct t
; // Here, in using s1::f1, s1 refers to t
::s1; // we need to substitute for t
::s1. NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return nullptr; // For an inheriting constructor declaration, the name of the using // declaration is the name of a constructor in this class, not in the // base class. DeclarationNameInfo NameInfo = D->getNameInfo(); if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) if (auto *RD = dyn_cast
(SemaRef.CurContext)) NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName( SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD)))); // We only need to do redeclaration lookups if we're in a class // scope (in fact, it's not really even possible in non-class // scopes). bool CheckRedeclaration = Owner->isRecord(); LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName, Sema::ForRedeclaration); UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner, D->getUsingLoc(), QualifierLoc, NameInfo, D->hasTypename()); CXXScopeSpec SS; SS.Adopt(QualifierLoc); if (CheckRedeclaration) { Prev.setHideTags(false); SemaRef.LookupQualifiedName(Prev, Owner); // Check for invalid redeclarations. if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(), D->hasTypename(), SS, D->getLocation(), Prev)) NewUD->setInvalidDecl(); } if (!NewUD->isInvalidDecl() && SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), SS, NameInfo, D->getLocation())) NewUD->setInvalidDecl(); SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D); NewUD->setAccess(D->getAccess()); Owner->addDecl(NewUD); // Don't process the shadow decls for an invalid decl. if (NewUD->isInvalidDecl()) return NewUD; if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) SemaRef.CheckInheritingConstructorUsingDecl(NewUD); bool isFunctionScope = Owner->isFunctionOrMethod(); // Process the shadow decls. for (auto *Shadow : D->shadows()) { // FIXME: UsingShadowDecl doesn't preserve its immediate target, so // reconstruct it in the case where it matters. NamedDecl *OldTarget = Shadow->getTargetDecl(); if (auto *CUSD = dyn_cast
(Shadow)) if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl()) OldTarget = BaseShadow; NamedDecl *InstTarget = cast_or_null
(SemaRef.FindInstantiatedDecl( Shadow->getLocation(), OldTarget, TemplateArgs)); if (!InstTarget) return nullptr; UsingShadowDecl *PrevDecl = nullptr; if (CheckRedeclaration) { if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl)) continue; } else if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(Shadow)) { PrevDecl = cast_or_null
(SemaRef.FindInstantiatedDecl( Shadow->getLocation(), OldPrev, TemplateArgs)); } UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget, PrevDecl); SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow); if (isFunctionScope) SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow); } return NewUD; } Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) { // Ignore these; we handle them in bulk when processing the UsingDecl. return nullptr; } Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl( ConstructorUsingShadowDecl *D) { // Ignore these; we handle them in bulk when processing the UsingDecl. return nullptr; } Decl * TemplateDeclInstantiator ::VisitUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *D) { NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return nullptr; CXXScopeSpec SS; SS.Adopt(QualifierLoc); // Since NameInfo refers to a typename, it cannot be a C++ special name. // Hence, no transformation is required for it. DeclarationNameInfo NameInfo(D->getDeclName(), D->getLocation()); NamedDecl *UD = SemaRef.BuildUsingDeclaration(/*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), SS, NameInfo, nullptr, /*instantiation*/ true, /*typename*/ true, D->getTypenameLoc()); if (UD) SemaRef.Context.setInstantiatedFromUsingDecl(cast
(UD), D); return UD; } Decl * TemplateDeclInstantiator ::VisitUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) { NestedNameSpecifierLoc QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(), TemplateArgs); if (!QualifierLoc) return nullptr; CXXScopeSpec SS; SS.Adopt(QualifierLoc); DeclarationNameInfo NameInfo = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs); NamedDecl *UD = SemaRef.BuildUsingDeclaration(/*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(), SS, NameInfo, nullptr, /*instantiation*/ true, /*typename*/ false, SourceLocation()); if (UD) SemaRef.Context.setInstantiatedFromUsingDecl(cast
(UD), D); return UD; } Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl( ClassScopeFunctionSpecializationDecl *Decl) { CXXMethodDecl *OldFD = Decl->getSpecialization(); CXXMethodDecl *NewFD = cast_or_null
(VisitCXXMethodDecl(OldFD, nullptr, true)); if (!NewFD) return nullptr; LookupResult Previous(SemaRef, NewFD->getNameInfo(), Sema::LookupOrdinaryName, Sema::ForRedeclaration); TemplateArgumentListInfo TemplateArgs; TemplateArgumentListInfo *TemplateArgsPtr = nullptr; if (Decl->hasExplicitTemplateArgs()) { TemplateArgs = Decl->templateArgs(); TemplateArgsPtr = &TemplateArgs; } SemaRef.LookupQualifiedName(Previous, SemaRef.CurContext); if (SemaRef.CheckFunctionTemplateSpecialization(NewFD, TemplateArgsPtr, Previous)) { NewFD->setInvalidDecl(); return NewFD; } // Associate the specialization with the pattern. FunctionDecl *Specialization = cast
(Previous.getFoundDecl()); assert(Specialization && "Class scope Specialization is null"); SemaRef.Context.setClassScopeSpecializationPattern(Specialization, OldFD); return NewFD; } Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl( OMPThreadPrivateDecl *D) { SmallVector
Vars; for (auto *I : D->varlists()) { Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get(); assert(isa
(Var) && "threadprivate arg is not a DeclRefExpr"); Vars.push_back(Var); } OMPThreadPrivateDecl *TD = SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars); TD->setAccess(AS_public); Owner->addDecl(TD); return TD; } Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl( OMPDeclareReductionDecl *D) { // Instantiate type and check if it is allowed. QualType SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType( D->getLocation(), ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs, D->getLocation(), DeclarationName()))); if (SubstReductionType.isNull()) return nullptr; bool IsCorrect = !SubstReductionType.isNull(); // Create instantiated copy. std::pair
ReductionTypes[] = { std::make_pair(SubstReductionType, D->getLocation())}; auto *PrevDeclInScope = D->getPrevDeclInScope(); if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) { PrevDeclInScope = cast
( SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope) ->get
()); } auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart( /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(), PrevDeclInScope); auto *NewDRD = cast
(DRD.get().getSingleDecl()); if (isDeclWithinFunction(NewDRD)) SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD); Expr *SubstCombiner = nullptr; Expr *SubstInitializer = nullptr; // Combiners instantiation sequence. if (D->getCombiner()) { SemaRef.ActOnOpenMPDeclareReductionCombinerStart( /*S=*/nullptr, NewDRD); const char *Names[] = {"omp_in", "omp_out"}; for (auto &Name : Names) { DeclarationName DN(&SemaRef.Context.Idents.get(Name)); auto OldLookup = D->lookup(DN); auto Lookup = NewDRD->lookup(DN); if (!OldLookup.empty() && !Lookup.empty()) { assert(Lookup.size() == 1 && OldLookup.size() == 1); SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldLookup.front(), Lookup.front()); } } SubstCombiner = SemaRef.SubstExpr(D->getCombiner(), TemplateArgs).get(); SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner); // Initializers instantiation sequence. if (D->getInitializer()) { SemaRef.ActOnOpenMPDeclareReductionInitializerStart( /*S=*/nullptr, NewDRD); const char *Names[] = {"omp_orig", "omp_priv"}; for (auto &Name : Names) { DeclarationName DN(&SemaRef.Context.Idents.get(Name)); auto OldLookup = D->lookup(DN); auto Lookup = NewDRD->lookup(DN); if (!OldLookup.empty() && !Lookup.empty()) { assert(Lookup.size() == 1 && OldLookup.size() == 1); SemaRef.CurrentInstantiationScope->InstantiatedLocal( OldLookup.front(), Lookup.front()); } } SubstInitializer = SemaRef.SubstExpr(D->getInitializer(), TemplateArgs).get(); SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer); } IsCorrect = IsCorrect && SubstCombiner && (!D->getInitializer() || SubstInitializer); } else IsCorrect = false; (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(/*S=*/nullptr, DRD, IsCorrect); return NewDRD; } Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl( OMPCapturedExprDecl * /*D*/) { llvm_unreachable("Should not be met in templates"); } Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { return VisitFunctionDecl(D, nullptr); } Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { return VisitCXXMethodDecl(D, nullptr); } Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) { llvm_unreachable("There are only CXXRecordDecls in C++"); } Decl * TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl( ClassTemplateSpecializationDecl *D) { // As a MS extension, we permit class-scope explicit specialization // of member class templates. ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate(); assert(ClassTemplate->getDeclContext()->isRecord() && D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && "can only instantiate an explicit specialization " "for a member class template"); // Lookup the already-instantiated declaration in the instantiation // of the class template. FIXME: Diagnose or assert if this fails? DeclContext::lookup_result Found = Owner->lookup(ClassTemplate->getDeclName()); if (Found.empty()) return nullptr; ClassTemplateDecl *InstClassTemplate = dyn_cast
