HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Android 10
|
10.0.0_r6
下载
查看原文件
收藏
根目录
external
googletest
googlemock
include
gmock
gmock-matchers.h
// Copyright 2007, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Google Mock - a framework for writing C++ mock classes. // // This file implements some commonly used argument matchers. More // matchers can be defined by the user implementing the // MatcherInterface
interface if necessary. // // See googletest/include/gtest/gtest-matchers.h for the definition of class // Matcher, class MatcherInterface, and others. // GOOGLETEST_CM0002 DO NOT DELETE #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ #include
#include
#include
#include
#include
#include
#include
// NOLINT #include
#include
#include
#include
#include
#include "gmock/internal/gmock-internal-utils.h" #include "gmock/internal/gmock-port.h" #include "gtest/gtest.h" GTEST_DISABLE_MSC_WARNINGS_PUSH_( 4251 5046 /* class A needs to have dll-interface to be used by clients of class B */ /* Symbol involving type with internal linkage not defined */) #pragma GCC system_header namespace testing { // To implement a matcher Foo for type T, define: // 1. a class FooMatcherImpl that implements the // MatcherInterface
interface, and // 2. a factory function that creates a Matcher
object from a // FooMatcherImpl*. // // The two-level delegation design makes it possible to allow a user // to write "v" instead of "Eq(v)" where a Matcher is expected, which // is impossible if we pass matchers by pointers. It also eases // ownership management as Matcher objects can now be copied like // plain values. // A match result listener that stores the explanation in a string. class StringMatchResultListener : public MatchResultListener { public: StringMatchResultListener() : MatchResultListener(&ss_) {} // Returns the explanation accumulated so far. std::string str() const { return ss_.str(); } // Clears the explanation accumulated so far. void Clear() { ss_.str(""); } private: ::std::stringstream ss_; GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); }; // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // The MatcherCastImpl class template is a helper for implementing // MatcherCast(). We need this helper in order to partially // specialize the implementation of MatcherCast() (C++ allows // class/struct templates to be partially specialized, but not // function templates.). // This general version is used when MatcherCast()'s argument is a // polymorphic matcher (i.e. something that can be converted to a // Matcher but is not one yet; for example, Eq(value)) or a value (for // example, "hello"). template
class MatcherCastImpl { public: static Matcher
Cast(const M& polymorphic_matcher_or_value) { // M can be a polymorphic matcher, in which case we want to use // its conversion operator to create Matcher
. Or it can be a value // that should be passed to the Matcher
's constructor. // // We can't call Matcher
(polymorphic_matcher_or_value) when M is a // polymorphic matcher because it'll be ambiguous if T has an implicit // constructor from M (this usually happens when T has an implicit // constructor from any type). // // It won't work to unconditionally implict_cast // polymorphic_matcher_or_value to Matcher
because it won't trigger // a user-defined conversion from M to T if one exists (assuming M is // a value). return CastImpl( polymorphic_matcher_or_value, BooleanConstant< std::is_convertible
>::value>(), BooleanConstant< std::is_convertible
::value>()); } private: template
static Matcher
CastImpl(const M& polymorphic_matcher_or_value, BooleanConstant
/* convertible_to_matcher */, BooleanConstant
) { // M is implicitly convertible to Matcher
, which means that either // M is a polymorphic matcher or Matcher
has an implicit constructor // from M. In both cases using the implicit conversion will produce a // matcher. // // Even if T has an implicit constructor from M, it won't be called because // creating Matcher
would require a chain of two user-defined conversions // (first to create T from M and then to create Matcher
from T). return polymorphic_matcher_or_value; } // M can't be implicitly converted to Matcher
, so M isn't a polymorphic // matcher. It's a value of a type implicitly convertible to T. Use direct // initialization to create a matcher. static Matcher
CastImpl( const M& value, BooleanConstant
/* convertible_to_matcher */, BooleanConstant
/* convertible_to_T */) { return Matcher
(ImplicitCast_
(value)); } // M can't be implicitly converted to either Matcher
or T. Attempt to use // polymorphic matcher Eq(value) in this case. // // Note that we first attempt to perform an implicit cast on the value and // only fall back to the polymorphic Eq() matcher afterwards because the // latter calls bool operator==(const Lhs& lhs, const Rhs& rhs) in the end // which might be undefined even when Rhs is implicitly convertible to Lhs // (e.g. std::pair
