// RUN: %clang_cc1 -fsyntax-only -verify %s
template<typename T> struct A { };
// Top-level cv-qualifiers of P's type are ignored for type deduction.
template<typename T> A<T> f0(const T);
void test_f0(int i, const int ci) {
A<int> a0 = f0(i);
A<int> a1 = f0(ci);
}
// If P is a reference type, the type referred to by P is used for type
// deduction.
template<typename T> A<T> f1(T&);
void test_f1(int i, const int ci, volatile int vi) {
A<int> a0 = f1(i);
A<const int> a1 = f1(ci);
A<volatile int> a2 = f1(vi);
}
template<typename T, unsigned N> struct B { };
template<typename T, unsigned N> B<T, N> g0(T (&array)[N]);
template<typename T, unsigned N> B<T, N> g0b(const T (&array)[N]);
void test_g0() {
int array0[5];
B<int, 5> b0 = g0(array0);
const int array1[] = { 1, 2, 3};
B<const int, 3> b1 = g0(array1);
B<int, 3> b2 = g0b(array1);
}
template<typename T> B<T, 0> g1(const A<T>&);
void test_g1(A<float> af) {
B<float, 0> b0 = g1(af);
B<int, 0> b1 = g1(A<int>());
}
// - If the original P is a reference type, the deduced A (i.e., the type
// referred to by the reference) can be more cv-qualified than the
// transformed A.
template<typename T> A<T> f2(const T&);
void test_f2(int i, const int ci, volatile int vi) {
A<int> a0 = f2(i);
A<int> a1 = f2(ci);
A<volatile int> a2 = f2(vi);
}
// PR5913
template <typename T, int N>
void Foo(const T (&a)[N]) {
T x;
x = 0;
}
const int a[1] = { 0 };
void Test() {
Foo(a);
}
// - The transformed A can be another pointer or pointer to member type that
// can be converted to the deduced A via a qualification conversion (4.4).
template<typename T> A<T> f3(T * * const * const);
void test_f3(int ***ip, volatile int ***vip) {
A<int> a0 = f3(ip);
A<volatile int> a1 = f3(vip);
}
// Also accept conversions for pointer types which require removing
// [[noreturn]].
namespace noreturn_stripping {
template <class R>
void f(R (*function)());
void g() __attribute__ ((__noreturn__));
void h();
void test() {
f(g);
f(h);
}
}
// - If P is a class, and P has the form template-id, then A can be a
// derived class of the deduced A. Likewise, if P is a pointer to a class
// of the form template-id, A can be a pointer to a derived class pointed
// to by the deduced A.
template<typename T, int I> struct C { };
struct D : public C<int, 1> { };
struct E : public D { };
struct F : A<float> { };
struct G : A<float>, C<int, 1> { };
template<typename T, int I>
C<T, I> *f4a(const C<T, I>&);
template<typename T, int I>
C<T, I> *f4b(C<T, I>);
template<typename T, int I>
C<T, I> *f4c(C<T, I>*);
int *f4c(...);
void test_f4(D d, E e, F f, G g) {
C<int, 1> *ci1a = f4a(d);
C<int, 1> *ci2a = f4a(e);
C<int, 1> *ci1b = f4b(d);
C<int, 1> *ci2b = f4b(e);
C<int, 1> *ci1c = f4c(&d);
C<int, 1> *ci2c = f4c(&e);
C<int, 1> *ci3c = f4c(&g);
int *ip1 = f4c(&f);
}
// PR8462
namespace N {
struct T0;
struct T1;
template<typename X, typename Y> struct B {};
struct J : B<T0,T0> {};
struct K : B<T1,T1> {};
struct D : J, K {};
template<typename X, typename Y> void F(B<Y,X>);
void test()
{
D d;
N::F<T0>(d); // Fails
N::F<T1>(d); // OK
}
}
namespace PR9233 {
template<typename T> void f(const T **q); // expected-note{{candidate template ignored: deduced type 'const int **' of 1st parameter does not match adjusted type 'int **' of argument [with T = int]}}
void g(int **p) {
f(p); // expected-error{{no matching function for call to 'f'}}
}
}
namespace PR27155 {
struct B {};
template<class T, int i> struct D : T {};
template<class T> void Foo(D<T, 1>);
int fn() {
D<D<B, 1>, 0> f;
Foo(f);
}
}
namespace PR28195 {
template<int N> struct B {};
struct D : B<0>, B<1> {};
template<int N> int callee(B<N>); // expected-note{{failed template argument deduction}}
int caller() {
callee(D()); // expected-error{{no matching function}}
}
}