(Found.front()); if (!InstClassTemplate) return nullptr; // Substitute into the template arguments of the class template explicit // specialization. TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc(). castAs
(); TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(), Loc.getRAngleLoc()); SmallVector
ArgLocs; for (unsigned I = 0; I != Loc.getNumArgs(); ++I) ArgLocs.push_back(Loc.getArgLoc(I)); if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(), InstTemplateArgs, TemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this // class template. SmallVector
Converted; if (SemaRef.CheckTemplateArgumentList(InstClassTemplate, D->getLocation(), InstTemplateArgs, false, Converted)) return nullptr; // Figure out where to insert this class template explicit specialization // in the member template's set of class template explicit specializations. void *InsertPos = nullptr; ClassTemplateSpecializationDecl *PrevDecl = InstClassTemplate->findSpecialization(Converted, InsertPos); // Check whether we've already seen a conflicting instantiation of this // declaration (for instance, if there was a prior implicit instantiation). bool Ignored; if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(), D->getSpecializationKind(), PrevDecl, PrevDecl->getSpecializationKind(), PrevDecl->getPointOfInstantiation(), Ignored)) return nullptr; // If PrevDecl was a definition and D is also a definition, diagnose. // This happens in cases like: // // template
// struct Outer { // template
struct Inner; // template<> struct Inner
{}; // template<> struct Inner
{}; // }; // // Outer
outer; // error: the explicit specializations of Inner // // have the same signature. if (PrevDecl && PrevDecl->getDefinition() && D->isThisDeclarationADefinition()) { SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl; SemaRef.Diag(PrevDecl->getDefinition()->getLocation(), diag::note_previous_definition); return nullptr; } // Create the class template partial specialization declaration. ClassTemplateSpecializationDecl *InstD = ClassTemplateSpecializationDecl::Create(SemaRef.Context, D->getTagKind(), Owner, D->getLocStart(), D->getLocation(), InstClassTemplate, Converted, PrevDecl); // Add this partial specialization to the set of class template partial // specializations. if (!PrevDecl) InstClassTemplate->AddSpecialization(InstD, InsertPos); // Substitute the nested name specifier, if any. if (SubstQualifier(D, InstD)) return nullptr; // Build the canonical type that describes the converted template // arguments of the class template explicit specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType( TemplateName(InstClassTemplate), Converted, SemaRef.Context.getRecordType(InstD)); // Build the fully-sugared type for this class template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs, CanonType); InstD->setAccess(D->getAccess()); InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation); InstD->setSpecializationKind(D->getSpecializationKind()); InstD->setTypeAsWritten(WrittenTy); InstD->setExternLoc(D->getExternLoc()); InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc()); Owner->addDecl(InstD); // Instantiate the members of the class-scope explicit specialization eagerly. // We don't have support for lazy instantiation of an explicit specialization // yet, and MSVC eagerly instantiates in this case. if (D->isThisDeclarationADefinition() && SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs, TSK_ImplicitInstantiation, /*Complain=*/true)) return nullptr; return InstD; } Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *D) { TemplateArgumentListInfo VarTemplateArgsInfo; VarTemplateDecl *VarTemplate = D->getSpecializedTemplate(); assert(VarTemplate && "A template specialization without specialized template?"); // Substitute the current template arguments. const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo(); VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc()); VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc()); if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(), TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this template. SmallVector
Converted; if (SemaRef.CheckTemplateArgumentList( VarTemplate, VarTemplate->getLocStart(), const_cast
(VarTemplateArgsInfo), false, Converted)) return nullptr; // Find the variable template specialization declaration that // corresponds to these arguments. void *InsertPos = nullptr; if (VarTemplateSpecializationDecl *VarSpec = VarTemplate->findSpecialization( Converted, InsertPos)) // If we already have a variable template specialization, return it. return VarSpec; return VisitVarTemplateSpecializationDecl(VarTemplate, D, InsertPos, VarTemplateArgsInfo, Converted); } Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl( VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos, const TemplateArgumentListInfo &TemplateArgsInfo, ArrayRef
Converted) { // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName()); if (!DI) return nullptr; if (DI->getType()->isFunctionType()) { SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function) << D->isStaticDataMember() << DI->getType(); return nullptr; } // Build the instantiated declaration VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create( SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(), VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted); Var->setTemplateArgsInfo(TemplateArgsInfo); if (InsertPos) VarTemplate->AddSpecialization(Var, InsertPos); // Substitute the nested name specifier, if any. if (SubstQualifier(D, Var)) return nullptr; SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner, StartingScope); return Var; } Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) { llvm_unreachable("@defs is not supported in Objective-C++"); } Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) { // FIXME: We need to be able to instantiate FriendTemplateDecls. unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID( DiagnosticsEngine::Error, "cannot instantiate %0 yet"); SemaRef.Diag(D->getLocation(), DiagID) << D->getDeclKindName(); return nullptr; } Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) { llvm_unreachable("Unexpected decl"); } Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner, const MultiLevelTemplateArgumentList &TemplateArgs) { TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); if (D->isInvalidDecl()) return nullptr; return Instantiator.Visit(D); } /// \brief Instantiates a nested template parameter list in the current /// instantiation context. /// /// \param L The parameter list to instantiate /// /// \returns NULL if there was an error TemplateParameterList * TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) { // Get errors for all the parameters before bailing out. bool Invalid = false; unsigned N = L->size(); typedef SmallVector
ParamVector; ParamVector Params; Params.reserve(N); for (auto &P : *L) { NamedDecl *D = cast_or_null
(Visit(P)); Params.push_back(D); Invalid = Invalid || !D || D->isInvalidDecl(); } // Clean up if we had an error. if (Invalid) return nullptr; TemplateParameterList *InstL = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(), L->getLAngleLoc(), Params, L->getRAngleLoc()); return InstL; } /// \brief Instantiate the declaration of a class template partial /// specialization. /// /// \param ClassTemplate the (instantiated) class template that is partially // specialized by the instantiation of \p PartialSpec. /// /// \param PartialSpec the (uninstantiated) class template partial /// specialization that we are instantiating. /// /// \returns The instantiated partial specialization, if successful; otherwise, /// NULL to indicate an error. ClassTemplatePartialSpecializationDecl * TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization( ClassTemplateDecl *ClassTemplate, ClassTemplatePartialSpecializationDecl *PartialSpec) { // Create a local instantiation scope for this class template partial // specialization, which will contain the instantiations of the template // parameters. LocalInstantiationScope Scope(SemaRef); // Substitute into the template parameters of the class template partial // specialization. TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; // Substitute into the template arguments of the class template partial // specialization. const ASTTemplateArgumentListInfo *TemplArgInfo = PartialSpec->getTemplateArgsAsWritten(); TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, TemplArgInfo->RAngleLoc); if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), TemplArgInfo->NumTemplateArgs, InstTemplateArgs, TemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this // class template. SmallVector