vs. std::pair
). // // We don't define this method inline as we need the declaration of Eq(). static Matcher
CastImpl( const M& value, BooleanConstant
/* convertible_to_matcher */, BooleanConstant
/* convertible_to_T */); }; // This more specialized version is used when MatcherCast()'s argument // is already a Matcher. This only compiles when type T can be // statically converted to type U. template
class MatcherCastImpl
> { public: static Matcher
Cast(const Matcher
& source_matcher) { return Matcher
(new Impl(source_matcher)); } private: class Impl : public MatcherInterface
{ public: explicit Impl(const Matcher
& source_matcher) : source_matcher_(source_matcher) {} // We delegate the matching logic to the source matcher. bool MatchAndExplain(T x, MatchResultListener* listener) const override { using FromType = typename std::remove_cv
::type>::type>::type; using ToType = typename std::remove_cv
::type>::type>::type; // Do not allow implicitly converting base*/& to derived*/&. static_assert( // Do not trigger if only one of them is a pointer. That implies a // regular conversion and not a down_cast. (std::is_pointer
::type>::value != std::is_pointer
::type>::value) || std::is_same
::value || !std::is_base_of
::value, "Can't implicitly convert from
to
"); return source_matcher_.MatchAndExplain(static_cast
(x), listener); } void DescribeTo(::std::ostream* os) const override { source_matcher_.DescribeTo(os); } void DescribeNegationTo(::std::ostream* os) const override { source_matcher_.DescribeNegationTo(os); } private: const Matcher
source_matcher_; GTEST_DISALLOW_ASSIGN_(Impl); }; }; // This even more specialized version is used for efficiently casting // a matcher to its own type. template
class MatcherCastImpl
> { public: static Matcher
Cast(const Matcher
& matcher) { return matcher; } }; } // namespace internal // In order to be safe and clear, casting between different matcher // types is done explicitly via MatcherCast
(m), which takes a // matcher m and returns a Matcher
. It compiles only when T can be // statically converted to the argument type of m. template
inline Matcher
MatcherCast(const M& matcher) { return internal::MatcherCastImpl
::Cast(matcher); } // Implements SafeMatcherCast(). // // FIXME: The intermediate SafeMatcherCastImpl class was introduced as a // workaround for a compiler bug, and can now be removed. template
class SafeMatcherCastImpl { public: // This overload handles polymorphic matchers and values only since // monomorphic matchers are handled by the next one. template
static inline Matcher
Cast(const M& polymorphic_matcher_or_value) { return internal::MatcherCastImpl
::Cast(polymorphic_matcher_or_value); } // This overload handles monomorphic matchers. // // In general, if type T can be implicitly converted to type U, we can // safely convert a Matcher
to a Matcher
(i.e. Matcher is // contravariant): just keep a copy of the original Matcher
, convert the // argument from type T to U, and then pass it to the underlying Matcher
. // The only exception is when U is a reference and T is not, as the // underlying Matcher
may be interested in the argument's address, which // is not preserved in the conversion from T to U. template
static inline Matcher
Cast(const Matcher
& matcher) { // Enforce that T can be implicitly converted to U. GTEST_COMPILE_ASSERT_((std::is_convertible
::value), "T must be implicitly convertible to U"); // Enforce that we are not converting a non-reference type T to a reference // type U. GTEST_COMPILE_ASSERT_( internal::is_reference
::value || !internal::is_reference
::value, cannot_convert_non_reference_arg_to_reference); // In case both T and U are arithmetic types, enforce that the // conversion is not lossy. typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; GTEST_COMPILE_ASSERT_( kTIsOther || kUIsOther || (internal::LosslessArithmeticConvertible
::value), conversion_of_arithmetic_types_must_be_lossless); return MatcherCast
(matcher); } }; template
inline Matcher
SafeMatcherCast(const M& polymorphic_matcher) { return SafeMatcherCastImpl
::Cast(polymorphic_matcher); } // A
() returns a matcher that matches any value of type T. template
Matcher
A(); // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION // and MUST NOT BE USED IN USER CODE!!! namespace internal { // If the explanation is not empty, prints it to the ostream. inline void PrintIfNotEmpty(const std::string& explanation, ::std::ostream* os) { if (explanation != "" && os != nullptr) { *os << ", " << explanation; } } // Returns true if the given type name is easy to read by a human. // This is used to decide whether printing the type of a value might // be helpful. inline bool IsReadableTypeName(const std::string& type_name) { // We consider a type name readable if it's short or doesn't contain // a template or function type. return (type_name.length() <= 20 || type_name.find_first_of("<(") == std::string::npos); } // Matches the value against the given matcher, prints the value and explains // the match result to the listener. Returns the match result. // 'listener' must not be NULL. // Value cannot be passed by const reference, because some matchers take a // non-const argument. template
bool MatchPrintAndExplain(Value& value, const Matcher
& matcher, MatchResultListener* listener) { if (!listener->IsInterested()) { // If the listener is not interested, we do not need to construct the // inner explanation. return matcher.Matches(value); } StringMatchResultListener inner_listener; const bool match = matcher.MatchAndExplain(value, &inner_listener); UniversalPrint(value, listener->stream()); #if GTEST_HAS_RTTI const std::string& type_name = GetTypeName
(); if (IsReadableTypeName(type_name)) *listener->stream() << " (of type " << type_name << ")"; #endif PrintIfNotEmpty(inner_listener.str(), listener->stream()); return match; } // An internal helper class for doing compile-time loop on a tuple's // fields. template
class TuplePrefix { public: // TuplePrefix
::Matches(matcher_tuple, value_tuple) returns true // iff the first N fields of matcher_tuple matches the first N // fields of value_tuple, respectively. template
static bool Matches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { return TuplePrefix
::Matches(matcher_tuple, value_tuple) && std::get
(matcher_tuple).Matches(std::get
(value_tuple)); } // TuplePrefix
::ExplainMatchFailuresTo(matchers, values, os) // describes failures in matching the first N fields of matchers // against the first N fields of values. If there is no failure, // nothing will be streamed to os. template
static void ExplainMatchFailuresTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { // First, describes failures in the first N - 1 fields. TuplePrefix
::ExplainMatchFailuresTo(matchers, values, os); // Then describes the failure (if any) in the (N - 1)-th (0-based) // field. typename std::tuple_element
::type matcher = std::get
(matchers); typedef typename std::tuple_element
::type Value; const Value& value = std::get
(values); StringMatchResultListener listener; if (!matcher.MatchAndExplain(value, &listener)) { *os << " Expected arg #" << N - 1 << ": "; std::get
(matchers).DescribeTo(os); *os << "\n Actual: "; // We remove the reference in type Value to prevent the // universal printer from printing the address of value, which // isn't interesting to the user most of the time. The // matcher's MatchAndExplain() method handles the case when // the address is interesting. internal::UniversalPrint(value, os); PrintIfNotEmpty(listener.str(), os); *os << "\n"; } } }; // The base case. template <> class TuplePrefix<0> { public: template
static bool Matches(const MatcherTuple& /* matcher_tuple */, const ValueTuple& /* value_tuple */) { return true; } template
static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, const ValueTuple& /* values */, ::std::ostream* /* os */) {} }; // TupleMatches(matcher_tuple, value_tuple) returns true iff all // matchers in matcher_tuple match the corresponding fields in // value_tuple. It is a compiler error if matcher_tuple and // value_tuple have different number of fields or incompatible field // types. template
bool TupleMatches(const MatcherTuple& matcher_tuple, const ValueTuple& value_tuple) { // Makes sure that matcher_tuple and value_tuple have the same // number of fields. GTEST_COMPILE_ASSERT_(std::tuple_size
::value == std::tuple_size
::value, matcher_and_value_have_different_numbers_of_fields); return TuplePrefix
::value>::Matches(matcher_tuple, value_tuple); } // Describes failures in matching matchers against values. If there // is no failure, nothing will be streamed to os. template
void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, const ValueTuple& values, ::std::ostream* os) { TuplePrefix
::value>::ExplainMatchFailuresTo( matchers, values, os); } // TransformTupleValues and its helper. // // TransformTupleValuesHelper hides the internal machinery that // TransformTupleValues uses to implement a tuple traversal. template
class TransformTupleValuesHelper { private: typedef ::std::tuple_size
TupleSize; public: // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. // Returns the final value of 'out' in case the caller needs it. static OutIter Run(Func f, const Tuple& t, OutIter out) { return IterateOverTuple
()(f, t, out); } private: template
struct IterateOverTuple { OutIter operator() (Func f, const Tup& t, OutIter out) const { *out++ = f(::std::get