Converted; if (SemaRef.CheckTemplateArgumentList(ClassTemplate, PartialSpec->getLocation(), InstTemplateArgs, false, Converted)) return nullptr; // Figure out where to insert this class template partial specialization // in the member template's set of class template partial specializations. void *InsertPos = nullptr; ClassTemplateSpecializationDecl *PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos); // Build the canonical type that describes the converted template // arguments of the class template partial specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate), Converted); // Build the fully-sugared type for this class template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(ClassTemplate), PartialSpec->getLocation(), InstTemplateArgs, CanonType); if (PrevDecl) { // We've already seen a partial specialization with the same template // parameters and template arguments. This can happen, for example, when // substituting the outer template arguments ends up causing two // class template partial specializations of a member class template // to have identical forms, e.g., // // template
// struct Outer { // template
struct Inner; // template
struct Inner
; // template
struct Inner
; // }; // // Outer
outer; // error: the partial specializations of Inner // // have the same signature. SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared) << WrittenTy->getType(); SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here) << SemaRef.Context.getTypeDeclType(PrevDecl); return nullptr; } // Create the class template partial specialization declaration. ClassTemplatePartialSpecializationDecl *InstPartialSpec = ClassTemplatePartialSpecializationDecl::Create(SemaRef.Context, PartialSpec->getTagKind(), Owner, PartialSpec->getLocStart(), PartialSpec->getLocation(), InstParams, ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr); // Substitute the nested name specifier, if any. if (SubstQualifier(PartialSpec, InstPartialSpec)) return nullptr; InstPartialSpec->setInstantiatedFromMember(PartialSpec); InstPartialSpec->setTypeAsWritten(WrittenTy); // Add this partial specialization to the set of class template partial // specializations. ClassTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); return InstPartialSpec; } /// \brief Instantiate the declaration of a variable template partial /// specialization. /// /// \param VarTemplate the (instantiated) variable template that is partially /// specialized by the instantiation of \p PartialSpec. /// /// \param PartialSpec the (uninstantiated) variable template partial /// specialization that we are instantiating. /// /// \returns The instantiated partial specialization, if successful; otherwise, /// NULL to indicate an error. VarTemplatePartialSpecializationDecl * TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization( VarTemplateDecl *VarTemplate, VarTemplatePartialSpecializationDecl *PartialSpec) { // Create a local instantiation scope for this variable template partial // specialization, which will contain the instantiations of the template // parameters. LocalInstantiationScope Scope(SemaRef); // Substitute into the template parameters of the variable template partial // specialization. TemplateParameterList *TempParams = PartialSpec->getTemplateParameters(); TemplateParameterList *InstParams = SubstTemplateParams(TempParams); if (!InstParams) return nullptr; // Substitute into the template arguments of the variable template partial // specialization. const ASTTemplateArgumentListInfo *TemplArgInfo = PartialSpec->getTemplateArgsAsWritten(); TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc, TemplArgInfo->RAngleLoc); if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(), TemplArgInfo->NumTemplateArgs, InstTemplateArgs, TemplateArgs)) return nullptr; // Check that the template argument list is well-formed for this // class template. SmallVector
Converted; if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(), InstTemplateArgs, false, Converted)) return nullptr; // Figure out where to insert this variable template partial specialization // in the member template's set of variable template partial specializations. void *InsertPos = nullptr; VarTemplateSpecializationDecl *PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos); // Build the canonical type that describes the converted template // arguments of the variable template partial specialization. QualType CanonType = SemaRef.Context.getTemplateSpecializationType( TemplateName(VarTemplate), Converted); // Build the fully-sugared type for this variable template // specialization as the user wrote in the specialization // itself. This means that we'll pretty-print the type retrieved // from the specialization's declaration the way that the user // actually wrote the specialization, rather than formatting the // name based on the "canonical" representation used to store the // template arguments in the specialization. TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo( TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs, CanonType); if (PrevDecl) { // We've already seen a partial specialization with the same template // parameters and template arguments. This can happen, for example, when // substituting the outer template arguments ends up causing two // variable template partial specializations of a member variable template // to have identical forms, e.g., // // template
// struct Outer { // template
pair
p; // template
pair
p; // template
pair
p; // }; // // Outer
outer; // error: the partial specializations of Inner // // have the same signature. SemaRef.Diag(PartialSpec->getLocation(), diag::err_var_partial_spec_redeclared) << WrittenTy->getType(); SemaRef.Diag(PrevDecl->getLocation(), diag::note_var_prev_partial_spec_here); return nullptr; } // Do substitution on the type of the declaration TypeSourceInfo *DI = SemaRef.SubstType( PartialSpec->getTypeSourceInfo(), TemplateArgs, PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName()); if (!DI) return nullptr; if (DI->getType()->isFunctionType()) { SemaRef.Diag(PartialSpec->getLocation(), diag::err_variable_instantiates_to_function) << PartialSpec->isStaticDataMember() << DI->getType(); return nullptr; } // Create the variable template partial specialization declaration. VarTemplatePartialSpecializationDecl *InstPartialSpec = VarTemplatePartialSpecializationDecl::Create( SemaRef.Context, Owner, PartialSpec->getInnerLocStart(), PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(), DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs); // Substitute the nested name specifier, if any. if (SubstQualifier(PartialSpec, InstPartialSpec)) return nullptr; InstPartialSpec->setInstantiatedFromMember(PartialSpec); InstPartialSpec->setTypeAsWritten(WrittenTy); // Add this partial specialization to the set of variable template partial // specializations. The instantiation of the initializer is not necessary. VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr); SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs, LateAttrs, Owner, StartingScope); return InstPartialSpec; } TypeSourceInfo* TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D, SmallVectorImpl
&Params) { TypeSourceInfo *OldTInfo = D->getTypeSourceInfo(); assert(OldTInfo && "substituting function without type source info"); assert(Params.empty() && "parameter vector is non-empty at start"); CXXRecordDecl *ThisContext = nullptr; unsigned ThisTypeQuals = 0; if (CXXMethodDecl *Method = dyn_cast
(D)) { ThisContext = cast
(Owner); ThisTypeQuals = Method->getTypeQualifiers(); } TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs, D->getTypeSpecStartLoc(), D->getDeclName(), ThisContext, ThisTypeQuals); if (!NewTInfo) return nullptr; TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens(); if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs
()) { if (NewTInfo != OldTInfo) { // Get parameters from the new type info. TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens(); FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs
(); unsigned NewIdx = 0; for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams(); OldIdx != NumOldParams; ++OldIdx) { ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx); LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope; Optional
NumArgumentsInExpansion; if (OldParam->isParameterPack()) NumArgumentsInExpansion = SemaRef.getNumArgumentsInExpansion(OldParam->getType(), TemplateArgs); if (!NumArgumentsInExpansion) { // Simple case: normal parameter, or a parameter pack that's // instantiated to a (still-dependent) parameter pack. ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); Params.push_back(NewParam); Scope->InstantiatedLocal(OldParam, NewParam); } else { // Parameter pack expansion: make the instantiation an argument pack. Scope->MakeInstantiatedLocalArgPack(OldParam); for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) { ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++); Params.push_back(NewParam); Scope->InstantiatedLocalPackArg(OldParam, NewParam); } } } } else { // The function type itself was not dependent and therefore no // substitution occurred. However, we still need to instantiate // the function parameters themselves. const FunctionProtoType *OldProto = cast
(OldProtoLoc.getType()); for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end; ++i) { ParmVarDecl *OldParam = OldProtoLoc.getParam(i); if (!OldParam) { Params.push_back(SemaRef.BuildParmVarDeclForTypedef( D, D->getLocation(), OldProto->getParamType(i))); continue; } ParmVarDecl *Parm = cast_or_null
(VisitParmVarDecl(OldParam)); if (!Parm) return nullptr; Params.push_back(Parm); } } } else { // If the type of this function, after ignoring parentheses, is not // *directly* a function type, then we're instantiating a function that // was declared via a typedef or with attributes, e.g., // // typedef int functype(int, int); // functype func; // int __cdecl meth(int, int); // // In this case, we'll just go instantiate the ParmVarDecls that we // synthesized in the method declaration. SmallVector
ParamTypes; Sema::ExtParameterInfoBuilder ExtParamInfos; if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr, TemplateArgs, ParamTypes, &Params, ExtParamInfos)) return nullptr; } return NewTInfo; } /// Introduce the instantiated function parameters into the local /// instantiation scope, and set the parameter names to those used /// in the template. static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function, const FunctionDecl *PatternDecl, LocalInstantiationScope &Scope, const MultiLevelTemplateArgumentList &TemplateArgs) { unsigned FParamIdx = 0; for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) { const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I); if (!PatternParam->isParameterPack()) { // Simple case: not a parameter pack. assert(FParamIdx < Function->getNumParams()); ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); FunctionParam->setDeclName(PatternParam->getDeclName()); // If the parameter's type is not dependent, update it to match the type // in the pattern. They can differ in top-level cv-qualifiers, and we want // the pattern's type here. If the type is dependent, they can't differ, // per core issue 1668. Substitute into the type from the pattern, in case // it's instantiation-dependent. // FIXME: Updating the type to work around this is at best fragile. if (!PatternDecl->getType()->isDependentType()) { QualType T = S.SubstType(PatternParam->getType(), TemplateArgs, FunctionParam->getLocation(), FunctionParam->getDeclName()); if (T.isNull()) return true; FunctionParam->setType(T); } Scope.InstantiatedLocal(PatternParam, FunctionParam); ++FParamIdx; continue; } // Expand the parameter pack. Scope.MakeInstantiatedLocalArgPack(PatternParam); Optional
NumArgumentsInExpansion = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs); assert(NumArgumentsInExpansion && "should only be called when all template arguments are known"); QualType PatternType = PatternParam->getType()->castAs
()->getPattern(); for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) { ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx); FunctionParam->setDeclName(PatternParam->getDeclName()); if (!PatternDecl->getType()->isDependentType()) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg); QualType T = S.SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(), FunctionParam->getDeclName()); if (T.isNull()) return true; FunctionParam->setType(T); } Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam); ++FParamIdx; } } return false; } void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation, FunctionDecl *Decl) { const FunctionProtoType *Proto = Decl->getType()->castAs
(); if (Proto->getExceptionSpecType() != EST_Uninstantiated) return; InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl, InstantiatingTemplate::ExceptionSpecification()); if (Inst.isInvalid()) { // We hit the instantiation depth limit. Clear the exception specification // so that our callers don't have to cope with EST_Uninstantiated. UpdateExceptionSpec(Decl, EST_None); return; } // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. Sema::ContextRAII savedContext(*this, Decl); LocalInstantiationScope Scope(*this); MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true); FunctionDecl *Template = Proto->getExceptionSpecTemplate(); if (addInstantiatedParametersToScope(*this, Decl, Template, Scope, TemplateArgs)) { UpdateExceptionSpec(Decl, EST_None); return; } SubstExceptionSpec(Decl, Template->getType()->castAs
(), TemplateArgs); } /// \brief Initializes the common fields of an instantiation function /// declaration (New) from the corresponding fields of its template (Tmpl). /// /// \returns true if there was an error bool TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, FunctionDecl *Tmpl) { if (Tmpl->isDeleted()) New->setDeletedAsWritten(); // Forward the mangling number from the template to the instantiated decl. SemaRef.Context.setManglingNumber(New, SemaRef.Context.getManglingNumber(Tmpl)); // If we are performing substituting explicitly-specified template arguments // or deduced template arguments into a function template and we reach this // point, we are now past the point where SFINAE applies and have committed // to keeping the new function template specialization. We therefore // convert the active template instantiation for the function template // into a template instantiation for this specific function template // specialization, which is not a SFINAE context, so that we diagnose any // further errors in the declaration itself. typedef Sema::ActiveTemplateInstantiation ActiveInstType; ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back(); if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { if (FunctionTemplateDecl *FunTmpl = dyn_cast
(ActiveInst.Entity)) { assert(FunTmpl->getTemplatedDecl() == Tmpl && "Deduction from the wrong function template?"); (void) FunTmpl; ActiveInst.Kind = ActiveInstType::TemplateInstantiation; ActiveInst.Entity = New; } } const FunctionProtoType *Proto = Tmpl->getType()->getAs
(); assert(Proto && "Function template without prototype?"); if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) { FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); // DR1330: In C++11, defer instantiation of a non-trivial // exception specification. // DR1484: Local classes and their members are instantiated along with the // containing function. if (SemaRef.getLangOpts().CPlusPlus11 && EPI.ExceptionSpec.Type != EST_None && EPI.ExceptionSpec.Type != EST_DynamicNone && EPI.ExceptionSpec.Type != EST_BasicNoexcept && !Tmpl->isLexicallyWithinFunctionOrMethod()) { FunctionDecl *ExceptionSpecTemplate = Tmpl; if (EPI.ExceptionSpec.Type == EST_Uninstantiated) ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate; ExceptionSpecificationType NewEST = EST_Uninstantiated; if (EPI.ExceptionSpec.Type == EST_Unevaluated) NewEST = EST_Unevaluated; // Mark the function has having an uninstantiated exception specification. const FunctionProtoType *NewProto = New->getType()->getAs
(); assert(NewProto && "Template instantiation without function prototype?"); EPI = NewProto->getExtProtoInfo(); EPI.ExceptionSpec.Type = NewEST; EPI.ExceptionSpec.SourceDecl = New; EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate; New->setType(SemaRef.Context.getFunctionType( NewProto->getReturnType(), NewProto->getParamTypes(), EPI)); } else { SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs); } } // Get the definition. Leaves the variable unchanged if undefined. const FunctionDecl *Definition = Tmpl; Tmpl->isDefined(Definition); SemaRef.InstantiateAttrs(TemplateArgs, Definition, New, LateAttrs, StartingScope); return false; } /// \brief Initializes common fields of an instantiated method /// declaration (New) from the corresponding fields of its template /// (Tmpl). /// /// \returns true if there was an error bool TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, CXXMethodDecl *Tmpl) { if (InitFunctionInstantiation(New, Tmpl)) return true; New->setAccess(Tmpl->getAccess()); if (Tmpl->isVirtualAsWritten()) New->setVirtualAsWritten(true); // FIXME: New needs a pointer to Tmpl return false; } /// \brief Instantiate the definition of the given function from its /// template. /// /// \param PointOfInstantiation the point at which the instantiation was /// required. Note that this is not precisely a "point of instantiation" /// for the