(t)); return IterateOverTuple
()(f, t, out); } }; template
struct IterateOverTuple
{ OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { return out; } }; }; // Successively invokes 'f(element)' on each element of the tuple 't', // appending each result to the 'out' iterator. Returns the final value // of 'out'. template
OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { return TransformTupleValuesHelper
::Run(f, t, out); } // Implements A
(). template
class AnyMatcherImpl : public MatcherInterface
{ public: bool MatchAndExplain(const T& /* x */, MatchResultListener* /* listener */) const override { return true; } void DescribeTo(::std::ostream* os) const override { *os << "is anything"; } void DescribeNegationTo(::std::ostream* os) const override { // This is mostly for completeness' safe, as it's not very useful // to write Not(A
()). However we cannot completely rule out // such a possibility, and it doesn't hurt to be prepared. *os << "never matches"; } }; // Implements _, a matcher that matches any value of any // type. This is a polymorphic matcher, so we need a template type // conversion operator to make it appearing as a Matcher
for any // type T. class AnythingMatcher { public: template
operator Matcher
() const { return A
(); } }; // Implements the polymorphic IsNull() matcher, which matches any raw or smart // pointer that is NULL. class IsNullMatcher { public: template
bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return p == nullptr; } void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "isn't NULL"; } }; // Implements the polymorphic NotNull() matcher, which matches any raw or smart // pointer that is not NULL. class NotNullMatcher { public: template
bool MatchAndExplain(const Pointer& p, MatchResultListener* /* listener */) const { return p != nullptr; } void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } void DescribeNegationTo(::std::ostream* os) const { *os << "is NULL"; } }; // Ref(variable) matches any argument that is a reference to // 'variable'. This matcher is polymorphic as it can match any // super type of the type of 'variable'. // // The RefMatcher template class implements Ref(variable). It can // only be instantiated with a reference type. This prevents a user // from mistakenly using Ref(x) to match a non-reference function // argument. For example, the following will righteously cause a // compiler error: // // int n; // Matcher
m1 = Ref(n); // This won't compile. // Matcher
m2 = Ref(n); // This will compile. template
class RefMatcher; template
class RefMatcher
{ // Google Mock is a generic framework and thus needs to support // mocking any function types, including those that take non-const // reference arguments. Therefore the template parameter T (and // Super below) can be instantiated to either a const type or a // non-const type. public: // RefMatcher() takes a T& instead of const T&, as we want the // compiler to catch using Ref(const_value) as a matcher for a // non-const reference. explicit RefMatcher(T& x) : object_(x) {} // NOLINT template
operator Matcher
() const { // By passing object_ (type T&) to Impl(), which expects a Super&, // we make sure that Super is a super type of T. In particular, // this catches using Ref(const_value) as a matcher for a // non-const reference, as you cannot implicitly convert a const // reference to a non-const reference. return MakeMatcher(new Impl
(object_)); } private: template
class Impl : public MatcherInterface
{ public: explicit Impl(Super& x) : object_(x) {} // NOLINT // MatchAndExplain() takes a Super& (as opposed to const Super&) // in order to match the interface MatcherInterface
. bool MatchAndExplain(Super& x, MatchResultListener* listener) const override { *listener << "which is located @" << static_cast
(&x); return &x == &object_; } void DescribeTo(::std::ostream* os) const override { *os << "references the variable "; UniversalPrinter
::Print(object_, os); } void DescribeNegationTo(::std::ostream* os) const override { *os << "does not reference the variable "; UniversalPrinter
::Print(object_, os); } private: const Super& object_; GTEST_DISALLOW_ASSIGN_(Impl); }; T& object_; GTEST_DISALLOW_ASSIGN_(RefMatcher); }; // Polymorphic helper functions for narrow and wide string matchers. inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { return String::CaseInsensitiveCStringEquals(lhs, rhs); } inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, const wchar_t* rhs) { return String::CaseInsensitiveWideCStringEquals(lhs, rhs); } // String comparison for narrow or wide strings that can have embedded NUL // characters. template