function, but it's close. /// /// \param Function the already-instantiated declaration of a /// function template specialization or member function of a class template /// specialization. /// /// \param Recursive if true, recursively instantiates any functions that /// are required by this instantiation. /// /// \param DefinitionRequired if true, then we are performing an explicit /// instantiation where the body of the function is required. Complain if /// there is no such body. void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, FunctionDecl *Function, bool Recursive, bool DefinitionRequired, bool AtEndOfTU) { if (Function->isInvalidDecl() || Function->isDefined()) return; // Never instantiate an explicit specialization except if it is a class scope // explicit specialization. if (Function->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && !Function->getClassScopeSpecializationPattern()) return; // Find the function body that we'll be substituting. const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern(); assert(PatternDecl && "instantiating a non-template"); Stmt *Pattern = PatternDecl->getBody(PatternDecl); assert(PatternDecl && "template definition is not a template"); if (!Pattern) { // Try to find a defaulted definition PatternDecl->isDefined(PatternDecl); } assert(PatternDecl && "template definition is not a template"); // Postpone late parsed template instantiations. if (PatternDecl->isLateTemplateParsed() && !LateTemplateParser) { PendingInstantiations.push_back( std::make_pair(Function, PointOfInstantiation)); return; } // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate later, // while we're still within our own instantiation context. // This has to happen before LateTemplateParser below is called, so that // it marks vtables used in late parsed templates as used. SavePendingLocalImplicitInstantiationsRAII SavedPendingLocalImplicitInstantiations(*this); SavePendingInstantiationsAndVTableUsesRAII SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive); // Call the LateTemplateParser callback if there is a need to late parse // a templated function definition. if (!Pattern && PatternDecl->isLateTemplateParsed() && LateTemplateParser) { // FIXME: Optimize to allow individual templates to be deserialized. if (PatternDecl->isFromASTFile()) ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap); LateParsedTemplate *LPT = LateParsedTemplateMap.lookup(PatternDecl); assert(LPT && "missing LateParsedTemplate"); LateTemplateParser(OpaqueParser, *LPT); Pattern = PatternDecl->getBody(PatternDecl); } // FIXME: Check that the definition is visible before trying to instantiate // it. This requires us to track the instantiation stack in order to know // which definitions should be visible. if (!Pattern && !PatternDecl->isDefaulted()) { if (DefinitionRequired) { if (Function->getPrimaryTemplate()) Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_func_template) << Function->getPrimaryTemplate(); else Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_member) << 1 << Function->getDeclName() << Function->getDeclContext(); if (PatternDecl) Diag(PatternDecl->getLocation(), diag::note_explicit_instantiation_here); Function->setInvalidDecl(); } else if (Function->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition) { assert(!Recursive); PendingInstantiations.push_back( std::make_pair(Function, PointOfInstantiation)); } else if (Function->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) { if (AtEndOfTU && !getDiagnostics().hasErrorOccurred()) { Diag(PointOfInstantiation, diag::warn_func_template_missing) << Function; Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); if (getLangOpts().CPlusPlus11) Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Function; } } return; } // C++1y [temp.explicit]p10: // Except for inline functions, declarations with types deduced from their // initializer or return value, and class template specializations, other // explicit instantiation declarations have the effect of suppressing the // implicit instantiation of the entity to which they refer. if (Function->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDeclaration && !PatternDecl->isInlined() && !PatternDecl->getReturnType()->getContainedAutoType()) return; if (PatternDecl->isInlined()) { // Function, and all later redeclarations of it (from imported modules, // for instance), are now implicitly inline. for (auto *D = Function->getMostRecentDecl(); /**/; D = D->getPreviousDecl()) { D->setImplicitlyInline(); if (D == Function) break; } } InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); if (Inst.isInvalid()) return; PrettyDeclStackTraceEntry CrashInfo(*this, Function, SourceLocation(), "instantiating function definition"); // Copy the inner loc start from the pattern. Function->setInnerLocStart(PatternDecl->getInnerLocStart()); EnterExpressionEvaluationContext EvalContext(*this, Sema::PotentiallyEvaluated); // Introduce a new scope where local variable instantiations will be // recorded, unless we're actually a member function within a local // class, in which case we need to merge our results with the parent // scope (of the enclosing function). bool MergeWithParentScope = false; if (CXXRecordDecl *Rec = dyn_cast
(Function->getDeclContext())) MergeWithParentScope = Rec->isLocalClass(); LocalInstantiationScope Scope(*this, MergeWithParentScope); if (PatternDecl->isDefaulted()) SetDeclDefaulted(Function, PatternDecl->getLocation()); else { MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl); // Substitute into the qualifier; we can get a substitution failure here // through evil use of alias templates. // FIXME: Is CurContext correct for this? Should we go to the (instantiation // of the) lexical context of the pattern? SubstQualifier(*this, PatternDecl, Function, TemplateArgs); ActOnStartOfFunctionDef(nullptr, Function); // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. Sema::ContextRAII savedContext(*this, Function); if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope, TemplateArgs)) return; // If this is a constructor, instantiate the member initializers. if (const CXXConstructorDecl *Ctor = dyn_cast
(PatternDecl)) { InstantiateMemInitializers(cast
(Function), Ctor, TemplateArgs); } // Instantiate the function body. StmtResult Body = SubstStmt(Pattern, TemplateArgs); if (Body.isInvalid()) Function->setInvalidDecl(); ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true); PerformDependentDiagnostics(PatternDecl, TemplateArgs); if (auto *Listener = getASTMutationListener()) Listener->FunctionDefinitionInstantiated(Function); savedContext.pop(); } DeclGroupRef DG(Function); Consumer.HandleTopLevelDecl(DG); // This class may have local implicit instantiations that need to be // instantiation within this scope. PerformPendingInstantiations(/*LocalOnly=*/true); Scope.Exit(); if (Recursive) { // Define any pending vtables. DefineUsedVTables(); // Instantiate any pending implicit instantiations found during the // instantiation of this template. PerformPendingInstantiations(); // PendingInstantiations and VTableUses are restored through // SavePendingInstantiationsAndVTableUses's destructor. } } VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation( VarTemplateDecl *VarTemplate, VarDecl *FromVar, const TemplateArgumentList &TemplateArgList, const TemplateArgumentListInfo &TemplateArgsInfo, SmallVectorImpl
&Converted, SourceLocation PointOfInstantiation, void *InsertPos, LateInstantiatedAttrVec *LateAttrs, LocalInstantiationScope *StartingScope) { if (FromVar->isInvalidDecl()) return nullptr; InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar); if (Inst.isInvalid()) return nullptr; MultiLevelTemplateArgumentList TemplateArgLists; TemplateArgLists.addOuterTemplateArguments(&TemplateArgList); // Instantiate the first declaration of the variable template: for a partial // specialization of a static data member template, the first declaration may // or may not be the declaration in the class; if it's in the class, we want // to instantiate a member in the class (a declaration), and if it's outside, // we want to instantiate a definition. // // If we're instantiating an explicitly-specialized member template or member // partial specialization, don't do this. The member specialization completely // replaces the original declaration in this case. bool IsMemberSpec = false; if (VarTemplatePartialSpecializationDecl *PartialSpec = dyn_cast
(FromVar)) IsMemberSpec = PartialSpec->isMemberSpecialization(); else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate()) IsMemberSpec = FromTemplate->isMemberSpecialization(); if (!IsMemberSpec) FromVar = FromVar->getFirstDecl(); MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList); TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(), MultiLevelList); // TODO: Set LateAttrs and StartingScope ... return cast_or_null
( Instantiator.VisitVarTemplateSpecializationDecl( VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted)); } /// \brief Instantiates a variable template specialization by completing it /// with appropriate type information and initializer. VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl( VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl, const MultiLevelTemplateArgumentList &TemplateArgs) { // Do substitution on the type of the declaration TypeSourceInfo *DI = SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs, PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName()); if (!DI) return nullptr; // Update the type of this variable template specialization. VarSpec->setType(DI->getType()); // Instantiate the initializer. InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs); return VarSpec; } /// BuildVariableInstantiation - Used after a new variable has been created. /// Sets basic variable data and decides whether to postpone the /// variable instantiation. void Sema::BuildVariableInstantiation( VarDecl *NewVar, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs, LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner, LocalInstantiationScope *StartingScope, bool InstantiatingVarTemplate) { // If we are instantiating a local extern declaration, the // instantiation belongs lexically to the containing function. // If we are instantiating a static data member defined // out-of-line, the instantiation will have the same lexical // context (which will be a namespace scope) as the template. if (OldVar->isLocalExternDecl()) { NewVar->setLocalExternDecl(); NewVar->setLexicalDeclContext(Owner); } else if (OldVar->isOutOfLine()) NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext()); NewVar->setTSCSpec(OldVar->getTSCSpec()); NewVar->setInitStyle(OldVar->getInitStyle()); NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl()); NewVar->setConstexpr(OldVar->isConstexpr()); NewVar->setInitCapture(OldVar->isInitCapture()); NewVar->setPreviousDeclInSameBlockScope( OldVar->isPreviousDeclInSameBlockScope()); NewVar->setAccess(OldVar->getAccess()); if (!OldVar->isStaticDataMember()) { if (OldVar->isUsed(false)) NewVar->setIsUsed(); NewVar->setReferenced(OldVar->isReferenced()); } InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope); LookupResult Previous( *this, NewVar->getDeclName(), NewVar->getLocation(), NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage : Sema::LookupOrdinaryName, Sema::ForRedeclaration); if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() && (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() || OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) { // We have a previous declaration. Use that one, so we merge with the // right type. if (NamedDecl *NewPrev = FindInstantiatedDecl( NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs)) Previous.addDecl(NewPrev); } else if (!isa
(NewVar) && OldVar->hasLinkage()) LookupQualifiedName(Previous, NewVar->getDeclContext(), false); CheckVariableDeclaration(NewVar, Previous); if (!InstantiatingVarTemplate) { NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar); if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl()) NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar); } if (!OldVar->isOutOfLine()) { if (NewVar->getDeclContext()->isFunctionOrMethod()) CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar); } // Link instantiations of static data members back to the template from // which they were instantiated. if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate) NewVar->setInstantiationOfStaticDataMember(OldVar, TSK_ImplicitInstantiation); // Forward the mangling number from the template to the instantiated decl. Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar)); Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar)); // Delay instantiation of the initializer for variable templates or inline // static data members until a definition of the variable is needed. We need // it right away if the type contains 'auto'. if ((!isa
(NewVar) && !InstantiatingVarTemplate && !(OldVar->isInline() && OldVar->isThisDeclarationADefinition())) || NewVar->getType()->isUndeducedType()) InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs); // Diagnose unused local variables with dependent types, where the diagnostic // will have been deferred. if (!NewVar->isInvalidDecl() && NewVar->getDeclContext()->isFunctionOrMethod() && OldVar->getType()->isDependentType()) DiagnoseUnusedDecl(NewVar); } /// \brief Instantiate the initializer of a variable. void Sema::InstantiateVariableInitializer( VarDecl *Var, VarDecl *OldVar, const MultiLevelTemplateArgumentList &TemplateArgs) { // We propagate the 'inline' flag with the initializer, because it // would otherwise imply that the variable is a definition for a // non-static data member. if (OldVar->isInlineSpecified()) Var->setInlineSpecified(); else if (OldVar->isInline()) Var->setImplicitlyInline(); if (Var->getAnyInitializer()) // We already have an initializer in the class. return; if (OldVar->getInit()) { if (Var->isStaticDataMember() && !OldVar->isOutOfLine()) PushExpressionEvaluationContext(Sema::ConstantEvaluated, OldVar); else PushExpressionEvaluationContext(Sema::PotentiallyEvaluated, OldVar); // Instantiate the initializer. ExprResult Init; { ContextRAII SwitchContext(*this, Var->getDeclContext()); Init = SubstInitializer(OldVar->getInit(), TemplateArgs, OldVar->getInitStyle() == VarDecl::CallInit); } if (!Init.isInvalid()) { bool TypeMayContainAuto = true; Expr *InitExpr = Init.get(); if (Var->hasAttr
() && (!InitExpr || !InitExpr->isConstantInitializer(getASTContext(), false))) { // Do not dynamically initialize dllimport variables. } else if (InitExpr) { bool DirectInit = OldVar->isDirectInit(); AddInitializerToDecl(Var, InitExpr, DirectInit, TypeMayContainAuto); } else ActOnUninitializedDecl(Var, TypeMayContainAuto); } else { // FIXME: Not too happy about invalidating the declaration // because of a bogus initializer. Var->setInvalidDecl(); } PopExpressionEvaluationContext(); } else if ((!Var->isStaticDataMember() || Var->isOutOfLine()) && !Var->isCXXForRangeDecl()) ActOnUninitializedDecl(Var, false); } /// \brief Instantiate the definition of the given variable from its /// template. /// /// \param PointOfInstantiation the point at which the instantiation was /// required. Note that this is not precisely a "point of instantiation" /// for the function, but it's close. /// /// \param Var the already-instantiated declaration of a static member /// variable of a class template specialization. /// /// \param Recursive if true, recursively instantiates any functions that /// are required by this instantiation. /// /// \param DefinitionRequired if true, then we are performing an explicit /// instantiation where an out-of-line definition of the member variable /// is required. Complain if there is no such definition. void Sema::InstantiateStaticDataMemberDefinition( SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive, bool DefinitionRequired) { InstantiateVariableDefinition(PointOfInstantiation, Var, Recursive, DefinitionRequired); } void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation, VarDecl *Var, bool Recursive, bool DefinitionRequired, bool AtEndOfTU) { if (Var->isInvalidDecl()) return; VarTemplateSpecializationDecl *VarSpec = dyn_cast
(Var); VarDecl *PatternDecl = nullptr, *Def = nullptr; MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(Var); if (VarSpec) { // If this is a variable template specialization, make sure that it is // non-dependent, then find its instantiation pattern. bool InstantiationDependent = false; assert(!TemplateSpecializationType::anyDependentTemplateArguments( VarSpec->getTemplateArgsInfo(), InstantiationDependent) && "Only instantiate variable template specializations that are " "not type-dependent"); (void)InstantiationDependent; // Find the variable initialization that we'll be substituting. If the // pattern was instantiated from a member template, look back further to // find the real pattern. assert(VarSpec->getSpecializedTemplate() && "Specialization without specialized template?"); llvm::PointerUnion
PatternPtr = VarSpec->getSpecializedTemplateOrPartial(); if (PatternPtr.is
()) { VarTemplatePartialSpecializationDecl *Tmpl = PatternPtr.get
(); while (VarTemplatePartialSpecializationDecl *From = Tmpl->getInstantiatedFromMember()) { if (Tmpl->isMemberSpecialization()) break; Tmpl = From; } PatternDecl = Tmpl; } else { VarTemplateDecl *Tmpl = PatternPtr.get