bool CaseInsensitiveStringEquals(const StringType& s1, const StringType& s2) { // Are the heads equal? if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { return false; } // Skip the equal heads. const typename StringType::value_type nul = 0; const size_t i1 = s1.find(nul), i2 = s2.find(nul); // Are we at the end of either s1 or s2? if (i1 == StringType::npos || i2 == StringType::npos) { return i1 == i2; } // Are the tails equal? return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); } // String matchers. // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. template
class StrEqualityMatcher { public: StrEqualityMatcher(const StringType& str, bool expect_eq, bool case_sensitive) : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { if (s == nullptr) { return !expect_eq_; } return MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template
bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); const bool eq = case_sensitive_ ? s2 == string_ : CaseInsensitiveStringEquals(s2, string_); return expect_eq_ == eq; } void DescribeTo(::std::ostream* os) const { DescribeToHelper(expect_eq_, os); } void DescribeNegationTo(::std::ostream* os) const { DescribeToHelper(!expect_eq_, os); } private: void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { *os << (expect_eq ? "is " : "isn't "); *os << "equal to "; if (!case_sensitive_) { *os << "(ignoring case) "; } UniversalPrint(string_, os); } const StringType string_; const bool expect_eq_; const bool case_sensitive_; GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); }; // Implements the polymorphic HasSubstr(substring) matcher, which // can be used as a Matcher
as long as T can be converted to a // string. template
class HasSubstrMatcher { public: explicit HasSubstrMatcher(const StringType& substring) : substring_(substring) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template
bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.find(substring_) != StringType::npos; } // Describes what this matcher matches. void DescribeTo(::std::ostream* os) const { *os << "has substring "; UniversalPrint(substring_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "has no substring "; UniversalPrint(substring_, os); } private: const StringType substring_; GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); }; // Implements the polymorphic StartsWith(substring) matcher, which // can be used as a Matcher
as long as T can be converted to a // string. template
class StartsWithMatcher { public: explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { } #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template
bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= prefix_.length() && s2.substr(0, prefix_.length()) == prefix_; } void DescribeTo(::std::ostream* os) const { *os << "starts with "; UniversalPrint(prefix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't start with "; UniversalPrint(prefix_, os); } private: const StringType prefix_; GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); }; // Implements the polymorphic EndsWith(substring) matcher, which // can be used as a Matcher
as long as T can be converted to a // string. template
class EndsWithMatcher { public: explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} #if GTEST_HAS_ABSL bool MatchAndExplain(const absl::string_view& s, MatchResultListener* listener) const { // This should fail to compile if absl::string_view is used with wide // strings. const StringType& str = string(s); return MatchAndExplain(str, listener); } #endif // GTEST_HAS_ABSL // Accepts pointer types, particularly: // const char* // char* // const wchar_t* // wchar_t* template
bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { return s != nullptr && MatchAndExplain(StringType(s), listener); } // Matches anything that can convert to StringType. // // This is a template, not just a plain function with const StringType&, // because absl::string_view has some interfering non-explicit constructors. template
bool MatchAndExplain(const MatcheeStringType& s, MatchResultListener* /* listener */) const { const StringType& s2(s); return s2.length() >= suffix_.length() && s2.substr(s2.length() - suffix_.length()) == suffix_; } void DescribeTo(::std::ostream* os) const { *os << "ends with "; UniversalPrint(suffix_, os); } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't end with "; UniversalPrint(suffix_, os); } private: const StringType suffix_; GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); }; // Implements a matcher that compares the two fields of a 2-tuple // using one of the ==, <=, <, etc, operators. The two fields being // compared don't have to have the same type. // // The matcher defined here is polymorphic (for example, Eq() can be // used to match a std::tuple
, a std::tuple
, // etc). Therefore we use a template type conversion operator in the // implementation. template
class PairMatchBase { public: template
operator Matcher<::std::tuple
>() const { return Matcher<::std::tuple
>(new Impl
&>); } template
operator Matcher
&>() const { return MakeMatcher(new Impl
&>); } private: static ::std::ostream& GetDesc(::std::ostream& os) { // NOLINT return os << D::Desc(); } template
class Impl : public MatcherInterface
{ public: bool MatchAndExplain(Tuple args, MatchResultListener* /* listener */) const override { return Op()(::std::get<0>(args), ::std::get<1>(args)); } void DescribeTo(::std::ostream* os) const override { *os << "are " << GetDesc; } void DescribeNegationTo(::std::ostream* os) const override { *os << "aren't " << GetDesc; } }; }; class Eq2Matcher : public PairMatchBase
{ public: static const char* Desc() { return "an equal pair"; } }; class Ne2Matcher : public PairMatchBase
{ public: static const char* Desc() { return "an unequal pair"; } }; class Lt2Matcher : public PairMatchBase
{ public: static const char* Desc() { return "a pair where the first < the second"; } }; class Gt2Matcher : public PairMatchBase
{ public: static const char* Desc() { return "a pair where the first > the second"; } }; class Le2Matcher : public PairMatchBase
{ public: static const char* Desc() { return "a pair where the first <= the second"; } }; class Ge2Matcher : public PairMatchBase
{ public: static const char* Desc() { return "a pair where the first >= the second"; } }; // Implements the Not(...) matcher for a particular argument type T. // We do not nest it inside the NotMatcher class template, as that // will prevent different instantiations of NotMatcher from sharing // the same NotMatcherImpl
class. template
class NotMatcherImpl : public MatcherInterface
{ public: explicit NotMatcherImpl(const Matcher
& matcher) : matcher_(matcher) {} bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { return !matcher_.MatchAndExplain(x, listener); } void DescribeTo(::std::ostream* os) const override { matcher_.DescribeNegationTo(os); } void DescribeNegationTo(::std::ostream* os) const override { matcher_.DescribeTo(os); } private: const Matcher
matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); }; // Implements the Not(m) matcher, which matches a value that doesn't // match matcher m. template
class NotMatcher { public: explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} // This template type conversion operator allows Not(m) to be used // to match any type m can match. template
operator Matcher
() const { return Matcher
(new NotMatcherImpl
(SafeMatcherCast
(matcher_))); } private: InnerMatcher matcher_; GTEST_DISALLOW_ASSIGN_(NotMatcher); }; // Implements the AllOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the BothOfMatcher class template, as // that will prevent different instantiations of BothOfMatcher from // sharing the same BothOfMatcherImpl
class. template
class AllOfMatcherImpl : public MatcherInterface
{ public: explicit AllOfMatcherImpl(std::vector
> matchers) : matchers_(std::move(matchers)) {} void DescribeTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeTo(os); } *os << ")"; } void DescribeNegationTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; } bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { // If either matcher1_ or matcher2_ doesn't match x, we only need // to explain why one of them fails. std::string all_match_result; for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { if (all_match_result.empty()) { all_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { all_match_result += ", and "; all_match_result += result; } } } else { *listener << slistener.str(); return false; } } // Otherwise we need to explain why *both* of them match. *listener << all_match_result; return true; } private: const std::vector
> matchers_; GTEST_DISALLOW_ASSIGN_(AllOfMatcherImpl); }; // VariadicMatcher is used for the variadic implementation of // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). // CombiningMatcher
is used to recursively combine the provided matchers // (of type Args...). template
class CombiningMatcher, typename... Args> class VariadicMatcher { public: VariadicMatcher(const Args&... matchers) // NOLINT : matchers_(matchers...) { static_assert(sizeof...(Args) > 0, "Must have at least one matcher."); } // This template type conversion operator allows an // VariadicMatcher
object to match any type that // all of the provided matchers (Matcher1, Matcher2, ...) can match. template
operator Matcher
() const { std::vector
> values; CreateVariadicMatcher
(&values, std::integral_constant
()); return Matcher
(new CombiningMatcher
(std::move(values))); } private: template
void CreateVariadicMatcher(std::vector
>* values, std::integral_constant
) const { values->push_back(SafeMatcherCast
(std::get
(matchers_))); CreateVariadicMatcher
(values, std::integral_constant