(); while (VarTemplateDecl *From = Tmpl->getInstantiatedFromMemberTemplate()) { if (Tmpl->isMemberSpecialization()) break; Tmpl = From; } PatternDecl = Tmpl->getTemplatedDecl(); } // If this is a static data member template, there might be an // uninstantiated initializer on the declaration. If so, instantiate // it now. if (PatternDecl->isStaticDataMember() && (PatternDecl = PatternDecl->getFirstDecl())->hasInit() && !Var->hasInit()) { // FIXME: Factor out the duplicated instantiation context setup/tear down // code here. InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); if (Inst.isInvalid()) return; PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(), "instantiating variable initializer"); // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate // later, while we're still within our own instantiation context. SavePendingInstantiationsAndVTableUsesRAII SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive); LocalInstantiationScope Local(*this); // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. ContextRAII PreviousContext(*this, Var->getDeclContext()); InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs); PreviousContext.pop(); // FIXME: Need to inform the ASTConsumer that we instantiated the // initializer? // This variable may have local implicit instantiations that need to be // instantiated within this scope. PerformPendingInstantiations(/*LocalOnly=*/true); Local.Exit(); if (Recursive) { // Define any newly required vtables. DefineUsedVTables(); // Instantiate any pending implicit instantiations found during the // instantiation of this template. PerformPendingInstantiations(); // PendingInstantiations and VTableUses are restored through // SavePendingInstantiationsAndVTableUses's destructor. } } // Find actual definition Def = PatternDecl->getDefinition(getASTContext()); } else { // If this is a static data member, find its out-of-line definition. assert(Var->isStaticDataMember() && "not a static data member?"); PatternDecl = Var->getInstantiatedFromStaticDataMember(); assert(PatternDecl && "data member was not instantiated from a template?"); assert(PatternDecl->isStaticDataMember() && "not a static data member?"); Def = PatternDecl->getDefinition(); } // FIXME: Check that the definition is visible before trying to instantiate // it. This requires us to track the instantiation stack in order to know // which definitions should be visible. // If we don't have a definition of the variable template, we won't perform // any instantiation. Rather, we rely on the user to instantiate this // definition (or provide a specialization for it) in another translation // unit. if (!Def) { if (DefinitionRequired) { if (VarSpec) Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_var_template) << Var; else Diag(PointOfInstantiation, diag::err_explicit_instantiation_undefined_member) << 2 << Var->getDeclName() << Var->getDeclContext(); Diag(PatternDecl->getLocation(), diag::note_explicit_instantiation_here); if (VarSpec) Var->setInvalidDecl(); } else if (Var->getTemplateSpecializationKind() == TSK_ExplicitInstantiationDefinition) { PendingInstantiations.push_back( std::make_pair(Var, PointOfInstantiation)); } else if (Var->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) { // Warn about missing definition at the end of translation unit. if (AtEndOfTU && !getDiagnostics().hasErrorOccurred()) { Diag(PointOfInstantiation, diag::warn_var_template_missing) << Var; Diag(PatternDecl->getLocation(), diag::note_forward_template_decl); if (getLangOpts().CPlusPlus11) Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var; } } return; } TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind(); // Never instantiate an explicit specialization. if (TSK == TSK_ExplicitSpecialization) return; // C++11 [temp.explicit]p10: // Except for inline functions, [...] explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (TSK == TSK_ExplicitInstantiationDeclaration) return; // Make sure to pass the instantiated variable to the consumer at the end. struct PassToConsumerRAII { ASTConsumer &Consumer; VarDecl *Var; PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var) : Consumer(Consumer), Var(Var) { } ~PassToConsumerRAII() { Consumer.HandleCXXStaticMemberVarInstantiation(Var); } } PassToConsumerRAII(Consumer, Var); // If we already have a definition, we're done. if (VarDecl *Def = Var->getDefinition()) { // We may be explicitly instantiating something we've already implicitly // instantiated. Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(), PointOfInstantiation); return; } InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); if (Inst.isInvalid()) return; PrettyDeclStackTraceEntry CrashInfo(*this, Var, SourceLocation(), "instantiating variable definition"); // If we're performing recursive template instantiation, create our own // queue of pending implicit instantiations that we will instantiate later, // while we're still within our own instantiation context. SavePendingLocalImplicitInstantiationsRAII SavedPendingLocalImplicitInstantiations(*this); SavePendingInstantiationsAndVTableUsesRAII SavePendingInstantiationsAndVTableUses(*this, /*Enabled=*/Recursive); // Enter the scope of this instantiation. We don't use // PushDeclContext because we don't have a scope. ContextRAII PreviousContext(*this, Var->getDeclContext()); LocalInstantiationScope Local(*this); VarDecl *OldVar = Var; if (Def->isStaticDataMember() && !Def->isOutOfLine()) { // We're instantiating an inline static data member whose definition was // provided inside the class. // FIXME: Update record? InstantiateVariableInitializer(Var, Def, TemplateArgs); } else if (!VarSpec) { Var = cast_or_null
(SubstDecl(Def, Var->getDeclContext(), TemplateArgs)); } else if (Var->isStaticDataMember() && Var->getLexicalDeclContext()->isRecord()) { // We need to instantiate the definition of a static data member template, // and all we have is the in-class declaration of it. Instantiate a separate // declaration of the definition. TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(), TemplateArgs); Var = cast_or_null
(Instantiator.VisitVarTemplateSpecializationDecl( VarSpec->getSpecializedTemplate(), Def, nullptr, VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray())); if (Var) { llvm::PointerUnion
PatternPtr = VarSpec->getSpecializedTemplateOrPartial(); if (VarTemplatePartialSpecializationDecl *Partial = PatternPtr.dyn_cast
()) cast
(Var)->setInstantiationOf( Partial, &VarSpec->getTemplateInstantiationArgs()); // Merge the definition with the declaration. LookupResult R(*this, Var->getDeclName(), Var->getLocation(), LookupOrdinaryName, ForRedeclaration); R.addDecl(OldVar); MergeVarDecl(Var, R); // Attach the initializer. InstantiateVariableInitializer(Var, Def, TemplateArgs); } } else // Complete the existing variable's definition with an appropriately // substituted type and initializer. Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs); PreviousContext.pop(); if (Var) { PassToConsumerRAII.Var = Var; Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(), OldVar->getPointOfInstantiation()); } // This variable may have local implicit instantiations that need to be // instantiated within this scope. PerformPendingInstantiations(/*LocalOnly=*/true); Local.Exit(); if (Recursive) { // Define any newly required vtables. DefineUsedVTables(); // Instantiate any pending implicit instantiations found during the // instantiation of this template. PerformPendingInstantiations(); // PendingInstantiations and VTableUses are restored through // SavePendingInstantiationsAndVTableUses's destructor. } } void Sema::InstantiateMemInitializers(CXXConstructorDecl *New, const CXXConstructorDecl *Tmpl, const MultiLevelTemplateArgumentList &TemplateArgs) { SmallVector
NewInits; bool AnyErrors = Tmpl->isInvalidDecl(); // Instantiate all the initializers. for (const auto *Init : Tmpl->inits()) { // Only instantiate written initializers, let Sema re-construct implicit // ones. if (!Init->isWritten()) continue; SourceLocation EllipsisLoc; if (Init->isPackExpansion()) { // This is a pack expansion. We should expand it now. TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc(); SmallVector
Unexpanded; collectUnexpandedParameterPacks(BaseTL, Unexpanded); collectUnexpandedParameterPacks(Init->getInit(), Unexpanded); bool ShouldExpand = false; bool RetainExpansion = false; Optional
NumExpansions; if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(), BaseTL.getSourceRange(), Unexpanded, TemplateArgs, ShouldExpand, RetainExpansion, NumExpansions)) { AnyErrors = true; New->setInvalidDecl(); continue; } assert(ShouldExpand && "Partial instantiation of base initializer?"); // Loop over all of the arguments in the argument pack(s), for (unsigned I = 0; I != *NumExpansions; ++I) { Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I); // Instantiate the initializer. ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, /*CXXDirectInit=*/true); if (TempInit.isInvalid()) { AnyErrors = true; break; } // Instantiate the base type. TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(), TemplateArgs, Init->getSourceLocation(), New->getDeclName()); if (!BaseTInfo) { AnyErrors = true; break; } // Build the initializer. MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(), BaseTInfo, TempInit.get(), New->getParent(), SourceLocation()); if (NewInit.isInvalid()) { AnyErrors = true; break; } NewInits.push_back(NewInit.get()); } continue; } // Instantiate the initializer. ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs, /*CXXDirectInit=*/true); if (TempInit.isInvalid()) { AnyErrors = true; continue; } MemInitResult NewInit; if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) { TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(), TemplateArgs, Init->getSourceLocation(), New->getDeclName()); if (!TInfo) { AnyErrors = true; New->setInvalidDecl(); continue; } if (Init->isBaseInitializer()) NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(), New->getParent(), EllipsisLoc); else NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(), cast