()); } template
void CreateVariadicMatcher( std::vector
>*, std::integral_constant
) const {} std::tuple
matchers_; GTEST_DISALLOW_ASSIGN_(VariadicMatcher); }; template
using AllOfMatcher = VariadicMatcher
; // Implements the AnyOf(m1, m2) matcher for a particular argument type // T. We do not nest it inside the AnyOfMatcher class template, as // that will prevent different instantiations of AnyOfMatcher from // sharing the same EitherOfMatcherImpl
class. template
class AnyOfMatcherImpl : public MatcherInterface
{ public: explicit AnyOfMatcherImpl(std::vector
> matchers) : matchers_(std::move(matchers)) {} void DescribeTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") or ("; matchers_[i].DescribeTo(os); } *os << ")"; } void DescribeNegationTo(::std::ostream* os) const override { *os << "("; for (size_t i = 0; i < matchers_.size(); ++i) { if (i != 0) *os << ") and ("; matchers_[i].DescribeNegationTo(os); } *os << ")"; } bool MatchAndExplain(const T& x, MatchResultListener* listener) const override { std::string no_match_result; // If either matcher1_ or matcher2_ matches x, we just need to // explain why *one* of them matches. for (size_t i = 0; i < matchers_.size(); ++i) { StringMatchResultListener slistener; if (matchers_[i].MatchAndExplain(x, &slistener)) { *listener << slistener.str(); return true; } else { if (no_match_result.empty()) { no_match_result = slistener.str(); } else { std::string result = slistener.str(); if (!result.empty()) { no_match_result += ", and "; no_match_result += result; } } } } // Otherwise we need to explain why *both* of them fail. *listener << no_match_result; return false; } private: const std::vector
> matchers_; GTEST_DISALLOW_ASSIGN_(AnyOfMatcherImpl); }; // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). template
using AnyOfMatcher = VariadicMatcher
; // Wrapper for implementation of Any/AllOfArray(). template
class MatcherImpl, typename T> class SomeOfArrayMatcher { public: // Constructs the matcher from a sequence of element values or // element matchers. template
SomeOfArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} template
operator Matcher
() const { // NOLINT using RawU = typename std::decay
::type; std::vector
> matchers; for (const auto& matcher : matchers_) { matchers.push_back(MatcherCast
(matcher)); } return Matcher
(new MatcherImpl
(std::move(matchers))); } private: const ::std::vector
matchers_; GTEST_DISALLOW_ASSIGN_(SomeOfArrayMatcher); }; template
using AllOfArrayMatcher = SomeOfArrayMatcher
; template
using AnyOfArrayMatcher = SomeOfArrayMatcher
; // Used for implementing Truly(pred), which turns a predicate into a // matcher. template
class TrulyMatcher { public: explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} // This method template allows Truly(pred) to be used as a matcher // for type T where T is the argument type of predicate 'pred'. The // argument is passed by reference as the predicate may be // interested in the address of the argument. template
bool MatchAndExplain(T& x, // NOLINT MatchResultListener* /* listener */) const { // Without the if-statement, MSVC sometimes warns about converting // a value to bool (warning 4800). // // We cannot write 'return !!predicate_(x);' as that doesn't work // when predicate_(x) returns a class convertible to bool but // having no operator!(). if (predicate_(x)) return true; return false; } void DescribeTo(::std::ostream* os) const { *os << "satisfies the given predicate"; } void DescribeNegationTo(::std::ostream* os) const { *os << "doesn't satisfy the given predicate"; } private: Predicate predicate_; GTEST_DISALLOW_ASSIGN_(TrulyMatcher); }; // Used for implementing Matches(matcher), which turns a matcher into // a predicate. template
class MatcherAsPredicate { public: explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} // This template operator() allows Matches(m) to be used as a // predicate on type T where m is a matcher on type T. // // The argument x is passed by reference instead of by value, as // some matcher may be interested in its address (e.g. as in // Matches(Ref(n))(x)). template
bool operator()(const T& x) const { // We let matcher_ commit to a particular type here instead of // when the MatcherAsPredicate object was constructed. This // allows us to write Matches(m) where m is a polymorphic matcher // (e.g. Eq(5)). // // If we write Matcher
(matcher_).Matches(x) here, it won't // compile when matcher_ has type Matcher
; if we write // Matcher
(matcher_).Matches(x) here, it won't compile // when matcher_ has type Matcher
; if we just write // matcher_.Matches(x), it won't compile when matcher_ is // polymorphic, e.g. Eq(5). // // MatcherCast
() is necessary for making the code work // in all of the above situations. return MatcherCast