(CurContext->getParent())); } else if (Init->isMemberInitializer()) { FieldDecl *Member = cast_or_null
(FindInstantiatedDecl( Init->getMemberLocation(), Init->getMember(), TemplateArgs)); if (!Member) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildMemberInitializer(Member, TempInit.get(), Init->getSourceLocation()); } else if (Init->isIndirectMemberInitializer()) { IndirectFieldDecl *IndirectMember = cast_or_null
(FindInstantiatedDecl( Init->getMemberLocation(), Init->getIndirectMember(), TemplateArgs)); if (!IndirectMember) { AnyErrors = true; New->setInvalidDecl(); continue; } NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(), Init->getSourceLocation()); } if (NewInit.isInvalid()) { AnyErrors = true; New->setInvalidDecl(); } else { NewInits.push_back(NewInit.get()); } } // Assign all the initializers to the new constructor. ActOnMemInitializers(New, /*FIXME: ColonLoc */ SourceLocation(), NewInits, AnyErrors); } // TODO: this could be templated if the various decl types used the // same method name. static bool isInstantiationOf(ClassTemplateDecl *Pattern, ClassTemplateDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberTemplate(); } while (Instance); return false; } static bool isInstantiationOf(FunctionTemplateDecl *Pattern, FunctionTemplateDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberTemplate(); } while (Instance); return false; } static bool isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern, ClassTemplatePartialSpecializationDecl *Instance) { Pattern = cast
(Pattern->getCanonicalDecl()); do { Instance = cast
( Instance->getCanonicalDecl()); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMember(); } while (Instance); return false; } static bool isInstantiationOf(CXXRecordDecl *Pattern, CXXRecordDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberClass(); } while (Instance); return false; } static bool isInstantiationOf(FunctionDecl *Pattern, FunctionDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberFunction(); } while (Instance); return false; } static bool isInstantiationOf(EnumDecl *Pattern, EnumDecl *Instance) { Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromMemberEnum(); } while (Instance); return false; } static bool isInstantiationOf(UsingShadowDecl *Pattern, UsingShadowDecl *Instance, ASTContext &C) { return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance), Pattern); } static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); } static bool isInstantiationOf(UnresolvedUsingValueDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); } static bool isInstantiationOf(UnresolvedUsingTypenameDecl *Pattern, UsingDecl *Instance, ASTContext &C) { return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern); } static bool isInstantiationOfStaticDataMember(VarDecl *Pattern, VarDecl *Instance) { assert(Instance->isStaticDataMember()); Pattern = Pattern->getCanonicalDecl(); do { Instance = Instance->getCanonicalDecl(); if (Pattern == Instance) return true; Instance = Instance->getInstantiatedFromStaticDataMember(); } while (Instance); return false; } // Other is the prospective instantiation // D is the prospective pattern static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { if (D->getKind() != Other->getKind()) { if (UnresolvedUsingTypenameDecl *UUD = dyn_cast
(D)) { if (UsingDecl *UD = dyn_cast
(Other)) { return isInstantiationOf(UUD, UD, Ctx); } } if (UnresolvedUsingValueDecl *UUD = dyn_cast
(D)) { if (UsingDecl *UD = dyn_cast
(Other)) { return isInstantiationOf(UUD, UD, Ctx); } } return false; } if (CXXRecordDecl *Record = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Record); if (FunctionDecl *Function = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Function); if (EnumDecl *Enum = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Enum); if (VarDecl *Var = dyn_cast
(Other)) if (Var->isStaticDataMember()) return isInstantiationOfStaticDataMember(cast
(D), Var); if (ClassTemplateDecl *Temp = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Temp); if (FunctionTemplateDecl *Temp = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Temp); if (ClassTemplatePartialSpecializationDecl *PartialSpec = dyn_cast
(Other)) return isInstantiationOf(cast
(D), PartialSpec); if (FieldDecl *Field = dyn_cast
(Other)) { if (!Field->getDeclName()) { // This is an unnamed field. return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field), cast
(D)); } } if (UsingDecl *Using = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Using, Ctx); if (UsingShadowDecl *Shadow = dyn_cast
(Other)) return isInstantiationOf(cast
(D), Shadow, Ctx); return D->getDeclName() && isa
(Other) && D->getDeclName() == cast
(Other)->getDeclName(); } template
static NamedDecl *findInstantiationOf(ASTContext &Ctx, NamedDecl *D, ForwardIterator first, ForwardIterator last) { for (; first != last; ++first) if (isInstantiationOf(Ctx, D, *first)) return cast
(*first); return nullptr; } /// \brief Finds the instantiation of the given declaration context /// within the current instantiation. /// /// \returns NULL if there was an error DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC, const MultiLevelTemplateArgumentList &TemplateArgs) { if (NamedDecl *D = dyn_cast
(DC)) { Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs); return cast_or_null
(ID); } else return DC; } /// \brief Find the instantiation of the given declaration within the /// current instantiation. /// /// This routine is intended to be used when \p D is a declaration /// referenced from within a template, that needs to mapped into the /// corresponding declaration within an instantiation. For example, /// given: /// /// \code /// template
/// struct X { /// enum Kind { /// KnownValue = sizeof(T) /// }; /// /// bool getKind() const { return KnownValue; } /// }; /// /// template struct X
; /// \endcode /// /// In the instantiation of
X
::getKind()
, we need to map the /// \p EnumConstantDecl for \p KnownValue (which refers to ///
X
::
::KnownValue
) to its instantiation /// (
X
::
::KnownValue
). \p FindInstantiatedDecl performs /// this mapping from within the instantiation of
X
. NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D, const MultiLevelTemplateArgumentList &TemplateArgs) { DeclContext *ParentDC = D->getDeclContext(); // FIXME: Parmeters of pointer to functions (y below) that are themselves // parameters (p below) can have their ParentDC set to the translation-unit // - thus we can not consistently check if the ParentDC of such a parameter // is Dependent or/and a FunctionOrMethod. // For e.g. this code, during Template argument deduction tries to // find an instantiated decl for (T y) when the ParentDC for y is // the translation unit. // e.g. template
void Foo(auto (*p)(T y) -> decltype(y())) {} // float baz(float(*)()) { return 0.0; } // Foo(baz); // The better fix here is perhaps to ensure that a ParmVarDecl, by the time // it gets here, always has a FunctionOrMethod as its ParentDC?? // For now: // - as long as we have a ParmVarDecl whose parent is non-dependent and // whose type is not instantiation dependent, do nothing to the decl // - otherwise find its instantiated decl. if (isa
(D) && !ParentDC->isDependentContext() && !cast
(D)->getType()->isInstantiationDependentType()) return D; if (isa
(D) || isa
(D) || isa
(D) || isa
(D) || (ParentDC->isFunctionOrMethod() && ParentDC->isDependentContext()) || (isa
(D) && cast
(D)->isLambda())) { // D is a local of some kind. Look into the map of local // declarations to their instantiations. if (CurrentInstantiationScope) { if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) { if (Decl *FD = Found->dyn_cast
()) return cast
(FD); int PackIdx = ArgumentPackSubstitutionIndex; assert(PackIdx != -1 && "found declaration pack but not pack expanding"); typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack; return cast
((*Found->get
())[PackIdx]); } } // If we're performing a partial substitution during template argument // deduction, we may not have values for template parameters yet. They // just map to themselves. if (isa
(D) || isa
(D) || isa
(D)) return D; if (D->isInvalidDecl()) return nullptr; // Normally this function only searches for already instantiated declaration // however we have to make an exclusion for local types used before // definition as in the code: // // template